
COMPUTER
ARITHMETIC
Algorithms and Hardware Designs

S E C O N D E D I T I O N

Behrooz Parhami
Department of Electrical and Computer Engineering

University of California, Santa Barbara

NEW YORK OXFORD
OXFORD UNIVERSITY PRESS

2010

Oxford University Press, Inc., publishes works that further Oxford Universitiy’s
objective of excellence in research, scholarship, and education.

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

with offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 2010 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.
198 Madison Avenue, New York, New York 10016
http://www.oup.com

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data

Parhami, Behrooz.
Computer arithmetic / Behrooz Parhami. – 2nd ed.

p. cm.
ISBN 978-0-19-532848-6
1. Computer arithmetic. 2. Computer algorithms. I. Title.
QA76.9.C62P37 2009
005.1—dc22
2009034155

Printing number: 9 8 7 6 5 4 3 2 1

Printed in the United States of America
on acid-free paper

To the memory of my father,

Salem Parhami (1922–1992),

and to all others on whom I can count

for added inspiration,

multiplied joy,

and divided anguish.

PREFACE to the first edition

THE CONTEXT OF COMPUTER ARITHMETIC

Advances in computer architecture over the past two decades have allowed the per-
formance of digital computer hardware to continue its exponential growth, despite

increasing technological difficulty in speed improvement at the circuit level. This phe-
nomenal rate of growth, which is expected to continue in the near future, would
not have been possible without theoretical insights, experimental research, and tool-
building efforts that have helped transform computer architecture from an art into one
of the most quantitative branches of computer science and engineering. Better under-
standing of the various forms of concurrency and the development of a reasonably
efficient and user-friendly programming model have been key enablers of this success
story.

The downside of exponentially rising processor performance is an unprecedented
increase in hardware and software complexity. The trend toward greater complexity is
not only at odds with testability and certifiability but also hampers adaptability, perfor-
mance tuning, and evaluation of the various trade-offs, all of which contribute to soaring
development costs. A key challenge facing current and future computer designers is to
reverse this trend by removing layer after layer of complexity, opting instead for clean,
robust, and easily certifiable designs, while continuing to try to devise novel methods for
gaining performance and ease-of-use benefits from simpler circuits that can be readily
adapted to application requirements.

In the computer designers’ quest for user-friendliness, compactness, simplicity, high
performance, low cost, and low power, computer arithmetic plays a key role. It is one
of oldest subfields of computer architecture. The bulk of hardware in early digital com-
puters resided in accumulator and other arithmetic/logic circuits. Thus, first-generation
computer designers were motivated to simplify and share hardware to the extent pos-
sible and to carry out detailed cost–performance analyses before proposing a design.
Many of the ingenious design methods that we use today have their roots in the bulky,
power-hungry machines of 30–50 years ago.

In fact computer arithmetic has been so successful that it has, at times, become
transparent. Arithmetic circuits are no longer dominant in terms of complexity; registers,
memory and memory management, instruction issue logic, and pipeline control have

xix

xx Preface

become the dominant consumers of chip area in today’s processors. Correctness and
high performance of arithmetic circuits are routinely expected, and episodes such as the
Intel Pentium division bug of the mid 1990s are indeed rare.

The preceding context is changing for several reasons. First, at very high clock rates,
the interfaces between arithmetic circuits and the rest of the processor become critical.
Arithmetic units can no longer be designed and verified in isolation. Rather, an integrated
design optimization is required, which makes the development even more complex and
costly. Second, optimizing arithmetic circuits to meet design goals by taking advantage of
the strengths of new technologies, and making them tolerant to the weaknesses, requires
a reexamination of existing design paradigms. Finally, incorporation of higher-level
arithmetic primitives into hardware makes the design, optimization, and verification
efforts highly complex and interrelated.

This is why computer arithmetic is alive and well today. Designers and researchers
in this area produce novel structures with amazing regularity. Carry-lookahead adders
comprise a case in point. We used to think, in the not so distant past, that we knew all
there was to know about carry-lookahead fast adders. Yet, new designs, improvements,
and optimizations are still appearing. The IEEE 754 standard floating-point format has
removed many of the concerns with compatibility and error control in floating-point
computations, thus resulting in new designs and products with mass-market appeal.
Given the arithmetic-intensive nature of many novel application areas (such as encryp-
tion, error checking, and multimedia), computer arithmetic will continue to thrive for
years to come.

THE GOALS AND STRUCTURE OF THIS BOOK

The field of computer arithmetic has matured to the point that a dozen or so texts and
reference books have been published. Some of these books that cover computer arith-
metic in general (as opposed to special aspects or advanced/unconventional methods)
are listed at the end of the preface. Each of these books has its unique strengths and has
contributed to the formation and fruition of the field. The current text, Computer Arith-
metic: Algorithms and Hardware Designs, is an outgrowth of lecture notes the author
developed and refined over many years. Here are the most important features of this text
in comparison to the listed books:

Division of material into lecture-size chapters. In my approach to teaching, a lecture
is a more or less self-contained module with links to past lectures and pointers to what
will transpire in future. Each lecture must have a theme or title and must proceed
from motivation, to details, to conclusion. In designing the text, I strived to divide
the material into chapters, each of which is suitable for one lecture (1–2 hours). A
short lecture can cover the first few subsections, while a longer lecture can deal with
variations, peripheral ideas, or more advanced material near the end of the chapter.
To make the structure hierarchical, as opposed to flat or linear, lectures are grouped
into seven parts, each composed of four lectures and covering one aspect of the field
(Fig. P.1).

Preface xxi

Emphasis on both the underlying theory and actual hardware designs. The ability to
cope with complexity requires both a deep knowledge of the theoretical underpin-
nings of computer arithmetic and examples of designs that help us understand the
theory. Such designs also provide building blocks for synthesis as well as reference
points for cost-performance comparisons. This viewpoint is reflected in, for example,
the detailed coverage of redundant number representations and associated arithmetic
algorithms (Chapter 3) that later lead to a better understanding of various multiplier
designs and on-line arithmetic. Another example can be found in Chapter 22, where
coordinate rotation digital computer, or CORDIC, algorithms are introduced from
the more intuitive geometric viewpoint.

Linking computer arithmetic to other subfields of computing. Computer arithmetic
is nourished by, and in turn nourishes, other subfields of computer architecture and
technology. Examples of such links abound. The design of carry-lookahead adders
became much more systematic once it was realized that the carry computation is
a special case of parallel prefix computation that had been extensively studied by
researchers in parallel computing. Arithmetic for and by neural networks is an area
that is still being explored. The residue number system has provided an invaluable
tool for researchers interested in complexity theory and the limits of fast arithmetic,
as well as to the designers of fault-tolerant digital systems.

Wide coverage of important topics. The text covers virtually all important algorith-
mic and hardware design topics in computer arithmetic, thus providing a balanced
and complete view of the field. Coverage of unconventional number representa-
tion methods (Chapters 3 and 4), arithmetic by table lookup (Chapter 24), which is
becoming increasingly important, multiplication and division by constants (Chapters
9 and 13), errors and certifiable arithmetic (Chapters 19 and 20), and the topics in
Part VII (Chapters 25–28) do not all appear in other textbooks.

Unified and consistent notation and terminology throughout the text. Every effort is
made to use consistent notation and terminology throughout the text. For example, r
always stands for the number representation radix and s for the remainder in division
or square-rooting. While other authors have done this in the basic parts of their texts,
many tend to cover more advanced research topics by simply borrowing the notation
and terminology from the reference source. Such an approach has the advantage
of making the transition between reading the text and the original reference source
easier, but it is utterly confusing to the majority of the students, who rely on the
text and do not consult the original references except, perhaps, to write a research
paper.

SUMMARY OF TOPICS

The seven parts of this book, each composed of four chapters, were written with the
following goals.

Part I sets the stage, gives a taste of what is to come, and provides a detailed per-
spective on the various ways of representing fixed-point numbers. Included are detailed
discussions of signed numbers, redundant representations, and residue number systems.

xxii Preface

Part II covers addition and subtraction, which form the most basic arithmetic building
blocks and are often used in implementing other arithmetic operations. Included in the
discussions are addition of a constant (counting), various methods for designing fast
adders, and multioperand addition.

Part III deals exclusively with multiplication, beginning with the basic shift/add
algorithms and moving on to high-radix, tree, array, bit-serial, modular, and a variety of
other multipliers. The special case of squaring is also discussed.

Part IV covers division algorithms and their hardware implementations, beginning
with the basic shift/subtract algorithms and moving on to high-radix, prescaled, modular,
array, and convergence dividers.

Part V deals with real number arithmetic, including various methods for representing
real numbers, floating-point arithmetic, errors in representation and computation, and
methods for high-precision and certifiable arithmetic.

Part VI covers function evaluation, beginning with the important special case of
square-rooting and moving on to coordinate rotation digital computer, or CORDIC,
algorithms, followed by general convergence and approximation methods, including the
use of lookup tables.

Part VII deals with broad design and implementation topics, including pipelining,
low-power arithmetic, and fault tolerance. This part concludes by providing historical
perspective and examples of arithmetic units in real computers.

POINTERS ON HOW TO USE THE BOOK

For classroom use, the topics in each chapter of this text can be covered in a lecture lasting
1–2 hours. In his own teaching, the author has used the chapters primarily for 1.5-hour
lectures, twice a week, in a 10-week quarter, omitting or combining some chapters to
fit the material into 18–20 lectures. But the modular structure of the text lends itself to
other lecture formats, self-study, or review of the field by practitioners. In the latter two
cases, readers can view each chapter as a study unit (for one week, say) rather than as a
lecture. Ideally, all topics in each chapter should be covered before the reader moves to
the next chapter. However, if fewer lecture hours are available, some of the subsections
located at the end of chapters can be omitted or introduced only in terms of motivations
and key results.

Problems of varying complexities, from straightforward numerical examples or exer-
cises to more demanding studies or miniprojects, are supplied for each chapter. These
problems form an integral part of the book: they were not added as afterthoughts to
make the book more attractive for use as a text. A total of 464 problems are included
(15–18 per chapter). Assuming that two lectures are given per week, either weekly
or biweekly homework can be assigned, with each assignment having the specific
coverage of the respective half-part (two chapters) or full-part (four chapters) as its
“title.”

An instructor’s solutions manual is available. The author’s detailed syllabus for the
course ECE 252B at UCSB is available at:

http://www.ece.ucsb.edu/∼parhami/ece_252b.htm.

Preface xxiii

A simulator for numerical experimentation with various arithmetic algorithms is
available at:

http://www.ecs.umass.edu/ece/koren/arith/simulator/

courtesy of Professor Israel Koren.
References to classical papers in computer arithmetic, key design ideas, and impor-

tant state-of-the-art research contributions are listed at the end of each chapter. These
references provide good starting points for in-depth studies or for term papers or projects.
A large number of classical papers and important contributions in computer arithmetic
have been reprinted in two volumes [Swar90].

New ideas in the field of computer arithmetic appear in papers presented at biannual
conferences, known as ARITH-n, held in odd-numbered years [Arit]. Other conferences
of interest include Asilomar Conference on Signals, Systems, and Computers [Asil],
International Conference on Circuits and Systems [ICCS], Midwest Symposium on Cir-
cuits and Systems [MSCS], and International Conference on Computer Design [ICCD].
Relevant journals include IEEE Transactions on Computers [TrCo], particularly its spe-
cial issues on computer arithmetic, IEEE Transactions on Circuits and Systems [TrCS],
Computers & Mathematics with Applications [CoMa], IET Circuits, Devices & Sys-
tems [CDS], IET Computers & Digital Techniques [CDT], IEEE Transactions on VLSI
Systems [TrVL], and Journal of VLSI Signal Processing [JVSP].

ACKNOWLEDGMENTS

Computer Arithmetic: Algorithms and Hardware Designs is an outgrowth of lecture
notes the author used for the graduate course “ECE 252B: Computer Arithmetic” at the
University of California, Santa Barbara, and, in rudimentary forms, at several other
institutions prior to 1988. The text has benefited greatly from keen observations, curios-
ity, and encouragement of my many students in these courses. A sincere thanks to all
of them!

REFERENCES AND FURTHER READINGS

Note: References appear in updated 2nd-edition form, in order to avoid the need for a separate list
for the latter.

[Arit] International Symposium on Computer Arithmetic, sponsored by the IEEE Computer
Society. This series began with a one-day workshop in 1969 and was subsequently
held in 1972, 1975, 1978, and in odd-numbered years since 1981. The 19th
symposium in the series, ARITH-19, was held June 8–10, 2009, in Portland, Oregon.

[Asil] Asilomar Conference on Signals Systems, and Computers, sponsored annually by
IEEE and held on the Asilomar Conference Grounds in Pacific Grove, California,
each fall. The 43rd conference in this series was held on November 1–4, 2009.

[Cava84] Cavanagh, J. J. F., Digital Computer Arithmetic: Design and Implementation,
McGraw-Hill, 1984.

[CDS] IET Circuits, Devices & Systems, journal published by the Institution of Engineering
and Technology, United Kingdom.

xxiv Preface

[CDT] IET Computers & Digital Techniques, journal published by the Institution of
Engineering and Technology, United Kingdom.

[CoMa] Computers & Mathematics with Applications, journal published by Pergamon Press.

[Desc06] Deschamps, J.-P., G. J. A. Bioul, and G. D. Sutter, Synthesis of Arithmetic Circuits:
FPGA, ASIC and Embedded Systems, Wiley-Interscience, 2006.

[Erce04] Ercegovac, M. D., and T. Lang, Digital Arithmetic, Morgan Kaufmann, 2004.

[Flor63] Flores, I., The Logic of Computer Arithmetic, Prentice-Hall, 1963.

[Gosl80] Gosling, J. B., Design of Arithmetic Units for Digital Computers, Macmillan, 1980.

[Hwan79] Hwang, K., Computer Arithmetic: Principles, Architecture, and Design, Wiley,
1979.

[ICCD] International Conference on Computer Design, sponsored annually by the IEEE
Computer Society. ICCD-2009 was held on October 4–7, in Lake Tahoe, California.

[ICCS] International Conference on Circuits and Systems, sponsored annually by the IEEE
Circuits and Systems Society. The latest in this series was held on May 24–27, 2009,
in Taipei, Taiwan.

[JVSP] J. VLSI Signal Processing, published by Kluwer Academic Publishers.

[Knut97] Knuth, D. E., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
3rd ed., Addison-Wesley, 1997. (The widely used second edition, published in 1981,
is cited in Parts V and VI.)

[Kore02] Koren, I., Computer Arithmetic Algorithms, 2nd ed., A.K. Peters, 2002.

[Kuli81] Kulisch, U. W., and W. L. Miranker, Computer Arithmetic in Theory and Practice,
Academic Press, 1981.

[Lu04] Lu, M., Arithmetic and Logic in Computer Systems, Wiley, 2004.

[MSCS] Midwest Symposium on Circuits and Systems, sponsored annually by the IEEE
Circuits and Systems Society.

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture and
Implementations, Prentice-Hall, 1994.

[Rich55] Richards, R. K., Arithmetic Operations in Digital Computers, Van Nostrand, 1955.

[Scot85] Scott, N. R., Computer Number Systems and Arithmetic, Prentice-Hall, 1985.

[Stei71] Stein, M. L., and W. D. Munro, Introduction to Machine Arithmetic,
Addison-Wesley, 1971.

[Stin04] Stine, J. E., Digital Computer Arithmetic Datapath Design Using Verilog HDL,
Kluwer, 2004.

[Swar90] Swartzlander, E. E., Jr., Computer Arithmetic, Vols. I and II, IEEE Computer Society
Press, 1990.

[TrCo] IEEE Trans. Computers, journal published by the IEEE Computer Society.
Occasionally entire special issues or sections are devoted to computer arithmetic
(e.g., Vol. 19, No. 8, August 1970; Vol. 22, No. 6, June 1973; Vol. 26, No. 7, July
1977; Vol. 32, No. 4, April 1983; Vol. 39, No. 8, August 1990; Vol. 41, No. 8, August
1992; Vol. 43, No. 8, August 1994; Vol. 47, No. 7, July 1998; Vol. 49, No. 7, July
2000; Vol. 54, No. 3, March 2005; Vol. 58, No. 2, February 2009).

[TrCS] IEEE Trans. Circuits and Systems, Parts I & II, journals published by IEEE. The two
parts have been distinguished differently over the years. Currently, Part I publishes
“regular papers,” while Part II is devoted to “express briefs.”

Preface xxv

[TrVL] IEEE Trans. Very Large Scale Integration (VLSI) Systems, journal published jointly
by the IEEE Circuits and Systems Society, Computer Society, and Solid-State
Circuits Council.

[Wase82] Waser, S., and M. J. Flynn, Introduction to Arithmetic for Digital Systems Designers,
Holt, Rinehart, & Winston, 1982.

[Wino80] Winograd, S., Arithmetic Complexity of Computations, SIAM, 1980.

PREFACE to the second edition

■ ■ ■

“In a very real sense, the writer writes in order to teach himself, to understand himself, to
satisfy himself; the publishing of his ideas, though it brings gratifications, is a curious

anticlimax.”
A L F R E D K A Z I N

■ ■ ■

Adecade has passed since the first edition of Computer Arithmetic: Algorithms and
Hardware Designs was published. Despite continued advances in arithmetic algo-

rithms and implementation technologies over the past ten years, the book’s top-level
design remains sound. So, with the exception of including a new chapter on reconfig-
urable arithmetic, the part/chapter structure, depicted in Fig. P.1, has been left intact
in this second edition. The new chapter replaces the previous Chapter 28, whose orig-
inal contents now appear in an appendix. The author contemplated adding a second
appendix listing Web sites and other Internet resources for further study. But because
Internet resource locations and contents are highly dynamic, it was decided to include
such information on the author’s companion Web site for the book, which is accessible
via his personal Web site at: http://www.ece.ucsb.edu/∼parhami/

The need for a new chapter on reconfigurable arithmetic arises from the fact that,
increasingly, arithmetic functions are being implemented on field-programmable gate
arrays (FPGAs) and FPGA-like configurable logic devices. This approach is attrac-
tive for prototyping new designs, for producing one-of-a-kind or low-volume systems,
and for use in rapidly evolving products that need to be upgradeable in the field. It is
useful to describe designs and design strategies that have been found appropriate in
such a context. The new material blends nicely with the other three chapters in Part
VII, all dealing with implementation topics. Examples covered in the new Chapter
28 include table-based function evaluation, along with several designs for adders and
multipliers.

Augmentations, improvements, clarifications, and corrections appear throughout
this second edition. Material has been added to many subsections to reflect new ideas
and developments. In a number of cases, old subsections have been merged and new
subsections created for additional ideas or designs. New and expanded topics that are

xv

xvi Preface

given section-length treatments in this second edition include the following (section
numbers appear in parentheses):

• Modular two-operand and multioperand adders (7.6, 8.6)
• Truncated tree and array multipliers (11.4)
• Overlapped quotient digit selection (15.2)
• Montgomery modular multiplication/reduction (15.4)
• Reciprocation as a special case of division (15.5)
• Floating-point fused-multiply-add units (18.5)
• Interval arithmetic, including interval Newton method (20.6)
• Bipartite and multipartite table methods (24.6)

New end-of-chapter problems have been introduced, bringing the total number of
problems to 718 (compared with 464 in the first edition). Rather than include new
general reference sources in this preface, the author has taken the liberty of updating
and expanding the list of references at the end of the Preface to the First Edition, so as
to provide a single comprehensive list.

As always, the author welcomes correspondence on discovered errors, subjects that
need further clarification, problem solutions, and ideas for new topics or exercises.

Behrooz Parhami
August 2009, Santa Barbara, CA

Preface xvii

 1. Numbers and Arithmetic
 2. Representing Signed Numbers
 3. Redundant Number Systems
 4. Residue Number Systems

 5. Basic Addition and Counting
 6. Carry-Lookahead Adders
 7. Variations in Fast Adders
 8. Multioperand Addition

 9. Basic Multiplication Schemes
10. High-Radix Multipliers
11. Tree and Array Multipliers
12. Variations in Multipliers

13. Basic Division Schemes
14. High-Radix Dividers
15. Variations in Dividers
16. Division by Convergence

17. Floating-Point Representations
18. Floating-Point Operations
19. Errors and Error Control
20. Precise and Certifiable Arithmetic

21. Square-Rooting Methods
22. The CORDIC Algorithms
23. Variations in Function Evaluation
24. Arithmetic by Table Lookup

25. High-Throughput Arithmetic
26. Low-Power Arithmetic
27. Fault-Tolerant Arithmetic
28. Reconfigurable Arithmetic

Number Representation
(Part I)

Addition/Subtraction
(Part II)

Multiplication
(Part III)

Division
(Part IV)

Real Arithmetic
(Part V)

Function Evaluation
(Part VI)

Implementation Topics
(Part VII)

Book Book parts Chapters

sngise
D era

wdra
H dna s

mhtirogl
A :cite

mhtir
A retup

mo
C

E
le

m
en

ta
ry

 O
pe

ra
tio

ns

Figure P.1 The structure of this book in parts and chapters.

CONTENTS

Preface to the Second Edition xv
Preface to the First Edition xix

PA R T I NUMBER REPRESENTATION 1

1 Numbers and Arithmetic 3
1.1 What is Computer Arithmetic? 3
1.2 Motivating Examples 6
1.3 Numbers and Their Encodings 8
1.4 Fixed-Radix Positional Number Systems 10
1.5 Number Radix Conversion 12
1.6 Classes of Number Representations 16

Problems 17
References and Further Readings 23

2 Representing Signed Numbers 25
2.1 Signed-Magnitude Representation 25
2.2 Biased Representations 27
2.3 Complement Representations 28
2.4 2’s- and 1’s-Complement Numbers 30
2.5 Direct and Indirect Signed Arithmetic 34
2.6 Using Signed Positions or Signed Digits 35

Problems 39
References and Further Readings 42

3 Redundant Number Systems 44
3.1 Coping with the Carry Problem 44
3.2 Redundancy in Computer Arithmetic 47
3.3 Digit Sets and Digit-Set Conversions 48
3.4 Generalized Signed-Digit Numbers 50
3.5 Carry-Free Addition Algorithms 53
3.6 Conversions and Support Functions 58

Problems 59
References and Further Readings 64

viii Contents

4 Residue Number Systems 66
4.1 RNS Representation and Arithmetic 66
4.2 Choosing the RNS Moduli 69
4.3 Encoding and Decoding of Numbers 72
4.4 Difficult RNS Arithmetic Operations 77
4.5 Redundant RNS Representations 80
4.6 Limits of Fast Arithmetic in RNS 80

Problems 83
References and Further Readings 88

PA R T II ADDITION/SUBTRACTION 89

5 Basic Addition and Counting 91
5.1 Bit-Serial and Ripple-Carry Adders 91
5.2 Conditions and Exceptions 95
5.3 Analysis of Carry Propagation 96
5.4 Carry-Completion Detection 98
5.5 Addition of a Constant: Counters 100
5.6 Manchester Carry Chains and Adders 102

Problems 105
References and Further Readings 109

6 Carry-Lookahead Adders 111
6.1 Unrolling the Carry Recurrence 111
6.2 Carry-Lookahead Adder Design 113
6.3 Ling Adder and Related Designs 117
6.4 Carry Determination as Prefix Computation 118
6.5 Alternative Parallel Prefix Networks 120
6.6 VLSI Implementation Aspects 124

Problems 125
References and Further Readings 130

7 Variations in Fast Adders 132
7.1 Simple Carry-Skip Adders 132
7.2 Multilevel Carry-Skip Adders 135
7.3 Carry-Select Adders 138
7.4 Conditional-Sum Adder 141
7.5 Hybrid Designs and Optimizations 143
7.6 Modular Two-Operand Adders 145

Problems 147
References and Further Readings 153

Contents ix

8 Multioperand Addition 155
8.1 Using Two-Operand Adders 155
8.2 Carry-Save Adders 158
8.3 Wallace and Dadda Trees 162
8.4 Parallel Counters and Compressors 164
8.5 Adding Multiple Signed Numbers 167
8.6 Modular Multioperand Adders 168

Problems 169
References and Further Readings 176

PA R T III MULTIPLICATION 177

9 Basic Multiplication Schemes 179
9.1 Shift/Add Multiplication Algorithms 179
9.2 Programmed Multiplication 181
9.3 Basic Hardware Multipliers 183
9.4 Multiplication of Signed Numbers 184
9.5 Multiplication by Constants 188
9.6 Preview of Fast Multipliers 191

Problems 191
References and Further Readings 195

10 High-Radix Multipliers 197
10.1 Radix-4 Multiplication 197
10.2 Modified Booth’s Recoding 200
10.3 Using Carry-Save Adders 202
10.4 Radix-8 and Radix-16 Multipliers 205
10.5 Multibeat Multipliers 207
10.6 VLSI Complexity Issues 209

Problems 210
References and Further Readings 214

11 Tree and Array Multipliers 215
11.1 Full-Tree Multipliers 215
11.2 Alternative Reduction Trees 218
11.3 Tree Multipliers for Signed Numbers 221
11.4 Partial-Tree and Truncated Multipliers 224
11.5 Array Multipliers 226
11.6 Pipelined Tree and Array Multipliers 230

Problems 231
References and Further Readings 237

x Contents

12 Variations in Multipliers 239
12.1 Divide-and-Conquer Designs 239
12.2 Additive Multiply Modules 242
12.3 Bit-Serial Multipliers 244
12.4 Modular Multipliers 249
12.5 The Special Case of Squaring 251
12.6 Combined Multiply-Add Units 252

Problems 254
References and Further Readings 261

PA R T IV DIVISION 263

13 Basic Division Schemes 265
13.1 Shift/Subtract Division Algorithms 265
13.2 Programmed Division 268
13.3 Restoring Hardware Dividers 270
13.4 Nonrestoring and Signed Division 272
13.5 Division by Constants 277
13.6 Radix-2 SRT Division 279

Problems 284
References and Further Readings 289

14 High-Radix Dividers 290
14.1 Basics of High-Radix Division 290
14.2 Using Carry-Save Adders 292
14.3 Radix-4 SRT Division 296
14.4 General High-Radix Dividers 299
14.5 Quotient Digit Selection 300
14.6 Using p-d Plots in Practice 303

Problems 306
References and Further Readings 311

15 Variations in Dividers 312
15.1 Division with Prescaling 312
15.2 Overlapped Quotient Digit Selection 314
15.3 Combinational and Array Dividers 315
15.4 Modular Dividers and Reducers 318
15.5 The Special Case of Reciprocation 321
15.6 Combined Multiply/Divide Units 323

Problems 325
References and Further Readings 329

Contents xi

16 Division by Convergence 331
16.1 General Convergence Methods 331
16.2 Division by Repeated Multiplications 333
16.3 Division by Reciprocation 335
16.4 Speedup of Convergence Division 337
16.5 Hardware Implementation 340
16.6 Analysis of Lookup Table Size 341

Problems 343
References and Further Readings 348

PA R T V REAL ARITHMETIC 349

17 Floating-Point Representations 351
17.1 Floating-Point Numbers 351
17.2 The IEEE Floating-Point Standard 355
17.3 Basic Floating-Point Algorithms 358
17.4 Conversions and Exceptions 359
17.5 Rounding Schemes 361
17.6 Logarithmic Number Systems 366

Problems 367
References and Further Readings 373

18 Floating-Point Operations 374
18.1 Floating-Point Adders/Subtractors 374
18.2 Pre- and Postshifting 377
18.3 Rounding and Exceptions 380
18.4 Floating-Point Multipliers and Dividers 382
18.5 Fused-Multiply-Add Units 384
18.6 Logarithmic Arithmetic Unit 386

Problems 387
References and Further Readings 393

19 Errors and Error Control 395
19.1 Sources of Computational Errors 395
19.2 Invalidated Laws of Algebra 399
19.3 Worst-Case Error Accumulation 401
19.4 Error Distribution and Expected Errors 403
19.5 Forward Error Analysis 405
19.6 Backward Error Analysis 407

Problems 408
References and Further Readings 413

xii Contents

20 Precise and Certifiable Arithmetic 414
20.1 High Precision and Certifiability 414
20.2 Exact Arithmetic 415
20.3 Multiprecision Arithmetic 419
20.4 Variable-Precision Arithmetic 422
20.5 Error Bounding via Interval Arithmetic 424
20.6 Adaptive and Lazy Arithmetic 427

Problems 429
References and Further Readings 434

PA R T VI FUNCTION EVALUATION 437

21 Square-Rooting Methods 439
21.1 The Pencil-and-Paper Algorithm 439
21.2 Restoring Shift/Subtract Algorithm 442
21.3 Binary Nonrestoring Algorithm 444
21.4 High-Radix Square-Rooting 446
21.5 Square-Rooting by Convergence 448
21.6 Fast Hardware Square-Rooters 450

Problems 453
References and Further Readings 458

22 The CORDIC Algorithms 459
22.1 Rotations and Pseudorotations 459
22.2 Basic CORDIC Iterations 461
22.3 CORDIC Hardware 465
22.4 Generalized CORDIC 465
22.5 Using the CORDIC Method 468
22.6 An Algebraic Formulation 471

Problems 472
References and Further Readings 477

23 Variations in Function Evaluation 479
23.1 Normalization and Range Reduction 479
23.2 Computing Logarithms 481
23.3 Exponentiation 484
23.4 Division and Square-Rooting, Again 486
23.5 Use of Approximating Functions 489
23.6 Merged Arithmetic 491

Problems 493
References and Further Readings 498

Contents xiii

24 Arithmetic by Table Lookup 499
24.1 Direct and Indirect Table Lookup 499
24.2 Binary-to-Unary Reduction 501
24.3 Tables in Bit-Serial Arithmetic 504
24.4 Interpolating Memory 506
24.5 Piecewise Lookup Tables 510
24.6 Multipartite Table Methods 513

Problems 515
References and Further Readings 519

PA R T VII IMPLEMENTATION TOPICS 521

25 High-Throughput Arithmetic 523
25.1 Pipelining of Arithmetic Functions 523
25.2 Clock Rate and Throughput 526
25.3 The Earle Latch 528
25.4 Parallel and Digit-Serial Pipelines 530
25.5 On-Line or Digit-Pipelined Arithmetic 532
25.6 Systolic Arithmetic Units 536

Problems 539
References and Further Readings 543

26 Low-Power Arithmetic 545
26.1 The Need for Low-Power Design 545
26.2 Sources of Power Consumption 547
26.3 Reduction of Power Waste 550
26.4 Reduction of Activity 553
26.5 Transformations and Trade-offs 555
26.6 New and Emerging Methods 558

Problems 560
References and Further Readings 564

27 Fault-Tolerant Arithmetic 566
27.1 Faults, Errors, and Error Codes 566
27.2 Arithmetic Error-Detecting Codes 570
27.3 Arithmetic Error-Correcting Codes 575
27.4 Self-Checking Function Units 576
27.5 Algorithm-Based Fault Tolerance 578
27.6 Fault-Tolerant RNS Arithmetic 580

Problems 581
References and Further Readings 585

xiv Contents

28 Reconfigurable Arithmetic 587
28.1 Programmable Logic Devices 587
28.2 Adder Designs for FPGAs 592
28.3 Multiplier and Divider Designs 594
28.4 Tabular and Distributed Arithmetic 597
28.5 Function Evaluation on FPGAs 598
28.6 Beyond Fine-Grained Devices 600

Problems 602
References and Further Readings 607

Appendix: Past, Present, and Future 609
A.1 Historical Perspective 609
A.2 Early High-Performance Computers 612
A.3 Deeply Pipelined Vector Machines 614
A.4 The DSP Revolution 615
A.5 Supercomputers on Our Laps 618
A.6 Trends, Outlook, and Resources 620

Problems 623
References and Further Readings 627

I
NUMBER
REPRESENTATION

■ ■ ■

“Mathematics, like the Nile, begins in minuteness, but ends in magnificence.”
C H A R L E S C A L E B C O LT O N

“Of all the great things that are found among us the existence of nothing is the greatest.”
L E O N A R D O D A V I N C I

■ ■ ■

N UMBER REPRESENTATION IS ARGUABLY THE MOST IMPORTANT TOPIC IN COMPUTER

arithmetic. In justifying this claim, it suffices to note that

several important classes of number representations were discov-

ered, or rescued from obscurity, by computer designers in their

quest for simpler and faster circuits. Furthermore, the choice of

number representation affects the implementation cost and delay

of all arithmetic operations.We thus begin our study of computer

arithmetic by reviewing conventional and exotic representation

methods for integers. Conventional methods are of course used

extensively. Some of the unconventional methods have been

applied to special-purpose digital systems or in the intermedi-

ate steps of arithmetic hardware implementations where they are

often invisible to computer users. This part consists of the

following four chapters:

C H A P T E R 1
Numbers and Arithmetic

C H A P T E R 2
Representing Signed Numbers

C H A P T E R 3
Redundant Number Systems

C H A P T E R 4
Residue Number Systems

1

1 Numbers and Arithmetic

■ ■ ■

“Mathematics is the queen of the sciences and arithmetic is the queen of mathematics.”
C A R L F R I E D R I C H G A U S S

■ ■ ■

T his chapter motivates the reader, sets the context in which the material in the

rest of the book is presented, and reviews positional representations of fixed-

point numbers. The chapter ends with a review of methods for number radix

conversion and a preview of other number representation methods to be covered.

Chapter topics include:

1.1 What is Computer Arithmetic?

1.2 Motivating Examples

1.3 Numbers and Their Encodings

1.4 Fixed-Radix Positional Number Systems

1.5 Number Radix Conversion

1.6 Classes of Number Representations

1.1 WHAT IS COMPUTER ARITHMETIC?

A sequence of events, begun in late 1994 and extending into 1995, embarrassed the
world’s largest computer chip manufacturer and put the normally dry subject of computer
arithmetic on the front pages of major newspapers. The events were rooted in the work
of Thomas Nicely, a mathematician at the Lynchburg College in Virginia, who was
interested in twin primes (consecutive odd numbers such as 29 and 31 that are both
prime). Nicely’s work involved the distribution of twin primes and, particularly, the sum
of their reciprocals S = 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 +
· · · + 1/p+ 1/(p+ 2)+ · · · . While it is known that the infinite sum S has a finite value,
no one knows what the value is.

Nicely was using several different computers for his work and in March 1994 added
a machine based on the Intel Pentium processor to his collection. Soon he began noticing

3

4 Chapter 1 Numbers and Arithmetic

inconsistencies in his calculations and was able to trace them back to the values computed
for 1/p and 1/(p+2) on the Pentium processor. At first, he suspected his own programs,
the compiler, and the operating system, but by October, he became convinced that the
Intel Pentium chip was at fault. This suspicion was confirmed by several other researchers
following a barrage of e-mail exchanges and postings on the Internet.

The diagnosis finally came from Tim Coe, an engineer at Vitesse Semiconductor. Coe
built a model of Pentium’s floating-point division hardware based on the radix-4 SRT
(named for Sweeny, Robertson, and Tocher) algorithm and came up with an example
that produces the worst-case error. Using double-precision floating-point computation,
the ratio c = 4 195 835/3 145 727 = 1.333 820 44 · · · was computed as 1.333 739 06
on the Pentium. This latter result is accurate to only 14 bits; the error is even larger than
that of single-precision floating-point and more than 10 orders of magnitude worse than
what is expected of double-precision computation [Mole95].

The rest, as they say, is history. Intel at first dismissed the severity of the problem and
admitted only a “subtle flaw,” with a probability of 1 in 9 billion, or once in 27,000 years
for the average spreadsheet user, of leading to computational errors. It nevertheless
published a “white paper” that described the bug and its potential consequences and
announced a replacement policy for the defective chips based on “customer need”; that
is, customers had to show that they were doing a lot of mathematical calculations to
get a free replacement. Under heavy criticism from customers, manufacturers using the
Pentium chip in their products, and the on-line community, Intel later revised its policy
to no-questions-asked replacement.

Whereas supercomputing, microchips, computer networks, advanced applications
(particularly game-playing programs), and many other aspects of computer technology
have made the news regularly, the Intel Pentium bug was the first instance of arithmetic
(or anything inside the CPU for that matter) becoming front-page news. While this can
be interpreted as a sign of pedantic dryness, it is more likely an indicator of stunning
technological success. Glaring software failures have come to be routine events in our
information-based society, but hardware bugs are rare and newsworthy.

Having read the foregoing account, you may wonder what the radix-4 SRT division
algorithm is and how it can lead to such problems. Well, that’s the whole point of this
introduction! You need computer arithmetic to understand the rest of the story. Computer
arithmetic is a subfield of digital computer organization. It deals with the hardware
realization of arithmetic functions to support various computer architectures as well as
with arithmetic algorithms for firmware or software implementation. A major thrust of
digital computer arithmetic is the design of hardware algorithms and circuits to enhance
the speed of numeric operations. Thus much of what is presented here complements
the architectural and algorithmic speedup techniques studied in the context of high-
performance computer architecture and parallel processing.

Much of our discussion relates to the design of top-of-the-line CPUs with high-
performance parallel arithmetic circuits. However, we will at times also deal with
slow bit-serial designs for embedded applications, where implementation cost and
input/output pin limitations are of prime concern. It would be a mistake, though, to
conclude that computer arithmetic is useful only to computer designers. We will see
shortly that you can use scientific calculators more effectively and write programs that
are more accurate and/or more efficient after a study of computer arithmetic. You will

What is Computer Arithmetic? 5

Hardware (our focus in this book) Software

Design of efficient digital circuits for Numerical methods for solving
primitive and other arithmetic operations systems of linear equations,
such as + , − , × , ÷ , , log, sin, and cos partial differential equations and so on

Issues: Algorithms Issues: Algorithms
Error analysi Error analysis
Speed/cost trade-offs Computational complexity
Hardware implementation Programming
Testing, verification Testing, verification

General-Purpose Special-Purpose

Flexible data paths Tailored to application areas such as
Fast primitive operations like Digital filtering

+ , − , × , ÷ , Image processing
Benchmarking Radar tracking

Figure 1.1 The scope of computer arithmetic.

be able to render informed judgment when faced with the problem of choosing a digital
signal processor chip for your project. And, of course, you will know what exactly went
wrong in the Pentium.

Figure 1.1 depicts the scope of computer arithmetic. On the hardware side, the
focus is on implementing the four basic arithmetic operations (five, if you count square-
rooting), as well as commonly used computations such as exponentials, logarithms,
and trigonometric functions. For this, we need to develop algorithms, translate them
to hardware structures, and choose from among multiple implementations based on
cost–performance criteria. Since the exact computations to be carried out by the general-
purpose hardware are not known a priori, benchmarking is used to predict the overall
system performance for typical operation mixes and to make various design decisions.

On the software side, the primitive functions are given (e.g., in the form of a hardware
chip such as a Pentium processor or a software tool such as Mathematica), and the
task is to synthesize cost-effective algorithms, with desirable error characteristics, to
solve various problems of interest. These topics are covered in numerical analysis and
computational science courses and textbooks and are thus mostly outside the scope of
this book.

Within the hardware realm, we will be dealing with both general-purpose arith-
metic/logic units, of the type found in many commercially available processors, and
special-purpose structures for solving specific application problems. The differences in
the two areas are minor as far as the arithmetic algorithms are concerned. However,
in view of the specific technological constraints, production volumes, and performance
criteria, hardware implementations tend to be quite different. General-purpose processor
chips that are mass-produced have highly optimized custom designs. Implementations of
low-volume, special-purpose systems, on the other hand, typically rely on semicustom
and off-the-shelf components. However, when critical and strict requirements, such as
extreme speed, very low power consumption, and miniature size, preclude the use of
semicustom or off-the-shelf components, the much higher cost of a custom design may
be justified even for a special-purpose system.

6 Chapter 1 Numbers and Arithmetic

1.2 MOTIVATING EXAMPLES

Use a calculator that has the square-root, square, and exponentiation (xy) functions to
perform the following computations. Numerical results, obtained with a (10 + 2)-digit
scientific calculator, are provided. You may obtain slightly different values.

First, compute “the 1024th root of 2” in the following two ways:

u =
√√

· · ·√2
10 times

= 1.000 677 131

v = 21/1024 = 1.000 677 131

Save both u and v in memory, if possible. If you can’t store u and v, simply recompute
them when needed. Now, perform the following two equivalent computations based on u:

x =
10 times((

(u2)2
)
· · ·

)2 = 1.999 999 963

x′ = u1024 = 1.999 999 973

Similarly, perform the following two equivalent computations based on v:

y =
10 times((

(v2)2
)
· · ·

)2 = 1.999 999 983

y′ = v1024 = 1.999 999 994

The four different values obtained for x, x′, y, and y′, in lieu of 2, hint that perhaps v and
u are not really the same value. Let’s compute their difference:

w = v − u = 1× 10−11

Why isn’t w equal to zero? The reason is that even though u and v are displayed identically,
they in fact have different internal representations. Most calculators have hidden or guard
digits (the author’s has two) to provide a higher degree of accuracy and to reduce the
effect of accumulated errors when long computation sequences are performed.

Let’s see if we can determine the hidden digits for the u and v values above. Here is
one way:

(u − 1)× 1000 = 0.677 130 680 [Hidden · · · (0) 68]
(v − 1)× 1000 = 0.677 130 690 [Hidden · · · (0) 69]

This explains why w is not zero, which in turn tells us why u1024 �= v1024. The following
simple analysis might be helpful in this regard.

v1024 = (u + 10−11)1024

≈ u1024 + 1024× 10−11u1023 ≈ u1024 + 2× 10−8

Motivating Examples 7

The difference between v1024 and u1024 is in good agreement with the result of the
preceding analysis. The difference between (((u2)2) · · ·)2 and u1024 exists because the
former is computed through repeated multiplications while the latter uses the built-in
exponentiation routine of the calculator, which is likely to be less precise.

Despite the discrepancies, the results of the foregoing computations are remarkably
precise. The values of u and v agree to 11 decimal digits, while those of x, x′, y, y′ are
identical to 8 digits. This is better than single-precision, floating-point arithmetic on the
most elaborate and expensive computers. Do we have a right to expect more from a
calculator that costs $20 or less? Ease of use is, of course, a different matter from speed
or precision. For a detailed exposition of some deficiencies in current calculators, and a
refreshingly new design approach, see [Thim95].

The example calculations demonstrate that familiarity with computer arithmetic is
helpful for appreciating and correctly interpreting our everyday dealings with numbers.
There is much more to computer arithmetic, however. Inattention to fundamentals of
this field has led to several documented, and no doubt many more unreported, disasters.
In the rest of this section, we describe two such events that were caused by inadequate
precision and unduly limited range of numerical results.

The first such event, which may have led to the loss of 28 human lives in February
1991, is the failure of the American Patriot missile battery in Dhahran, Saudi Arabia, to
intercept a number of Iraqi Scud missiles. An investigation by the US GeneralAccounting
Office [GAO92] blamed the incident on a “software problem” that led to inaccurate
calculation of the elapsed time since the last system boot. It was explained that the
system’s internal clock measured time in tenths of a second. The measured time was
then multiplied by a 24-bit truncated fractional representation of 1/10, with an error
of about (3/4) × 10−23 ≈ 10−7. Some error was unavoidable, because 1/10 does not
have an exact binary representation. Though rather small, when accumulated over a
10-hour operation period, this error caused the calculated time to be off by roughly 1/3
of a second. Because the Scud missile flew at a speed of about 1700 m/s, its calculated
position might have differed from its actual position by more than 1/2 km; an error that
is large enough to cause a missed interception.

The second such event is the explosion of anAriane 5 rocket 30 seconds after liftoff in
June 1996. Fortunately, this incident, also attributed to a “software error” [Lion96], did
not lead to any loss of life, but its price tag was the embarrassing collapse of an ambitious
development project costing US $7 billion. According to the explanations offered, at
some point in the control program, a 64-bit floating-point number pertaining to the
horizontal velocity of the rocket was to be converted to a 16-bit signed integer. Because
the floating-point number had a value greater than what could fit in a 16-bit signed
integer, an overflow exception arose that did not have adequate handling provisions by
the software. This caused a processor shutdown, which triggered a cascade of events
leading to improper attempts at course correction and the eventual disintegration that
spread debris over several square kilometers. The doomed conversion routine was a
leftover from the software used for the Ariane 4 rocket, carried over intact according
to the maxim “if it ain’t broke, don’t fix it.” However, the designers failed to take into
account that within the initial 40 seconds of flight when the system in question was
active, the Ariane 5 rocket could reach a horizontal velocity that was about five times
that of the Ariane 4.

8 Chapter 1 Numbers and Arithmetic

1.3 NUMBERS AND THEIR ENCODINGS

Number representation methods have advanced in parallel with the evolution of language.
The oldest method for representing numbers consisted of the use of stones or sticks.
Gradually, as larger numbers were needed, it became difficult to represent them or
develop a feeling for their magnitudes. More importantly, comparing large numbers was
quite cumbersome. Grouping the stones or sticks (e.g., representing the number 27 by
5 groups of 5 sticks plus 2 single sticks) was only a temporary cure. It was the use of
different stones or sticks for representing groups of 5, 10, etc. that produced the first
major breakthrough.

The latter method gradually evolved into a symbolic form whereby special symbols
were used to denote larger units. A familiar example is the Roman numeral system. The
units of this system are 1, 5, 10, 50, 100, 500, 1000, 10 000, and 100 000, denoted by the
symbols I, V, X, L, C, D, M, ((I)), and (((I))), respectively. A number is represented by
a string of these symbols, arranged in descending order of values from left to right. To
shorten some of the cumbersome representations, allowance is made to count a symbol
as representing a negative value if it is to the left of a larger symbol. For example, IX
is used instead of VIIII to denote the number 9 and LD is used for CCCCL to represent
the number 450.

Clearly, the Roman numeral system is not suitable for representing very large num-
bers. Furthermore, it is difficult to do arithmetic on numbers represented with this
notation. The positional system of number representation was first used by the Chi-
nese. In this method, the value represented by each symbol depends not only on its
shape but also on its position relative to other symbols. Our conventional method of
representing numbers is based on a positional system.

For example in the number 222, each of the “2” digits represents a different value.
The leftmost 2 represents 200. The middle 2 represents 20. Finally, the rightmost 2 is
worth 2 units. The representation of time intervals in terms of days, hours, minutes, and
seconds (i.e., as four-element vectors) is another example of the positional system. For
instance, in the vector T = 5 5 5 5, the leftmost element denotes 5 days, the second
from the left represents 5 hours, the third element stands for 5 minutes, and the rightmost
element denotes 5 seconds.

If in a positional number system, the unit corresponding to each position is a con-
stant multiple of the unit for its right neighboring position, the conventional fixed-radix
positional system is obtained. The decimal number system we use daily is a positional
number system with 10 as its constant radix. The representation of time intervals, as just
discussed, provides an example of a mixed-radix positional system for which the radix
is the vector R = 0 24 60 60.

The method used to represent numbers affects not just the ease of reading and under-
standing the notation but also the complexity of arithmetic algorithms used for computing
with numbers. The popularity of positional number systems is in part due to the avail-
ability of simple and elegant algorithms for performing arithmetic on such numbers. We
will see in subsequent chapters that other representations provide advantages over the
positional representation in terms of certain arithmetic operations or the needs of partic-
ular application areas. However, these systems are of limited use precisely because they
do not support universally simple arithmetic.

Numbers and Their Encodings 9

In digital systems, numbers are encoded by means of binary digits or bits. Suppose
you have 4 bits to represent numbers. There are 16 possible codes. You are free to
assign the 16 codes to numbers as you please. However, since number representation
has significant effects on algorithm and circuit complexity, only some of the wide range
of possibilities have found applications.

To simplify arithmetic operations, including the required checking for singularities
or special cases, the assignment of codes to numbers must be done in a logical and
systematic manner. For example, if you assign codes to 2 and 3 but not to 5, then adding
2 and 3 will cause an “overflow” (yields an unrepresentable value) in your number
system.

Figure 1.2 shows some examples of assignments of 4-bit codes to numbers. The first
choice is to interpret the 4-bit patterns as 4-bit binary numbers, leading to the represen-
tation of natural numbers in the range [0, 15]. The signed-magnitude scheme results in
integers in the range [−7, 7] being represented, with 0 having two representations, (viz.,
±0). The 3-plus-1 fixed-point number system (3 whole bits, 1 fractional bit) gives us
numbers from 0 to 7.5 in increments of 0.5. Viewing the 4-bit codes as signed fractions
gives us a range of [−0.875,+0.875] or [−1,+0.875], depending on whether we use
signed-magnitude or 2’s-complement representation.

The 2-plus-2 unsigned floating-point number system in Fig. 1.2, with its 2-bit expo-
nent e in {−2,−1, 0, 1} and 2-bit integer significand s in {0, 1, 2, 3}, can represent certain
values s× 2e in [0, 6]. In this system, 0.00 has four representations, 0.50, 1.00, and 2.00
have two representations each, and 0.25, 0.75, 1.50, 3.00, 4.00, and 6.00 are uniquely
represented. The 2-plus-2 logarithmic number system, which represents a number by
approximating its 2-plus-2, fixed-point, base-2 logarithm, completes the choices shown
in Fig. 1.2.

0 2 4 6 8 10 12 14 16–2–4–6–8–10–12–14–16

Unsigned integers

Signed-magnitude

3 + 1 fixed-point, xxx.x

Signed fraction, ±.xxx

2’s-compl. fraction, x.xxx

2 + 2 floating-point, s � 2e

e in [–2, 1], s in [0, 3]

2 + 2 logarithmic (log = xx.xx)

Number
format

�

�

log x

se

Figure 1.2 Some of the possible ways of assigning 16 distinct codes to represent numbers.
Small triangles denote the radix point locations.

10 Chapter 1 Numbers and Arithmetic

1.4 FIXED-RADIX POSITIONAL NUMBER SYSTEMS

A conventional fixed-radix, fixed-point positional number system is usually based on
a positive integer radix (base) r and an implicit digit set {0, 1, · · · , r − 1}. Each
unsigned integer is represented by a digit vector of length k + l, with k digits for
the whole part and l digits for the fractional part. By convention, the digit vector
xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l represents the value

(xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l)r =
k−1∑
i=−l

xir
i

One can easily generalize to arbitrary radices (not necessarily integer or positive or
constant) and digit sets of arbitrary size or composition. In what follows, we restrict our
attention to digit sets composed of consecutive integers, since digit sets of other types
complicate arithmetic and have no redeeming property. Thus, we denote our digit set by
{−α,−α + 1, · · · , β − 1, β} = [−α, β].

The following examples demonstrate the wide range of possibilities in selecting the
radix and digit set.

■ EXAMPLE 1.1 Balanced ternary number system: r = 3, digit set = [−1, 1].

■ EXAMPLE 1.2 Negative-radix number systems: radix −r, digit set = [0, r − 1].

(· · · x5x4x3x2x1x0 . x−1x−2x−3x−4x−5x−6 · · ·)−r =
∑

i

xi(−r)i

=
∑
eveni

xir
i −

∑
oddi

xir
i

= (· · · 0x40x20x0 . 0x−20x−40x−6 · · ·)r − (· · · x50x30x10 . x−10x−30x−50 · · ·)r

The special case with r = −2 and digit set of [0, 1] is known as the negabinary number
system.

■ EXAMPLE 1.3 Nonredundant signed-digit number systems: digit set [−α, r−1−α] for
radix r. As an example, one can use the digit set [−4, 5] for r = 10. We denote a negative
digit by preceding it with a minus sign, as usual, or by using a hyphen as a left superscript
when the minus sign could be mistaken for subtraction. For example,

(3 -1 5)ten represents the decimal number 295 = 300− 10+ 5

(-3 1 5)ten represents the decimal number −285 = −300+ 10+ 5

Fixed-Radix Positional Number Systems 11

■ EXAMPLE 1.4 Redundant signed-digit number systems: digit set [−α, β], with α+β ≥ r
for radix r. One can use the digit set [−7, 7], say, for r = 10. In such redundant number
systems, certain values may have multiple representations. For example, here are some
representations for the decimal number 295:

(3 -1 5)ten = (3 0 -5)ten = (1 -7 0 -5)ten

We will study redundant representations in detail in Chapter 3.

■ EXAMPLE 1.5 Fractional radix number systems: r = 0.1 with digit set [0, 9].

(xk−1xk−2 · · · x1x0 . x−1x−2 · · · x−l)one-tenth =
∑

i

xi10−i

= (x−l · · · x−2x−1x0 . x1x2 · · · xk−2xk−1)ten

■ EXAMPLE 1.6 Irrational radix number systems: r = √
2 with digit set [0, 1].

(· · · x5x4x3x2x1x0 . x−1x−2x−3x−4x−5x−6 · · ·)√2 =
∑

i

xi(
√

2)i

= (· · · x4x2x0 . x−2x−4x−6 · · ·)two +
√

2(· · · x5x3x1 . x−1x−3x−5 · · ·)two

These examples illustrate the generality of our definition by introducing negative, frac-
tional, and irrational radices and by using both nonredundant or minimal (r different
digit values) and redundant (> r digit values) digit sets in the common case of positive
integer radices. We can go even further and make the radix an imaginary or complex
number.

■ EXAMPLE 1.7 Complex-radix number systems: the quater-imaginary number system
uses r = 2j, where j = √−1, and the digit set [0, 3].

(· · · x5x4x3x2x1x0 . x−1x−2x−3x−4x−5x−6 · · ·)2j =
∑

i

xi(2j)i

= (· · · x4x2x0 . x−2x−4x−6 · · ·)−four + 2j(· · · x5x3x1 . x−1x−3x−5 · · ·)−four

It is easy to see that any complex number can be represented in the quater-imaginary
number system of Example 1.7, with the advantage that ordinary addition (with a slightly
modified carry rule) and multiplication can be used for complex-number computations.

12 Chapter 1 Numbers and Arithmetic

The modified carry rule is that a carry of −1 (a borrow actually) goes two positions to
the left when the position sum, or digit total in a given position, exceeds 3.

In radix r, with the standard digit set [0, r − 1], the number of digits needed to
represent the natural numbers in [0, max] is

k = �logrmax� + 1 = 	logr(max + 1)

Note that the number of different values represented is max + 1.

With fixed-point representation using k whole and l fractional digits, we have

max = rk − r−l = rk − ulp

We will find the term ulp, for the unit in least (significant) position, quite useful in
describing certain arithmetic concepts without distinguishing between integers and fixed-
point representations that include fractional parts. For integers, ulp = 1.

Specification of time intervals in terms of weeks, days, hours, minutes, seconds,
and milliseconds is an example of mixed-radix representation. Given the two-part
radix vector · · · r3r2r1r0; r−1r−2 · · · defining the mixed radix, the two-part digit vector
· · · x3x2x1x0; x−1x−2 · · · represents the value

· · · x3r2r1r0 + x2r1r0 + x1r0 + x0 + x−1

r−1
+ x−2

r−1r−2
+ · · ·

In the time interval example, the mixed radix is · · · 7, 24, 60, 60; 1000 · · · and the digit
vector 3, 2, 9, 22, 57; 492 (3 weeks, 2 days, 9 hours, 22 minutes, 57 seconds, and 492
milliseconds) represents

(3× 7× 24× 60× 60)+ (2× 24× 60× 60)+ (9× 60× 60)+ (22× 60)

+ 57+ 492/1000 = 2 020 977.492 seconds

In Chapter 4, we will see that mixed-radix representation plays an important role in
dealing with values represented in residue number systems.

1.5 NUMBER RADIX CONVERSION

Assuming that the unsigned value u has exact representations in radices r and R, we can
write:

u = w.v

= (xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l)r

= (XK−1XK−2 · · ·X1X0.X−1X−2 · · ·X−L)R

If an exact representation does not exist in one or both of the radices, the foregoing
equalities will be approximate.

Number Radix Conversion 13

The radix conversion problem is defined as follows:

Given r the old radix,
R the new radix, and the
xis digits in the radix-r representation of u

find the Xis digits in the radix-R representation of u

In the rest of this section, we will describe two methods for radix conversion based
on doing the arithmetic in the old radix r or in the new radix R. We will also present a
shortcut method, involving very little computation, that is applicable when the old and
new radices are powers of the same number (e.g., 8 and 16, which are both powers of 2).

Note that in converting u from radix r to radix R, where r and R are positive integers,
we can convert the whole and fractional parts separately. This is because an integer
(fraction) is an integer (fraction), independent of the number representation radix.

Doing the arithmetic in the old radix r

We use this method when radix-r arithmetic is more familiar or efficient. The method is
useful, for example, when we do manual computations and the old radix is r = 10. The
procedures for converting the whole and fractional parts, along with their justifications
or proofs, are given below.

Converting the whole part w

Procedure: Repeatedly divide the integer w = (xk−1xk−2 · · · x1x0)r by the radix-r
representation of R. The remainders are the Xis, with X0 generated first.

Justification: (XK−1XK−2 · · ·X1X0)R − (X0)R is divisible by R. Therefore, X0 is
the remainder of dividing the integer w = (xk−1xk−2 · · · x1x0)r by the radix-r
representation of R.

Example: (105)ten = (?)five
Repeatedly divide by 5:

Quotient Remainder
105 0

21 1
4 4
0

From the above, we conclude that (105)ten = (410)five.

Converting the fractional part v

Procedure: Repeatedly multiply the fraction v = (.x−1x−2 · · · x−l)r by the radix-r
representation of R. In each step, remove the whole part before multiplying again. The
whole parts obtained are the Xis, with X−1 generated first.

Justification: R× (0.X−1X−2 · · ·X−L)R = (X−1.X−2 · · ·X−L)R.

14 Chapter 1 Numbers and Arithmetic

Example: (105.486)ten = (410.?)five
Repeatedly multiply by 5:

Whole part Fraction
.486

2 .430
2 .150
0 .750
3 .750
3 .750

From the above, we conclude that (105.486)ten ≈ (410.220 33)five.

Doing the arithmetic in the new radix R

We use this method when radix-R arithmetic is more familiar or efficient. The method is
useful, for example, when we manually convert numbers to radix 10. Again, the whole
and fractional parts are converted separately.

Converting the whole part w

Procedure: Use repeated multiplications by r followed by additions according to the
formula ((· · · ((xk−1r + xk−2)r + xk−3)r + · · ·)r + x1)r + x0.

Justification: The given formula is the well-known Horner’s method (or rule), first
presented in the early nineteenth century, for the evaluation of the (k − 1)th-degree
polynomial xk−1rk−1 + xk−2rk−2 + · · · + x1r + x0 [Knut97].

Example: (410)five = (?)ten

((4× 5)+ 1)× 5+ 0 = 105 ⇒ (410)five = (105)ten

Converting the fractional part v

Procedure: Convert the integer rl × (0.v) and then divide by rl in the new radix.

Justification: rl × (0.v)/rl = 0.v

Example: (410.220 33)five = (105.?)ten

(0.220 33)five × 55 = (22 033)five = (1518)ten

1518/55 = 1518/3125 = 0.485 76

From the above, we conclude that (410.220 33)five = (105.485 76)ten.

Note: Horner’s method works here as well but is generally less practical. The digits of
the fractional part are processed from right to left and the multiplication operation is
replaced with division. Figure 1.3 shows how Horner’s method can be applied to the
preceding example.

Number Radix Conversion 15

 (((((3 / 5) + 3) / 5 + 0) / 5 + 2) / 5 + 2) / 5

 | - - - - - |

 0 . 6
 | - - - - - - - - - - - - |

 3 . 6

 | - |

 0 . 7 2

 |- -|

 2.144

 |- |

 2.4288

 | - |

--

--
--

--
--

--
--

--
--

--
--

--
--

--

--

--
--

--
--

--
--

--
-

--

--
--

--
--

--
--

--
-

--

--
--

--
--

--

--

--
--

--
--

--

--
--

--

--

--
--

--

--
--

--
--

--
--

--
--

--
--

-

--

--
--

--
--

--
--

--
--

--
--

-

 0 . 4 8 5 7 6

Figure 1.3 Horner’s rule used to convert (.220 33)five to decimal.

Shortcut method for r = bg and R = bG

In the special case when the old and new radices are integral powers of a common base b,
that is, r = bg and R = bG , one can convert from radix r to radix b and then from radix b
to radix R. Both these conversions are quite simple and require virtually no computation.

To convert from the old radix r = bg to radix b, simply convert each radix-r
digit individually into a g-digit radix-b number and then juxtapose the resulting g-digit
numbers.

To convert from radix b to the new radix R = bG , form G-digit groups of the radix-b
digits starting from the radix point (to the left and to the right). Then convert the G-digit
radix-b number of each group into a single radix-R digit and juxtapose the resulting
digits.

■ EXAMPLE 1.8 (2 301.302)four = (?)eight

We have 4 = 22 and 8 = 23. Thus, conversion through the intermediate radix 2 is used.
Each radix-4 digit is independently replaced by a 2-bit radix-2 number. This is followed by
3-bit groupings of the resulting binary digits to find the radix-8 digits.

(2 301.302)four = (10

2

11

3

00

0

01

1
·11

3

00

0

10

2

)two

= (10

2

110

6

001

1
·110

6

010

2

)two = (261.62)eight

Clearly, when g = 1(G = 1), the first (second) step of the shortcut conversion
procedure is eliminated. This corresponds to the special case of R = rG(r = Rg). For
example, conversions between radix 2 and radix 8 or 16 belong to these special cases.

16 Chapter 1 Numbers and Arithmetic

1.6 CLASSES OF NUMBER REPRESENTATIONS

In Sections 1.4 and 1.5, we considered the representation of unsigned fixed-point num-
bers using fixed-radix number systems, with standard and nonstandard digit sets, as well
as methods for converting between such representations with standard digit sets. In dig-
ital computations, we also deal with signed fixed-point numbers as well as signed and
unsigned real values. Additionally, we may use unconventional representations for the
purpose of speeding up arithmetic operations or increasing their accuracy. Understand-
ing different ways of representing numbers, including their relative cost-performance
benefits and conversions between various representations, is an important prerequisite
for designing efficient arithmetic algorithms or circuits.

In the next three chapters, we will review techniques for representing fixed-
point numbers, beginning with conventional methods and then moving on to some
unconventional representations.

Signed fixed-point numbers, including various ways of representing and handling the
sign information, are covered in Chapter 2. Signed-magnitude, biased, and complement
representations (including both 1’s and 2’s complement) are covered in some detail.

The signed-digit number systems of Chapter 3 can also be viewed as methods for
representing signed numbers, although their primary significance lies in the redundancy
that allows addition without carry propagation. The material in Chapter 3 is essential
for understanding several speedup methods in multiplication, division, and function
evaluation.

Chapter 4 introduces residue number systems (for representing unsigned or signed
integers) that allow some arithmetic operations to be performed in a truly parallel fashion
at very high speed. Unfortunately, the difficulty of division and certain other arith-
metic operations renders these number systems unsuitable for general applications. In
Chapter 4, we also use residue representations to explore the limits of fast arithmetic.

Representation of real numbers can take different forms. Examples include slash
number systems (for representing rational numbers), logarithmic number systems (for
representing real values), and of course, floating-point numbers that constitute the
primary noninteger data format in modern digital systems. These representations are dis-
cussed in Chapter 17 (introductory chapter of Part V), immediately before we deal with
algorithms, hardware implementations, and error analyses for real-number arithmetic.

By combining features from two or more of the aforementioned “pure” representa-
tions, we can obtain many hybrid schemes. Examples include hybrid binary/signed-digit
(see Section 3.4), hybrid residue/binary (see Section 4.5), hybrid logarithmic/signed-
digit (see Section 17.6), and hybrid floating-point/logarithmic (see Problem 17.16)
representations.

This is a good place to introduce a notational tool, that we will find quite useful
throughout the book. The established dot notation uses heavy dots to represent standard
or positively-weighted bits, which we may call posibits. For example, Fig. 1.4a represents
the addition of two 4-bit unsigned binary numbers whose posibits have weights 1, 2, 22,
and 23, from right to left, and whose sum is a 5-bit number. Figure 1.4b depicts the pencil-
and-paper algorithm for multiplying two 4-bit unsigned binary numbers, producing four
partial products and then adding them, with proper alignments, to derive the 8-bit final
result. We will see later that negatively weighted bits, or negabits, are also quite useful,
prompting us to introduce the extended dot notation (see Section 2.6).

Problems 17

Figure 1.4 Dot
notation to depict
number
representation
formats and
arithmetic
algorithms.

� �

(a) Addition

(b) Multiplication

A final point before we conclude this chapter: You can be a proficient arithmetic
designer knowing only the following three key number representation systems and their
properties:

2’s-complement format (Section 2.4)

Binary stored-carry or carry-save format (Section 3.2)

Binary floating-point format (Chapter 17)

All the other formats, discussed in Chapters 2-4, are useful for optimizing application-
specific designs or to gain a deeper understanding of the issues involved, but you can
ignore them with no serious harm. There are indications, however, that decimal arith-
metic may regain the importance it once had, because it avoids errors in the conversion
between human-readable numbers and their machine representations.

PROBLEMS 1.1 Arithmetic algorithms

Consider the integral In = ∫ 1
0 xne−x dx that has the exact solution n![1 −

(1/e)
∑n

r=0 1/r!]. The integral can also be computed based on the recurrence
equation In = nIn−1 − 1/e with I0 = 1− 1/e.

a. Prove that the recurrence equation is correct.
b. Use a calculator or write a program to compute the values of Ij for 1 ≤ j ≤ 20.
c. Repeat part b with a different calculator or with a different precision in your

program.
d. Compare your results to the exact value I20 = 0.018 350 468 and explain any

difference.

1.2 Arithmetic algorithms

Consider the sequence {ui} defined by the recurrence ui+1 = iui − i, with u1 = e.

a. Use a calculator or write a program to determine the values of ui for 1 ≤ i ≤ 25.
b. Repeat part a with a different calculator or with a different precision in your

program.
c. Explain the results.

18 Chapter 1 Numbers and Arithmetic

1.3 Arithmetic algorithms

Consider the sequence {ai} defined by the recurrence ai+2 = 111− 1130/ai+1 +
3000/(ai+1ai), with a0 = 11/2 and a1 = 61/11. The exact limit of this sequence
is 6; but on any real machine, a different limit is obtained. Use a calculator or write
a program to determine the values of ai for 2 ≤ i ≤ 25. What limit do you seem
to be getting? Explain the outcome.

1.4 Positional representation of the integers

a. Prove that an unsigned nonzero binary integer x is a power of 2 if and only if
the bitwise logical AND of x and x − 1 is 0.

b. Prove that an unsigned radix-3 integer x = (xk−1xk−2 · · · x1x0)three is even if
and only if

∑k−1
i=0 xi is even.

c. Prove that an unsigned binary integer x = (xk−1xk−2 · · · x1x0)two is divisible
by 3 if and only if

∑
even i xi −∑

odd i xi is a multiple of 3.
d. Generalize the statements of parts b and c to obtain rules for divisibility of

radix-r integers by r − 1 and r + 1.

1.5 Unconventional radices

a. Convert the negabinary number (0001 1111 0010 1101)−two to radix 16
(hexadecimal).

b. Repeat part a for radix −16 (negahexadecimal).
c. Derive a procedure for converting numbers from radix r to radix –r and vice

versa.

1.6 Unconventional radices

Consider the number x whose representation in radix−r (with r a positive integer)
is the (2k + 1)-element all-1s vector.

a. Find the value of x in terms of k and r.
b. Represent −x in radix −r (negation or sign change).
c. Represent x in the positive radix r.
d. Represent −x in the positive radix r.

1.7 Unconventional radices

Let θ be a number in the negative radix −r whose digits are all r − 1. Show that
−θ is represented by a vector of all 2s, except for its most- and least-significant
digits, which are 1s.

1.8 Unconventional radices

Consider a fixed-radix positional number system with the digit set [−2, 2] and the
imaginary radix r = 2j(j = √−1).

a. Describe a simple procedure to determine whether a number thus represented
is real.

Problems 19

b. Show that all integers are representable and that some integers have multiple
representations.

c. Can this system represent any complex number with integral real and imaginary
parts?

d. Describe simple procedures for finding the representations of a − bj and
4(a + bj), given the representation of a + bj.

1.9 Unconventional radices

Consider the radix r = −1+ j(j = √−1) with the digit set [0, 1].

a. Express the complex number −49+ j in this number system.
b. Devise a procedure for determining whether a given bit string represents a real

number.
c. Show that any natural number is representable with this number system.

1.10 Number radix conversion

a. Convert the following octal (radix-8) numbers to hexadecimal (radix-16)
notation: 12, 5 655, 2 550 276, 76 545 336, 3 726 755.

b. Represent (48A.C2)sixteen and (192.837)ten in radices 2, 8, 10, 12, and 16.
c. Outline procedures for converting an unsigned radix-r number, using the stan-

dard digit set [0, r − 1], into radices 1/r,
√

r, and j 4
√

r(j = √−1), using the
same digit set.

1.11 Number radix conversion

Consider a fixed-point, radix-4 number system in which a number x is represented
with k whole and l fractional digits.

a. Assuming the use of standard radix-4 digit set [0, 3] and radix-8 digit set [0, 7],
determine K and L, the numbers of whole and fractional digits in the radix-8
representation of x as functions of k and l.

b. Repeat part a for the more general case in which the radix-4 and radix-8 digit
sets are [−α, β] and [−2α, 2β], respectively, with α ≥ 0 and β ≥ 0.

1.12 Number radix conversion

Dr. N. E. Patent, a frequent contributor to scientific journals, claims to have
invented a simple logic circuit for conversion of numbers from radix 2 to radix
10. The novelty of this circuit is that it can convert arbitrarily long numbers. The
binary number is input 1 bit at a time. The decimal output will emerge one digit
at a time after a fixed initial delay that is independent of the length of the input
number. Evaluate this claim using only the information given.

1.13 Fixed-point number representation

Consider a fixed-point, radix-3 number system, using the digit set [−1, 1], in
which numbers are represented with k integer digits and l fractional digits as:
dk−1dk−2 · · · d1d0.d−1d−2 · · · d−l .

20 Chapter 1 Numbers and Arithmetic

a. Determine the range of numbers represented as a function of k and l.
b. Given that each radix-3 digit needs 2-bit encoding, compute the representation

efficiency of this number system relative to the binary representation.
c. Outline a carry-free procedure for converting one of the above radix-3 num-

bers to an equivalent radix-3 number using the redundant digit set [0, 3]. By
a carry-free procedure, we mean a procedure that determines each digit of the
new representation locally from a few neighboring digits of the original rep-
resentation, so that the speed of the circuit is independent of the width of the
original number.

1.14 Number radix conversion

Discuss the design of a hardware number radix converter that receives its radix-r
input digit-serially and produces the radix-R output (R > r) in the same manner.
Multiple conversions are to be performed continuously; that is, once the last digit
of one number has been input, the presentation of the second number can begin
with no time gap [Parh92].

1.15 Decimal-to-binary conversion

Consider a 2k-bit register, the upper half of which holds a decimal number, with
each digit encoded as a 4-bit binary number (binary-coded decimal or BCD). Show
that repeating the following steps k times will yield the binary equivalent of the
decimal number in the lower half of the 2k-bit register: Shift the 2k-bit register 1
bit to the right; independently subtract 3 units from each 4-bit segment of the upper
half whose binary value equals or exceeds 8 (there are k/4 such 4-bit segments).

1.16 Design of comparators

An h-bit comparator is a circuit with two h-bit unsigned binary inputs, x and y,
and two binary outputs designating the conditions x < y and x > y. Sometimes a
third output corresponding to x = y is also provided, but we do not need it for this
problem.

a. Present the design of a 4-bit comparator.
b. Show how five 4-bit comparators can be cascaded to compare two 16-bit

numbers.
c. Show how a three-level tree of 4-bit comparators can be used to compare two

28-bit numbers. Try to use as few 4-bit comparator blocks as possible.
d. Generalize the result of part b to derive a synthesis method for large

comparators built from a cascaded chain of smaller comparators.
e. Generalize the result of part c to derive a synthesis method for large

comparators built from a tree of smaller comparators.

1.17 Infinite representations

Consider a radix-r (r ≥ 2) fixed-point number representation scheme with
infinitely many digits to the left and to the right of the radix point.

Problems 21

a. Show that the number represented is rational if and only if the fractional part
is ultimately periodic.

b. Characterize the class of rational numbers that have two different representa-
tions.

c. Repeat part b for the negative radix −r.

1.18 Number radix conversion

a. Show that any number that is finitely representable in binary also has a finite
decimal representation.

b. Derive a relationship between the radices r and R such that any number with
a finite radix-r representation also has a finite representation in radix R.

1.19 Number representation

Prove or disprove each of the following statements for a rational number a = b/c,
where b and c are relatively prime integers, with b ≥ 1 and c ≥ 2.

a. In an even radix r, the rational number a does not have an exact finite
representation if c is odd.

b. In an odd radix r, the rational number a does not have an exact finite
representation if c is even.

c. It is possible to represent the rational number a exactly in radix r, using k
whole and l fractional digits, if and only if b < rk+l and c ≤ rl .

1.20 Number representation

We want to build an abacus for use with the Roman numeral system. There are to
be seven positions labeled, from left to right, M, D, C, L, X, V, and I. Each position
is to have positive (black) and negative (red) beads to allow representations such as
MCDXXIV. What are the minimum required numbers of the two types of beads in
each position, given that all unsigned integers up to 1500 are to be representable?

1.21 Compressed decimal numbers

One way to represent decimal numbers in memory is to pack two BCD digits into
1 byte. This representation is somewhat wasteful in that a byte that can encode 256
values is used to represent the digit pairs 00 through 99. One way of improving
efficiency is to compress three BCD digits into 10 bits.

a. Devise a suitable encoding for this compression. Hint: Let the BCD
digits be x3x2x1x0, y3y2y1y0, and z3z2z1z0. Let the 10-bit encoding be
WX2X1x0Y2Y1y0Z2Z1z0. In other words, the three least-significant bits of
the digits are used directly and the remaining 9 bits (3 from each digit) are
encoded into 7 bits. Let W = 0 encode the case x3 = y3 = z3 = 0. In this
case, the remaining digits are simply copied in the new representation. Use
X2X1 = 00, 01, 10 to encode the case where only one of the values x3, y3, or
z3 is 1. Note that when the most-significant bit of a BCD digit is 1, the digit

22 Chapter 1 Numbers and Arithmetic

is completely specified by its least-significant bits and no other information is
needed. Finally, use X2X1 = 11 for all other cases.

b. Design a circuit to convert three BCD digits into the 10-bit compressed
representation.

c. Design a circuit to decompress the 10-bit code to retrieve the three original
BCD digits.

d. Suggest a similar encoding to compress two BCD digits into 7 bits.
e. Design the required compression and decompression circuits for the encoding

of part d.

1.22 Double-base number systems

Consider the representation of integers by a k × m matrix of bits, where the bit
in row i, column j being 1 indicates that 2i3j is included in the sum defining the
represented integer x. This corresponds to a double-base number system with the
two bases being 2 and 3 [Dimi03]. For example, if a 4× 4 matrix is used, and the
bits in the matrix are written in row-major order, the number 54 = 2232 + 2032 +
2131 + 2130 + 2030 can be represented as 1010 1100 0010 0000.

a. In what way are the binary and ternary number systems special cases of the
above?

b. Compute max, the largest number representable in a double-base (2 and 3)
number system as a function of k and m.

c. Show that all unsigned integers up to max are representable in the number
system of part b. Hint: Prove that if x > 0 is representable, so is x − 1.

d. Show that any representation can be easily transformed so that it does not con-
tain two consecutive 1s in the same row or the same column. Representations
that are thus transformed are said to be “addition-ready.”

e. Assuming that the transformation of part d is applied after every arithmetic
operation, derive an addition algorithm for such numbers.

1.23 Symmetric digit sets

We know that for any odd radix r, the symmetric digit set [−(r−1)/2, (r−1)/2] is
adequate for representing all numbers, leads to unique representations, and offers
some advantages over the conventional digit set [0, r − 1]. The balanced ternary
number system of Example 1.1 is one such representation. Show that for an even
radix r, the symmetric fractional digit set {−r/2+ 1/2, . . . ,−1/2, 1/2, . . . , r/2−
1/2} is adequate for representing all numbers and discuss some practical limitations
of such a number representation system.

1.24 The Cantor set C0

The Cantor set C0, a sparse subset of the set of real numbers in [0, 1], is defined
as follows. Beginning with the single interval [0, 1], repeat the following process
indefinitely. Divide each remaining interval (initially only one) into three equal
parts. Of the three subintervals, remove the middle one, except for its endpoints;
that is, leave the first and third ones as closed intervals.

References and Further Readings 23

a. Show that C0 consists of real numbers that can be represented as infinite ternary
fractions using only the digits 0 and 2.

b. Show that the numbers 1/4, 3/4, and 1/13 are in C0.
c. Show that any number in [−1, 1] is the difference between two numbers in C0.

1.25 Fixed-radix positional number systems

Let Nk,r be an integer whose k-digit radix-r representation is all 1s, that is, Nk,r =
(1 1 · · · 1)r , where the number of 1 digits is k.

a. Show the radix-2 representation of the square of Nk,2.
b. Prove that except for N1,10, no Ni,10 is a perfect square.
c. Show that Ni,r divides Nj,r if and only if i divides j.

1.26 Fixed-radix positional number systems

Show that the number (1 0 1 0 1)r is not a prime, regardless of the radix r.

1.27 Computer with ternary number representation

The TERNAC computer, implemented at State University of New York, Buffalo
in 1973, had a 24-trit integer format and a 48-trit floating-point (42 for mantissa, 6
for exponent) format. It was intended as a feasibility study for ternary arithmetic.
Prepare a two-page report on TERNAC, describing its arithmetic unit design and
discussing whether it proved to be competitive in speed and cost.

1.28 Arithmetic algorithms

The computation of f = (333.75−a2)b6+a2(11a2b2−121b4−2)+5.5b8+a/(2b),
for a = 77 617 and b = 33 096, is known as Rump’s example.

a. Without rearranging the terms, compute f , using 32-bit, 64-bit, and, if possible,
128-bit floating-point arithmetic.

b. Compute the exact value of f , using the observation that the values chosen for
a and b satisfy a2 = 5.5b2 + 1 [Loh02].

c. Compare the results of parts a and b and discuss.

REFERENCES AND FURTHER READINGS

[Dimi03] Dimitrov, V. S., and G. A. Jullien, “Loading the Bases: A New Number Representation
with Applications,” IEEE Circuits and Systems, Vol. 3, No. 2, pp. 6–23, 2003.

[GAO92] General Accounting Office, “Patriot Missile Defense: Software Problem Led to
System Failure at Dhahran, Saudi Arabia,” US Government Report
GAO/IMTEC-92-26, 1992.

[Knut97] Knuth, D. E., The Art of Computer Programming, 3rd ed., Vol. 2: Seminumerical
Algorithms, Addison-Wesley, 1997.

24 Chapter 1 Numbers and Arithmetic

[Lion96] Lions, J. L., “Ariane 5 Flight 505 Failure,” Report by the Inquiry Board, July 19,
1996.

[Loh02] Loh, E., and G. W. Walster, “Rump’s Example Revisited,” Reliable Computing, Vol.
8, pp. 245–248, 2002.

[Mole95] Moler, C., “A Tale of Two Numbers,” SIAM News, Vol. 28, No. 1, pp. 1, 16, 1995.

[Parh92] Parhami, B., “Systolic Number Radix Converters,” Computer J., Vol. 35, No. 4, pp.
405–409, August 1992.

[Parh02] Parhami, B., “Number Representation and Computer Arithmetic,” Encyclopedia of
Information Systems, Academic Press, Vol. 3, pp. 317–333, 2002.

[Scot85] Scott, N. R., Computer Number Systems and Arithmetic, Prentice-Hall, 1985.

[Silv06] Silverman, J. H., A Friendly Introduction to Number Theory, Pearson, 2006.

[Stol04] Stoll, C., “The Curious History of the First Pocket Calculator,”Scientific American,
Vol. 290, No. 1, pp. 92–99, January 2004.

[Thim95] Thimbleby, H., “A New Calculator and Why It Is Necessary,” Computer J., Vol. 38,
No. 6, pp. 418–433, 1995.

2 Representing Signed
Numbers

■ ■ ■

“This can’t be right . . . it goes into the red!”
L I T T L E B O Y, W H E N A S K E D T O S U B T R A C T 3 6 F R O M 2 4 (C A P T I O N O N A C A R T O O N B Y

U N K N O W N A R T I S T)

■ ■ ■

T his chapter deals with the representation of signed fixed-point numbers by

providing an attached sign bit, adding a fixed bias to all numbers, comple-

menting negative values, attaching signs to digit positions, or using signed digits. In

view of its importance in the design of fast arithmetic algorithms and hardware, rep-

resenting signed fixed-point numbers by means of signed digits is further explored

in Chapter 3. Chapter topics include:

2.1 Signed-Magnitude Representation

2.2 Biased Representations

2.3 Complement Representations

2.4 2’s- and 1’s-Complement Numbers

2.5 Direct and Indirect Signed Arithmetic

2.6 Using Signed Positions or Signed Digits

2.1 SIGNED-MAGNITUDE REPRESENTATION

The natural numbers 0, 1, 2, . . ., max can be represented as fixed-point numbers without
fractional parts (refer to Section 1.4). In radix r, the number k of digits needed for
representing the natural numbers up to max is

k = �logr max� + 1 = 	logr(max + 1)

25

26 Chapter 2 Representing Signed Numbers

+–

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111

Bit patterns
(representations)

Signed values

(signed magnitude)
Increment

0
+1

+2

+3

+4

–7

–6

+5

+6

+7

–5

–4

–3

–2

–1 –0

Figure 2.1 A 4-bit signed-magnitude number representation system for integers.

Conversely, with k digits, one can represent the values 0 through rk − 1, inclusive; that
is, the interval [0, rk − 1] = [0, rk) of natural numbers.

Natural numbers are often referred to as “unsigned integers,” which form a special
data type in many programming languages and computer instruction sets. The advantage
of using this data type as opposed to “integers” when the quantities of interest are known
to be nonnegative is that a larger representation range can be obtained (e.g., maximum
value of 255, rather than 127, with 8 bits).

One way to represent both positive and negative integers is to use “signed magni-
tudes,” or the sign-and-magnitude format, in which 1 bit is devoted to sign. The common
convention is to let 1 denote a negative sign and 0 a positive sign. In the case of radix-2
numbers with a total width of k bits, k−1 bits will be available to represent the magnitude
or absolute value of the number. The range of k-bit signed-magnitude binary numbers is
thus [−(2k−1− 1), 2k−1− 1]. Figure 2.1 depicts the assignment of values to bit patterns
for a 4-bit signed-magnitude format.

Advantages of signed-magnitude representation include its intuitive appeal, con-
ceptual simplicity, symmetric range, and simple negation (sign change) by flipping or
inverting the sign bit. The primary disadvantage is that addition of numbers with unlike
signs (subtraction) must be handled differently from that of same-sign operands.

The hardware implementation of an adder for signed-magnitude numbers either
involves a magnitude comparator and a separate subtractor circuit or else is based on the
use of complement representation (see Section 2.3) internally within the arithmetic/logic
unit (ALU). In the latter approach, a negative operand is complemented at the ALU’s
input, the computation is done by means of complement representation, and the result
is complemented, if necessary, to produce the signed-magnitude output. Because the
pre- and postcomplementation steps add to the computation delay, it is better to use the
complement representation throughout. This is exactly what modern computers do.

Besides the aforementioned extra delay in addition and subtraction, signed-
magnitude representation allows two representations for 0, leading to the need for special

Biased Representations 27

Adder cc

s

x ySign x Sign y

Sign

Sign s

out in

Compl x

Control

Compl s

Add/Sub

Selective
complement

Selective
complement

Figure 2.2 Adding signed-magnitude numbers using precomplementation and
postcomplementation.

care in number comparisons or added overhead for detecting−0 and changing it to+0.
This drawback, however, is unavoidable in any radix-2 number representation system
with symmetric range.

Figure 2.2 shows the hardware implementation of signed-magnitude addition using
selective pre- and postcomplementation. The control circuit receives as inputs the oper-
ation to be performed (0 = add, 1 = subtract), the signs of the two operands x and y,
the carry-out of the adder, and the sign of the addition result. It produces signals for
the adder’s carry-in, complementation of x, complementation of the addition result, and
the sign of the result. Note that complementation hardware is provided only for the x
operand. This is because x−y can be obtained by first computing y−x and then changing
the sign of the result. You will understand this design much better after we have covered
complement representations of negative numbers in Sections 2.3 and 2.4.

2.2 BIASED REPRESENTATIONS

One way to deal with signed numbers is to devise a representation or coding scheme that
converts signed numbers into unsigned numbers. For example, the biased representation
is based on adding a positive value bias to all numbers, allowing us to represent the
integers from –bias to max – bias using unsigned values from 0 to max. Such a represen-
tation is sometimes referred to as “excess-bias” (e.g., excess-3 or excess-128) coding.
We will see in Chapter 17 that biased representation is used to encode the exponent part
of a floating-point number.

Figure 2.3 shows how signed integers in the range [−8,+7] can be encoded as
unsigned values 0 through 15 by using a bias of 8. With k-bit representations and a bias
of 2k−1, the leftmost bit indicates the sign of the value represented (0= negative, 1= pos-
itive). Note that this is the opposite of the commonly used convention for number signs.
With a bias of 2k−1 or 2k−1 − 1, the range of represented integers is almost symmetric.

28 Chapter 2 Representing Signed Numbers

–+

–8
–7

–6

–5

–4

+7

+6

–3

–2

–1

+5

+4

+3

+2

0+1

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111

Bit patterns
(representations)

Signed values

(biased by 8)

Increment

Figure 2.3 A 4-bit biased integer number representation system with a bias of 8.

Biased representation does not lend itself to simple arithmetic algorithms. Addition
and subtraction become somewhat more complicated because one must subtract or add
the bias from/to the result of a normal add/subtract operation, since

x + y + bias = (x + bias)+ (y + bias)− bias

x − y + bias = (x + bias)− (y + bias)+ bias

With k-bit numbers and a bias of 2k−1, adding or subtracting the bias amounts to com-
plementing the leftmost bit. Thus, the extra complexity in addition or subtraction is
negligible.

Multiplication and division become significantly more difficult if these operations
are to be performed directly on biased numbers. For this reason, the practical use of
biased representation is limited to the exponent parts of floating-point numbers, which
are never multiplied or divided.

2.3 COMPLEMENT REPRESENTATIONS

In a complement number representation system, a suitably large complementation con-
stant M is selected and the negative value−x is represented as the unsigned value M −x.
Figure 2.4 depicts the encodings used for positive and negative values and the arbitrary
boundary between the two regions.

To represent integers in the range [−N ,+P] unambiguously, the complementation
constant M must satisfy M ≥ N+P+1. This is justified by noting that to prevent overlap
between the representations of positive and negative values in Figure 2.4, we must have
M − N > P. The choice of M = N + P + 1 yields maximum coding efficiency, since
no code will go to waste.

Complement Representations 29

Figure 2.4
Complement
representation of
signed integers.

0

1

2

3

4

P

M � N

M � 1

M � 2

0
+1

+2

+3

+4

+P

–N

–1

–2

+

–
Signed
values

Increment

Unsigned
representations

Table 2.1 Addition in a complement number system with the
complementation constant M and range [−N, +P]

Desired
operation

Computation to be
performed mod M

Correct result
with no overflow

Overflow
condition

(+x)+ (+y) x + y x + y x + y > P

(+x)+ (−y) x + (M − y) x − y if y ≤ x N/A

M − (y − x) if y > x

(−x)+ (+y) (M − x)+ y y − x if x ≤ y N/A

M − (x − y) if x > y

(−x)+ (−y) (M − x)+ (M − y) M − (x + y) x + y > N

In a complement system with the complementation constant M and the number
representation range [−N ,+P], addition is done by adding the respective unsigned
representations (modulo M). The addition process is thus always the same, independent
of the number signs. This is easily understood if we note that in modulo-M arithmetic
adding M − 1 is the same as subtracting 1. Table 2.1 shows the addition rules for
complement representations, along with conditions that lead to overflow.

Subtraction can be performed by complementing the subtrahend and then perform-
ing addition. Thus, assuming that a selective complementer is available, addition and
subtraction become essentially the same operation, and this is the primary advantage of
complement representations.

Complement representation can be used for fixed-point numbers that have a fractional
part. The only difference is that consecutive values in the circular representation of Fig.
2.4 will be separated by ulp instead of by 1. As a decimal example, given the complemen-
tation constant M = 12.000 and a fixed-point number range of [−6.000,+5.999], the
fixed-point number−3.258 has the complement representation 12.000−3.258 = 8.742.

We note that two auxiliary operations are required for complement representations to
be effective: complementation or change of sign (computing M − x) and computations
of residues mod M. If finding M − x requires subtraction and finding residues mod M

30 Chapter 2 Representing Signed Numbers

implies division, then complement representation becomes quite inefficient. Thus M
must be selected such that these two operations are simplified. Two choices allow just
this for fixed-point radix-r arithmetic with k whole digits and l fractional digits:

Radix complement M = rk

Digit or diminished-radix complement M = rk − ulp

For radix-complement representations, modulo-M reduction is done by ignoring the
carry-out from digit position k−1 in a (k+l)-digit radix-r addition. For digit-complement
representations, computing the complement of x (i.e., M−x), is done by simply replacing
each nonzero digit xi by r − 1 − xi. This is particularly easy if r is a power of 2.
Complementation with M = rk and mod-M reduction with M = rk − ulp are similarly
simple. You should be able to supply the details for radix r after reading Section 2.4,
which deals with the important special case of r = 2.

2.4 2’S- AND 1’S-COMPLEMENT NUMBERS

In the special case of r = 2, the radix complement representation that corresponds to
M = 2k is known as 2’s complement. Figure 2.5 shows the 4-bit, 2’s-complement integer
system (k = 4, l = 0, M = 24 = 16) and the meanings of the 16 representations allowed
with 4 bits. The boundary between positive and negative values is drawn approximately
in the middle to make the range roughly symmetric and to allow simple sign detection
(the leftmost bit is the sign).

0
1

2

3

4

0
+1

+2

+3

+4

–1

–2

+– +5

+6

+7

–3

–4

–5

–6

–8–7

5

6

7
89

10

11

12

13

14

15

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111
Unsigned
representations

Signed values

(2's complement)

Figure 2.5 A 4-bit, 2’s-complement number representation system for integers.

2’s- and 1’s-Complement Numbers 31

The 2’s complement of a number x can be found via bitwise complementation of x
and the addition of ulp:

2k − x = [(2k − ulp)− x] + ulp = xcompl + ulp

Note that the binary representation of 2k − ulp consists of all 1s, making (2k − ulp)− x
equivalent to the bitwise complement of x, denoted as xcompl. Whereas finding the bitwise
complement of x is easy, adding ulp to the result is a slow process, since in the worst
case it involves full carry propagation. We will see later how this addition of ulp can
usually be avoided.

To add numbers modulo 2k , we simply drop a carry-out of 1 produced by position
k − 1. Since this carry is worth 2k units, dropping it is equivalent to reducing the
magnitude of the result by 2k .

The range of representable numbers in a 2’s-complement number system with k
whole bits is

from − 2k−1 to 2k−1 − ulp

Because of this slightly asymmetric range, complementation can lead to overflow! Thus,
if complementation is done as a separate sign change operation, it must include overflow
detection. However, we will see later that complementation needed to convert subtraction
into addition requires no special provision.

The name “2’s complement” actually comes from the special case of k = 1 that
leads to the complementation constant M = 2. In this case, represented numbers have
1 whole bit, which acts as the sign, and l fractional bits. Thus, fractional values in the
range [−1, 1−ulp] are represented in such a fractional 2’s-complement number system.
Figure 2.5 can be readily modified to represent this number system by simply inserting
a radix point after the leading digit for numbers outside the circle (turning them into
0.000, 0.001, and so on) and replacing each value x inside the circle with x/8 (0, 0.125,
0.25, and so on).

The digit or diminished-radix complement representation is known as 1’s complement
in the special case of r = 2. The complementation constant in this case is M = 2k −ulp.
For example, Fig. 2.6 shows the 4-bit, 1’s-complement integer system (k = 4, l =
0, M = 24 − 1 = 15) and the meanings of the 16 representations allowed with 4 bits.
The boundary between positive and negative values is again drawn approximately in the
middle to make the range symmetric and to allow simple sign detection (the leftmost bit
is the sign).

Note that compared with the 2’s-complement representation of Fig. 2.5, the repre-
sentation for −8 has been eliminated and instead an alternate code has been assigned to
0 (technically, −0). This may somewhat complicate 0 detection in that both the all-0s
and the all-1s patterns represent 0. The arithmetic circuits can be designed such that the
all-1s pattern is detected and automatically converted to the all-0s pattern. Keeping −0
intact does not cause problems in computations, however, since all computations are
modulo 15. For example, adding +1 (0001) to −0 (1111) will yield the correct result of
+1 (0001) when the addition is done modulo 15.

32 Chapter 2 Representing Signed Numbers

0
1

2

3

4

0
+1

+2

+3

+4

–0

–1

+– +5

+6

+7

–2

–3

–4

–5

–7–6

5

6

7
89

10

11

12

13

14

15

0000
0001

0010

0011

0100

0101

0110

0111

1000
1001

1010

1011

1100

1101

1110

1111
Unsigned
representations

Signed values

(1's complement)

Figure 2.6 A 4-bit, 1’s-complement number representation system for integers.

The 1’s complement of a number x can be found by bitwise complementation:

(2k − ulp)− x = xcompl

To add numbers modulo 2k − ulp, we simply drop a carry-out of 1 produced by position
k − 1 and simultaneously insert a carry-in of 1 into position−l. Since the dropped carry
is worth 2k units and the inserted carry is worth ulp, the combined effect is to reduce the
magnitude of the result by 2k −ulp. In terms of hardware, the carry-out of our (k+ l)-bit
adder should be directly connected to its carry-in; this is known as end-around carry.

The foregoing scheme properly handles any sum that equals or exceeds 2k . When
the sum is 2k − ulp, however, the carry-out will be zero and modular reduction is
not accomplished. As suggested earlier, such an all-1s result can be interpreted as an
alternate representation of 0 that is either kept intact (making 0 detection more difficult)
or is automatically converted by hardware to +0.

The range of representable numbers in a 1’s-complement number system with k
whole bits is

from − (2k−1 − ulp) to 2k−1 − ulp

This symmetric range is one of the advantages of 1’s-complement number representation.
Table 2.2 presents a brief comparison of radix- and digit-complement number rep-

resentation systems for radix r. We might conclude from Table 2.2 that each of the
two complement representation schemes has some advantages and disadvantages with
respect to the other, making them equally desirable. However, since complementation is
often performed for converting subtraction to addition, the addition of ulp required in the
case of 2’s-complement numbers can be accomplished by providing a carry-in of 1 into
the least significant, or (−l)th, position of the adder. Figure 2.7 shows the required ele-
ments for a 2’s-complement adder/subtractor. With the complementation disadvantage

2’s- and 1’s-Complement Numbers 33

Table 2.2 Comparing radix- and digit-complement number
representation systems

Feature/Property Radix complement Digit complement

Symmetry (P = N?) Possible for odd r (radices of
practical interest are even)

Possible for even r

Unique zero? Yes No

Complementation Complement all digits and add ulp Complement all digits

Mod-M addition Drop the carry-out End-around carry

Figure 2.7
Adder/subtractor
architecture for
2’s-complement
numbers.

Adder

 Selective Sub/Add

cc

x ± y

x y

 complement

inout

0 for addition
1 for subtractiony or y compl

mitigated in this way, 2’s-complement representation has become the favored choice in
virtually all modern digital systems.

Interestingly, the arrangement shown in Fig. 2.7 also removes the disadvantage
of asymmetric range. If the operand y is −2k−1, represented in 2’s complement as 1
followed by all 0s, its complementation does not lead to overflow. This is because the
2’s complement of y is essentially represented in two parts: ycompl, which represents
2k−1 − 1, and cin which represents 1.

Occasionally we need to extend the number of digits in an operand to make it of the
same length as another operand. For example, if a 16-bit number is to be added to a 32-bit
number, the former is first converted to 32-bit format, with the two 32-bit numbers then
added using a 32-bit adder. Unsigned- or signed-magnitude fixed-point binary numbers
can be extended from the left (whole part) or the right (fractional part) by simply padding
them with 0s. This type of range or precision extension is only slightly more difficult for
2’s- and 1’s-complement numbers.

Given a 2’s-complement number xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l , extension can be
achieved from the left by replicating the sign bit (sign extension) and from the right by
padding it with 0s.

· · · xk−1xk−1xk−1xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l000 · · ·
To justify the foregoing rule, note that when the number of whole (fractional) digits is
increased from k (l) to k ′ (l′), the complementation constant increases from M = 2k to

34 Chapter 2 Representing Signed Numbers

M ′ = 2k ′ . Hence, the difference of the two complementation constants

M ′ −M = 2k ′ − 2k = 2k(2k ′−k − 1)

must be added to the representation of any negative number. This difference is a binary
integer consisting of k ′ − k 1s followed by k 0s; hence the need for sign extension.

A 1’s-complement number must be sign-extended from both ends:

· · · xk−1xk−1xk−1xk−1xk−2 · · · x1x0.x−1x−2 · · · x−lxk−1xk−1xk−1 · · ·

Justifying the rule above for 1’s-complement numbers is left as an exercise.
An unsigned binary number can be multiplied or divided by 2h via an h-bit left or right

shift, essentially changing the location of the radix point within the original digit-vector.
To perform similar operations on 2’s- and 1’s-complement numbers, the operand must
be first extended, so that the vacated positions on the right or left side of the fixed-width
number after shifting receive the correct digit values. Put another way, in performing an
h-bit right shift for dividing a number by 2h, copies of the sign bit must be shifted in
from the left. In the case of an h-bit left shift to multiply an operand by 2h, we need to
shift in the sign bit for 1’s complement and 0s for 2’s complement.

2.5 DIRECT AND INDIRECT SIGNED ARITHMETIC

In the preceding pages, we dealt with the addition and subtraction of signed numbers for
a variety of number representation schemes (signed-magnitude, biased, complement).
In all these cases, signed numbers were handled directly by the addition/subtraction
hardware (direct signed arithmetic), consistent with our desire to avoid using separate
addition and subtraction units.

For some arithmetic operations, it may be desirable to restrict the hardware to
unsigned operands, thus necessitating indirect signed arithmetic. Basically, the operands
are converted to unsigned values, a tentative result is obtained based on these unsigned
values, and finally the necessary adjustments are made to find the result corresponding
to the original signed operands. Figure 2.8 depicts the direct and indirect approaches to
signed arithmetic.

Indirect signed arithmetic can be performed, for example, for multiplication or divi-
sion of signed numbers, although we will see in Parts III and IV that direct algorithms
are also available for this purpose. The process is trivial for signed-magnitude numbers.
If x and y are biased numbers, then both the sign removal and adjustment steps involve
addition/subtraction. If x and y are complement numbers, these steps involve selective
complementation.

This type of preprocessing for operands, and postprocessing for computation results,
is useful not only for dealing with signed values but also in the case of unacceptable
or inconvenient operand values. For example, in computing sin x, the operand can be
brought to within [0, π/2] by taking advantage of identities such as sin(−x) = − sin x and
sin(2π+x) = sin(π−x) = sin x. Chapter 22 contains examples of such transformations.

Using Signed Positions or Signed Digits 35

Figure 2.8 Direct
versus indirect
operation on signed
numbers.

x y

f

x y

f (x, y)

Sign
logic Unsigned

operation

Sign removal

f (x, y)

Adjustment

As a second example, some division algorithms become more efficient when the divisor
is in a certain range (e.g., close to 1). In this case, the dividend and divisor can be scaled
by the same factor in a preprocessing step to bring the divisor within the desired range
(see Section 15.1).

2.6 USING SIGNED POSITIONS OR SIGNED DIGITS

The value of a 2’s-complement number can be found by using the standard binary-
to-decimal conversion process, except that the weight of the most significant bit
(sign position) is taken to be negative. Figure 2.9 shows an example 8-bit, 2’s-
complement number converted to decimal by considering its sign bit to have the negative
weight −27.

This very important property of 2’s-complement systems is used to advantage in many
algorithms that deal directly with signed numbers. The property is formally expressed
as follows:

x = (xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l)2′s−compl

= −xk−12k−1 +
k−2∑
i=−l

xi2
i

The proof is quite simple if we consider the two cases of xk−1 = 0 and xk−1 = 1
separately. For xk−1 = 0, we have

x = (0xk−2 · · · x1x0.x−1x−2 · · · x−l)2′s−compl

= (0xk−2 · · · x1x0.x−1x−2 · · · x−l)two

=
k−2∑
i=−l

xi 2i

36 Chapter 2 Representing Signed Numbers

x = (1 0 1 0 0 1 1 0)

–128 + 32 + 4 + 2 = –9 0

Check:

x = (1 0 1 0 0 1 1 0)

–x = (0 1 0 1 1 0 1 0)

64 + 16 + 8 + 2 = 90

7 6 5 4 3 2 1–2 2 2 2 2 2 2 02

7 6 5 4 3 2 12 2 2 2 2 2 2 02

2's-compl

two

2's-compl

Figure 2.9 Interpreting a 2’s-complement number as having a negatively weighted most
significant digit.

For xk−1 = 1, we have

x = (1xk−2 · · · x1x0.x−1x−2 · · · x−l)2′s−compl

= −[2k − (1xk−2 · · · x1x0.x−1x−2 · · · x−l)two]

= −2k−1 +
k−2∑
i=−l

xi 2i

Developing the corresponding interpretation for 1’s-complement numbers is left as an
exercise.

A simple generalization of the notion above immediately suggests itself [Kore81].
Let us assign negative weights to an arbitrary subset of the k + l positions in a radix-r
number and positive weights to the rest of the positions. A vector

λ = (λk−1λk−2 · · · λ1λ0.λ−1λ−2 · · · λ−l)

with elements λi in {−1, 1}, can be used to specify the signs associated with the various
positions. With these conventions, the value represented by the digit vector x of length
k + l is

(xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l)r,λ =
k−1∑
i=−l

λixir
i

Note that the scheme above covers unsigned radix-r, 2’s-complement, and negative-radix
number systems as special cases:

λ = 1 1 1 · · · 1 1 1 1 Positive radix
λ = −1 1 1 · · · 1 1 1 1 2′s complement
λ = · · · −1 1−1 1 Negative radix

We can take one more step in the direction of generality and postulate that instead of a
single sign vector λ being associated with the digit positions in the number system (i.e.,

Using Signed Positions or Signed Digits 37

with all numbers represented), a separate sign vector is defined for each number. Thus,
the digits are viewed as having signed values:

xi = λi|xi|, with λi ∈ {−1, 1}

Here, λi is the sign and |xi| is the magnitude of the ith digit. In fact once we begin to
view the digits as signed values, there is no reason to limit ourselves to signed-magnitude
representation of the digit values. Any type of coding, including biased or complement
representation, can be used for the digits. Furthermore, the range of digit values need
not be symmetric. We have already covered some examples of such signed-digit number
systems in Section 1.4 (see Examples 1.1, 1.3, and 1.4).

Basically, any set [−α, β] of r or more consecutive integers that includes 0 can be
used as the digit set for radix r. If exactly r digit values are used, then the number system
is irredundant and offers a unique representation for each value within its range. On the
other hand, if more than r digit values are used, ρ = α+β+ 1− r represents the redun-
dancy index of the number system and some values will have multiple representations. In
Chapter 3, we will see that such redundant representations can eliminate the propagation
of carries in addition and thus allow us to implement truly parallel fast adders.

As an example of nonredundant signed-digit representations, consider a radix-4 num-
ber system with the digit set [−1, 2]. A k-digit number of this type can represent any
integer from −(4k − 1)/3 to 2(4k − 1)/3. Given a standard radix-4 integer using the
digit set [0, 3], it can be converted to the preceding representation by simply rewriting
each digit of 3 as −1+ 4, where the second term becomes a carry of 1 that propagates
leftward. Figure 2.10 shows a numerical example. Note that the result may require k+1
digits.

The conversion process of Fig. 2.10 stops when there remains no digit with value
3 that needs to be rewritten. The reverse conversion is similarly done by rewriting any
digit of −1 as 3 with a borrow of 1 (carry of −1).

More generally, to convert between digit sets, each old digit value is rewritten as
a valid new digit value and an appropriate transfer (carry or borrow) into the next

Figure 2.10
Converting a
standard radix-4
integer to a radix-4
integer with the
nonstandard digit set
[−1, 2].

38 Chapter 2 Representing Signed Numbers

higher digit position. Because these transfers can propagate, the conversion process
is essentially a digit-serial one, beginning with the least-significant digit.

As an example of redundant signed-digit representations, consider a radix-4 number
system with the digit set [−2, 2]. A k-digit number of this type can represent any integer
from −2(4k − 1)/3 to 2(4k − 1)/3. Given a standard radix-4 number using the digit
set [0, 3], it can be converted to the preceding representation by simply rewriting each
digit of 3 as −1+ 4 and each digit of 2 as −2+ 4, where the second term in each case
becomes a carry of 1 that propagates leftward. Figure 2.11 shows a numerical example.

In this case, the transfers do not propagate, since each transfer of 1 can be absorbed
by the next higher position that has a digit value in [−2, 1], forming a final result digit in
[−2, 2]. The conversion process from conventional radix-4 to the preceding redundant
representation is thus carry-free. The reverse process, however, remains digit-serial.

We end this chapter by extending the dot notation of Section 1.6 to include negatively
weighted bits, or negabits, which are represented as small hollow circles. Using this
extended dot notation, positive-radix, 2’s-complement, and negative-radix numbers,
compared earlier in this section, can be represented graphically as in Fig. 2.12. Also,
arithmetic algorithms on such numbers can be visualized for better understanding. For
example, Fig. 2.13 depicts the operands, intermediate values, and final results when

Figure 2.11
Converting a
standard radix-4
integer to a radix-4
integer with the
nonstandard digit set
[−2, 2].

Unsigned positive-radix number

2’s-complement number

Negative-radix number

Figure 2.12 Extended dot notation depicting various number representation formats.

Figure 2.13
Example arithmetic
algorithms
represented in
extended dot
notation.

+

(a) Addition

(b) Multiplication

�

Problems 39

adding or multiplying 2’s-complement numbers. As a case in point, Fig. 2.13b helps us
understand that to multiply 2’s-complement numbers, we need a process that allows us
to add partial results containing a mix of posibits and negabits, in a way that yields a
final result that includes only 1 negabit.

PROBLEMS 2.1 Signed-magnitude adder/subtractor

Design the control circuit of Fig. 2.2 so that signed-magnitude inputs are added
correctly regardless of their signs. Include in your design a provision for overflow
detection in the form of a fifth control circuit output.

2.2 Arithmetic on biased numbers

Multiplication of biased numbers can be done in a direct or an indirect way.

a. Develop a direct multiplication algorithm for biased numbers. Hint: Use the
identity xy + bias = (x + bias)(y + bias) − bias[(x + bias) + (y + bias) −
bias] + bias.

b. Present an indirect multiplication algorithm for biased numbers.
c. Compare the algorithms of parts a and b with respect to delay and hardware

implementation cost.
d. Repeat the comparison for part c in the special case of squaring a biased number.

2.3 Representation formats and conversions

Consider the following five ways for representing integers in the range [−127, 127]
within an 8-bit format: (a) signed-magnitude, (b) 2’s complement, (c) 1’s com-
plement, (d) excess-127 code (where an integer x is encoded using the binary
representation of x + 127), (e) excess-128 code. Pick one of three more conven-
tional and one of the two “excess” representations and describe conversion of
numbers between the two formats in both directions.

2.4 Representation formats and conversions

a. Show conversion procedures from k-bit 2’s-complement format to k-bit biased
representation, with bias = 2k−1, and vice versa. Pay attention to possible
exceptions.

b. Repeat part a for bias = 2k−1 − 1.
c. Repeat part a for 1’s-complement format.
d. Repeat part b for 1’s-complement format.

2.5 Complement representation of negative numbers

Consider a k-bit integer radix-2 complement number representation system with
the complementation constant M = 2k . The range of integers represented is taken
to be from−N to+P, with N+P+1 = M . Determine all possible pairs of values
for N and P (in terms of M) if the sign of the number is to be determined by:

a. Looking at the most significant bit only.
b. Inspecting the three most significant bits.

40 Chapter 2 Representing Signed Numbers

c. A single 4-input OR or AND gate.
d. A single 4-input NOR or NAND gate.

2.6 Complement representation of negative numbers

Diminished radix complement was defined as being based on the complemen-
tation constant rk − ulp. Study the implications of using an “augmented radix
complement” system based on the complementation constant rk + ulp.

2.7 1’s- and 2’s-complement number systems

We discussed the procedures for extending the number of whole or fractional
digits in a 1’s- or 2’s-complement number in Section 2.4. Discuss procedures
for the reverse process of shrinking the number of digits (e.g., converting 32-bit
numbers to 16 bits).

2.8 Interpreting 1’s-complement numbers

Prove that the value of the number (xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l)1′s−compl can

be calculated from the formula −xk−1(2k−1 − ulp)+∑k−2
i=−l xi2i.

2.9 1’s- and 2’s-complement number systems

a. Prove that x − y = (xc + y)c, where the superscript “c” denotes any
complementation scheme.

b. Find the difference between the two binary numbers 0010 and 0101 in two
ways: First by adding the 2’s complement of 0101 to 0010, and then by using
the equality of part a, where “c” denotes bitwise complementation. Compare
the two methods with regard to their possible advantages and drawbacks.

2.10 Shifting of signed numbers

Left/right shifting is used to double/halve the magnitude of unsigned binary
integers.

a. How can we use shifting to accomplish the same for 1’s- or 2’s-complement
numbers?

b. What is the procedure for doubling or halving a biased number?

2.11 Arithmetic on 1’s-complement numbers

Discuss the effect of the end-around carry needed for 1’s-complement addition on
the worst-case carry propagation delay and the total addition time.

2.12 Range and precision extension for complement numbers

Prove that increasing the number of integer and fractional digits in 1’s-complement
representation requires sign extension from both ends (i.e., positive numbers are
extended with 0s and negative numbers with 1s at both ends).

Problems 41

2.13 Signed digits or digit positions

a. Present an algorithm for determining the sign of a number represented in a
positional system with signed positions.

b. Repeat part a for signed-digit representations.

2.14 Signed digit positions

Consider a positional radix-r integer number system with the associated position
sign vector λ = (λk−1λk−2 · · · λ1λ0), λi ∈ {−1, 1}. The additive inverse of a
number x is the number −x.

a. Find the additive inverse of the k-digit integer Q all of whose digits are r − 1.
b. Derive a procedure for finding the additive inverse of an arbitrary number x.
c. Specialize the algorithm of part b to the case of 2’s-complement numbers.

2.15 Generalizing 2’s complement: 2-adic numbers

Around the turn of the twentieth century, K. Hensel defined the class of p-adic
numbers for a given prime p. Consider the class of 2-adic numbers with infinitely
many digits to the left and a finite number of digits to the right of the binary point.An
infinitely repeated pattern of digits is represented by writing down a single pattern
(the period) within parentheses. Here are some example 2-adic representations
using this notation:

7 = (0)111. = · · · 00000000111. 1/7 = (110)111. = · · · 110110110111.
−7 = (1)001. = · · · 11111111001. −1/7 = (001). = · · · 001001001001.
7/4 = (0)1.11 1/10 = (1100)110.1

We see that 7 and−7 have their standard 2’s-complement forms, with infinitely
many digits. The representations of 1/7 and −1/7, when multiplied by 7 and −7,
respectively, using standard rules for multiplication, yield the representation of 1.
Prove the following for 2-adic numbers:

a. Sign change of a 2-adic number is similar to 2’s complementation.
b. The representation of a 2-adic number x is ultimately periodic if and only if x

is rational.
c. The 2-adic representation of−1/(2n+ 1) for n ≥ 0 is (σ), for some bit string

σ , where the standard binary representation of 1/(2n+ 1) is (0.σσσ · · ·)two.

2.16 Biased-number representation

Consider radix-2 fractional numbers in the range [−1, 1), represented with a
bias of 1.

a. Develop an addition algorithm for such biased numbers.
b. Show that sign change for such numbers is identical to 2’s complementation.
c. Use the results of parts a and b to design an adder/subtractor for such

numbers.

42 Chapter 2 Representing Signed Numbers

2.17 Signed digits or digit positions

a. Present an algorithm for determining whether a number represented in a posi-
tional system with signed digit positions is 0. Note that such a number has
fixed signs permanently associated with the different digit positions and is
thus different from a signed-digit number.

b. Repeat part a for signed-digit representations.

2.18 2’s-complement numbers

Consider a 2’s-complement number representation system with the range [−1,
1−ulp] in which complementing the number−1 or performing the multiplication
(−1) × (−1) leads to overflow. Can one change the range to [−1 + ulp, 1], and
would this solve the problems? [Swar07]

2.19 10’s- and 9’s-complement decimal representation

Discuss the 10’s- and 9’s-complement number systems that are the radix-10 coun-
terparts to 2’s- and 1’s-complement representations. In particular, describe any
changes that might be needed in arithmetic algorithms.

2.20 Extended dot notation

a. Show the subtraction of 2’s-complement numbers in extended dot notation
(see Fig. 2.13a).

b. Show the division of 2’s-complement numbers in extended dot notation (see
Fig. 2.13b).

REFERENCES AND FURTHER READINGS

[Aviz61] Avizienis, A., “Signed-Digit Number Representation for Fast Parallel Arithmetic,”
IRE Trans. Electronic Computers, Vol. 10, pp. 389–400, 1961.

[Gosl80] Gosling, J. B., Design of Arithmetic Units for Digital Computers, Macmillan,
1980.

[Knut97] Knuth, D. E., The Art of Computer Programming, 3rd ed., Vol. 2: Seminumerical
Algorithms, Addison-Wesley, 1997.

[Kore81] Koren, I., and Y. Maliniak, “On Classes of Positive, Negative, and Imaginary Radix
Number Systems,” IEEE Trans. Computers, Vol. 30, No. 5, pp. 312–317, 1981.

[Korn94] Kornerup, P., “Digit-Set Conversions: Generalizations and Applications,” IEEE
Trans. Computers, Vol. 43, No. 8, pp. 622–629, 1994.

[Parh90] Parhami, B., “Generalized Signed-Digit Number Systems: A Unifying Framework
for Redundant Number Representations,” IEEE Trans. Computers, Vol. 39, No. 1,
pp. 89–98, 1990.

References and Further Readings 43

[Parh98] Parhami, B., and S. Johansson, “A Number Representation Scheme with Carry-Free
Rounding for Floating-Point Signal Processing Applications,” Proc. Int’l. Conf.
Signal and Image Processing, pp. 90–92, 1998.

[Scot85] Scott, N. R., Computer Number Systems and Arithmetic, Prentice-Hall, 1985.

[Swar07] Swartzlander, E. E. Jr., “The Negative Two’s Complement Number System,” J. VLSI
Signal Processing, Vol. 49, No. 1, pp. 177–183, 2007.

3 Redundant Number
Systems

■ ■ ■

“Numbers constitute the only universal language.”
N AT H A N A E L W E S T

■ ■ ■

T his chapter deals with the representation of signed fixed-point numbers

using a positive integer radix r and a redundant digit set composed of more

than r digit values. After showing that such representations eliminate carry propaga-

tion, we cover variations in digit sets, addition algorithms, input/output conversions,

and arithmetic support functions. Chapter topics include:

3.1 Coping with the Carry Problem

3.2 Redundancy in Computer Arithmetic

3.3 Digit Sets and Digit-Set Conversions

3.4 Generalized Signed-Digit Numbers

3.5 Carry-Free Addition Algorithms

3.6 Conversions and Support Functions

3.1 COPING WITH THE CARRY PROBLEM

Addition is a primary building block in implementing arithmetic operations. If addition
is slow or expensive, all other operations suffer in speed or cost. Addition can be slow
and/or expensive because:

a. With k-digit operands, one has to allow for O(k) worst-case carry-propagation
stages in simple ripple-carry adder design.

b. The carry computation network is a major source of complexity and cost in the
design of carry-lookahead and other fast adders.

44

Coping with the Carry Problem 45

The carry problem can be dealt with in several ways:

1. Limit carry propagation to within a small number of bits.
2. Detect the end of propagation rather than wait for worst-case time.
3. Speed up propagation via lookahead and other methods.
4. Ideal: Eliminate carry propagation altogether!

As examples of option 1, hybrid-redundant and residue number system representa-
tions are covered in Section 3.4 and Chapter 4, respectively. Asynchronous adder design
(option 2) is considered in Section 5.4. Speedup methods for carry propagation are
covered in Chapters 6 and 7.

In the remainder of this chapter, we deal with option 4, focusing first on the question:
Can numbers be represented in such a way that addition does not involve carry propaga-
tion? We will see shortly that this is indeed possible. The resulting number representations
can be used as the primary encoding scheme in the design of high-performance systems
and are also useful in representing intermediate results in machines that use conventional
number representation.

We begin with a decimal example (r = 10), assuming the standard digit set [0, 9].
Consider the addition of the following two decimal numbers without carry propagation.
For this, we simply compute “position sums” and write them down in the corresponding
columns. We can use the symbols A = 10, B = 11, C = 12, etc., for the extended digit
values or simply represent them with two standard digits.

5 7 8 2 4 9
+ 6 2 9 3 8 9 Operand digits in [0, 9]

11 9 17 5 12 18 Position sums in [0, 18]

So, if we allow the digit set [0, 18], the scheme works, but only for the first addition!
Subsequent additions will cause problems.

Consider now adding two numbers in the radix-10 number system using the digit set
[0, 18]. The sum of digits for each position is in [0, 36], which can be decomposed into
an interim sum in [0, 16] and a transfer digit in [0, 2]. In other words

[0, 36] = 10× [0, 2] + [0, 16]
Adding the interim sum and the incoming transfer digit yields a digit in [0, 18] and
creates no new transfer. In interval notation, we have

[0, 16] + [0, 2] = [0, 18]
Figure 3.1 shows an example addition.

So, even though we cannot do true carry-free addition (Fig. 3.2a), the next best thing,
where carry propagates by only one position (Fig. 3.2b), is possible if we use the digit
set [0, 18] in radix 10. We refer to this best possible scheme as “carry-free” addition.
The key to the ability to do carry-free addition is the representational redundancy that
provides multiple encodings for some numbers. Figure 3.2c shows that the single-stage

46 Chapter 3 Redundant Number Systems

Figure 3.1 Adding
radix-10 numbers
with the digit set
[0, 18].

si+1 si–1si

xi–1,yi–1,xixi+1,yi+1 yi xi–1,yi–1,xixi+1,yi+1 yi

(b) Two-stage carry-free.

si+1 si–1si

ti

(c) Single-stage with lookahead.

si+1 si–1si

xi–1,yi–1,xixi+1,yi+1 yi

(a) Ideal single-stage carry-free.

(Impossible for positional
system with fixed digit set)

Figure 3.2 Ideal and practical carry-free addition schemes.

Figure 3.3 Adding
radix-10 numbers
with the digit set
[0, 11].

propagation of transfers can be eliminated by a simple lookahead scheme; that is, instead
of first computing the transfer into position i based on the digits xi−1 and yi−1 and then
combining it with the interim sum, we can determine si directly from xi, yi, xi−1, and
yi−1. This may make the adder logic somewhat more complex, but in general the result
is higher speed.

In the decimal example of Fig. 3.1, the digit set [0, 18] was used to effect carry-free
addition. The 9 “digit” values 10 through 18 are redundant. However, we really do not
need this much redundancy in a decimal number system for carry-free addition; the digit
set [0, 11] will do. Our example addition (after converting the numbers to the new digit
set) is shown in Fig. 3.3.

Redundancy in Computer Arithmetic 47

A natural question at this point is: How much redundancy in the digit set is needed
to enable carry-free addition? For example, will the example addition of Fig. 3.3 work
with the digit set [0, 10]? (Try it and see.) We will answer this question in Section 3.5.

3.2 REDUNDANCY IN COMPUTER ARITHMETIC

Redundancy is used extensively for speeding up arithmetic operations. The oldest exam-
ple, first suggested in 1959 [Metz59], pertains to carry-save or stored-carry numbers
using the radix-2 digit set [0, 2] for fast addition of a sequence of binary operands.
Figure 3.4 provides an example, showing how the intermediate sum is kept in stored-carry
format, allowing each subsequent addition to be performed in a carry-free manner.

Why is this scheme called carry-save or stored-carry? Figure 3.5 provides an
explanation. Let us use the 2-bit encoding

0 : (0, 0), 1 : (0, 1) or (1, 0), 2 : (1, 1)

to represent the digit set [0, 2]. With this encoding, each stored-carry number is really
composed of two binary numbers, one for each bit of the encoding. These two binary
numbers can be added to an incoming binary number, producing two binary numbers
composed of the sum bits kept in place and the carry bits shifted one position to the left.
These sum and carry bits form the partial sum and can be stored in two registers for
the next addition. Thus, the carries are “saved” or “stored” instead of being allowed to
propagate.

Figure 3.4 Addition of four binary numbers, with the sum obtained in stored-carry form.

48 Chapter 3 Redundant Number Systems

Figure 3.5 Using an
array of independent
binary full adders to
perform carry-save
addition. Binary

full
adder
(stage i)

c
incout

Digit in [0, 2] Binary digit

Digit in [0, 2]

To
stage
i + 1

From
Stage
i – 1

x y

s

Figure 3.5 shows that one stored-carry number and one standard binary number
can be added to form a stored-carry sum in a single full-adder delay (2–4 gate levels,
depending on the full adder’s logic implementation of the outputs s = x ⊕ y ⊕ cin and
cout = xy∨xcin∨ycin). This is significantly faster than standard carry-propagate addition
to accumulate the sum of several binary numbers, even if a fast carry-lookahead adder is
used for the latter. Of course once the final sum has been obtained in stored-carry form, it
may have to be converted to standard binary by using a carry-propagate adder to add the
two components of the stored-carry number. The key point is that the carry-propagation
delay occurs only once, at the very end, rather than in each addition step.

Since the carry-save addition scheme of Fig. 3.5 converts three binary numbers to
two binary numbers with the same sum, it is sometimes referred to as a 3/2 reduction
circuit or (3; 2) counter. The latter name reflects the essential function of a full adder: it
counts the number of 1s among its three input bits and outputs the result as a 2-bit binary
number. More on this in Chapter 8.

Other examples of the use of redundant representations in computer arithmetic are
found in fast multiplication and division schemes, where the multiplier or quotient is
represented or produced in redundant form. More on these in Parts III and IV.

3.3 DIGIT SETS AND DIGIT-SET CONVERSIONS

Conventional radix-r numbers use the standard digit set [0, r−1]. However, many other
redundant and nonredundant digit sets are possible. A necessary condition is that the
digit set contain at least r different digit values. If it contains more than r values, the
number system is redundant.

Conversion of numbers between standard and other digit sets is quite simple and
essentially entails a digit-serial process in which, beginning at the right end of the given
number, each digit is rewritten as a valid digit in the new digit set and a transfer (carry
or borrow) into the next higher digit position. This conversion process is essentially like
carry propagation in that it must be done from right to left and, in the worst case, the
most significant digit is affected by a “carry” coming from the least significant posi-
tion. The following examples illustrate the process (see also the examples at the end of
Section 2.6).

Digit Sets and Digit-Set Conversions 49

■ EXAMPLE 3.1 Convert the following radix-10 number with the digit set [0, 18] to one
using the conventional digit set [0, 9].

11 9 17 10 12 18 Rewrite 18 as 10 (carry 1) +8
11 9 17 10 13 8 13 = 10 (carry 1) + 3
11 9 17 11 3 8 11 = 10 (carry 1) + 1
11 9 18 1 3 8 18 = 10 (carry 1) + 8
11 10 8 1 3 8 10 = 10 (carry 1) + 0
12 0 8 1 3 8 12 = 10 (carry 1) + 2

1 2 0 8 1 3 8 Answer: all digits in [0, 9]

■ EXAMPLE 3.2 Convert the following radix-2 carry-save number to binary; that is, from
digit set [0, 2] to digit set [0, 1].

1 1 2 0 2 0 Rewrite 2 as 2 (carry 1) + 0
1 1 2 1 0 0 2 = 2 (carry 1) + 0
1 2 0 1 0 0 2 = 2 (carry 1) + 0
2 0 0 1 0 0 2 = 2 (carry 1) + 0

1 0 0 0 1 0 0 Answer: all digits in [0, 1]

Another way to accomplish the preceding conversion is to decompose the carry-save number
into two numbers, both of which have 1s where the original number has a digit of 2. The
sum of these two numbers is then the desired binary number.

1 1 1 0 1 0 First number: “sum” bits
+ 0 0 1 0 1 0 Second number: “carry” bits

1 0 0 0 1 0 0 Sum of the two numbers

■ EXAMPLE 3.3 Digit values do not have to be positive. We reconsider Example 3.1 using
the asymmetric target digit set [−6, 5].

11 9 17 10 12 18 Rewrite 18 as 20 (carry 2) − 2
11 9 17 10 14 −2 14 = 10 (carry 1) + 4
11 9 17 11 4 −2 11 = 10 (carry 1) + 1
11 9 18 1 4 −2 18 = 20 (carry 2) − 2
11 11 −2 1 4 −2 11 = 10 (carry 1) + 1
12 1 −2 1 4 −2 12 = 10 (carry 1) + 2

1 2 1 −2 1 4 −2 Answer: all digits in [−6, 5]

On line 2 of this conversion, we could have rewritten 14 as 20 (carry 2) − 6, which would
have led to a different, but equivalent, representation. In general, several representations
may be possible with a redundant digit set.

50 Chapter 3 Redundant Number Systems

■ EXAMPLE 3.4 If we change the target digit set of Example 3.2 from [0, 1] to [−1, 1], we
can do the conversion digit-serially as before. However, carry-free conversion is possible
for this example if we rewrite each 2 as 2 (carry 1) + 0 and each 1 as 2 (carry 1) −1.
The resulting interim digits in [−1, 0] can absorb an incoming carry of 1 with no further
propagation.

1 1 2 0 2 0 Given carry-save number
−1 −1 0 0 0 0 Interim digits in [−1, 0]

1 1 1 0 1 0 Transfer digits in [0, 1]

1 0 0 0 1 0 0 Answer: all digits in [−1, 1]

3.4 GENERALIZED SIGNED-DIGIT NUMBERS

We have seen thus far that the digit set of a radix-r positional number system need not be
the standard set [0, r−1]. Using the digit set [−1, 1] for radix-2 numbers was proposed by
E. Collignon as early as 1897 [Glas81]. Whether this was just a mathematical curiosity,
or motivated by an application or advantage, is not known. In the early 1960s, Avizienis
[Aviz61] defined the class of signed-digit number systems with symmetric digit sets
[−α, α] and radix r > 2, where α is any integer in the range �r/2� + 1 ≤ α ≤ r − 1.
These number systems allow at least 2�r/2� + 3 digit values, instead of the minimum
required r values, and are thus redundant.

Subsequently, redundant number systems with general, possibly asymmetric, digit
sets of the form [−α, β] were studied as tools for unifying all redundant number
representations used in practice. This class is called “generalized signed-digit (GSD) rep-
resentation” and differs from the ordinary signed-digit (OSD) representation ofAvizienis
in its more general digit set as well as the possibility of higher or lower redundancy.

Binary stored-carry numbers, with r = 2 and digit set [0, 2], offer a good example
for the usefulness of asymmetric digit sets. Higher redundancy is exemplified by the
digit set [−7, 7] in radix 4 or [0, 3] in radix 2. An example for lower redundancy is the
binary signed-digit (BSD) representation with r = 2 and digit set [−1, 1]. None of these
is covered by OSD.

An important parameter of a GSD number system is its redundancy index, defined as
ρ = α+β+1− r (i.e., the amount by which the size of its digit set exceeds the size r of
a nonredundant digit set for radix r). Figure 3.6 presents a taxonomy of redundant and
nonredundant positional number systems showing the names of some useful subclasses
and their various relationships. Note that the redundancy index ρ is quite general and
can be applied to any digit set. Another way of quantifying the redundancy of a number
system with the symmetric digit set [−α, α] in radix r is to use the ratio h = α/(r − 1).
This formulation of redundancy, which is inapplicable to the general digit set [−α, β],
has been used in connection with high-radix division algorithms, to be discussed in
Chapter 14. Besides its general inapplicability, the index h suffers from the problem that
it varies from 1

2 (for no redundancy), through 1 (for α = r − 1), to values larger than 1

Generalized Signed-Digit Numbers 51

Radix-r positional
ρ = 0 ρ ≥ 1

Nonredundant

α = 0 α ≥ 1

Conventional Nonredundant
signed-digit

Generalized
signed-digit (GSD)

ρ = 1 ρ ≥ 2

Minimal
GSD

Nonminimal
GSD

α = β
(even r)

α ≠ β

Symmetric
minimal GSD

r = 2

BSD or
BSB

Asymmetric
minimal GSD

α = 0 α = 1
(r ≠ 2)

Stored-
carry (SC)

Nonbinary
SB

Symmetric
nonminimal GSD

α = β α ≠ β

Asymmetric
nonminimal GSD

α < r

Ordinary
signed-digit

Minimally
redundant
OSD

Maximally
redundant
OSD

BSCB

SCB

r = 2

α = 1

β = r
α = 0

Unsigned-digit
redundant (UDR)

r = 2

BSC

α = r – 1α = �r/2� + 1

Figure 3.6 A taxonomy of redundant and nonredundant positional number systems.

x 1 �1 0 �1 0 Representation of +6
 (s, v) 01 11 00 11 00 Sign and value encoding
 2’s-compl 01 11 00 11 00 2-bit 2’s-complement
 (n, p) 01 10 00 10 00 Negative and positive flags
 (n, z, p) 001 100 010 100 010 1-out-of-3 encoding

i

Figure 3.7 Four encodings for the BSD digit set [−1, 1].

for highly redundant number representation systems. Encountering redundancy indices
below 1 is unusual and could be misleading.

Any hardware implementation of GSD arithmetic requires the choice of a binary
encoding scheme for the α + β + 1 digit values in the digit set [−α, β]. Multivalued
logic realizations have been considered, but we limit our discussion here to binary logic
and proceed to show the importance and implications of the encoding scheme chosen
through some examples.

Consider, for example, the BSD number system with r = 2 and the digit set [−1, 1].
One needs at least 2 bits to encode these three digit values. Figure 3.7 shows four of the
many possible encodings that can be used.

With the (n, p) encoding, the code (1, 1) may be considered an alternate representation
of 0 or else viewed as an invalid combination. Many implementations have shown that

52 Chapter 3 Redundant Number Systems

the (n, p) encoding tends to simplify the hardware and also increases the speed by
reducing the number of gate levels [Parh88]. The 1-out-of-3 encoding requires more bits
per number but allows the detection of some storage and processing errors.

The (n, p) and 2’s-complement encodings of Fig. 3.7 are examples of encodings in
which two-valued signals having various weights collectively represent desired values.
Figure 3.8a depicts three new symbols, besides posibits and negabits previously intro-
duced in Figs. 1.4 and 2.13. A doublebit represents one of the two values in the set {0, 2}.
A negadoublebit is a negatively weighted doublebit. Finally, a unibit assumes one of the
two values in {−1, 1}. A posibit and a negabit together represent one of the values in the
set {−1, 0, 1}, yielding the (n, p) encoding of a BSD.Anegadoublebit and a posibit form a
2-bit 2’s-complement number capable of representing a value in [−2, 1] and thus a BSD.
These two encodings for a 5-digit BSD number are shown in Fig. 3.8b. The third repre-
sentation in Fig. 3.8b is derived from the second one by shifting the negadoublebits to
the left by one position and changing them into negabits. Each BSD digit now spans two
digit positions in its encoding. These weighted bit-set encodings have been found quite
useful for the efficient representation and processing of redundant numbers [Jabe05].

Hybrid signed-digit representations [Phat94] came about from an attempt to strike a
balance between algorithmic speed and implementation cost by introducing redundancy
in selected positions only. For example, standard binary representation may be used with
BSD digits allowed in every third position, as shown in the addition example of Fig. 3.9.

Posibit {0, 1}

Negabit {–1, 0}

Doublebit {0, 2}

Negadoublebit {–2, 0}

Unibit {–1, 1}

(a) Extended dot notation

(n, p) encoding

2’s-compl. encoding

2’s-compl. encoding

(b) Encodings for a BSD number

Figure 3.8 Extended dot notation and its use in visualizing some BSD encodings.

Figure 3.9 Example
of addition for hybrid
signed-digit
numbers.

Carry-Free Addition Algorithms 53

Figure 3.10 Two
hybrid-redundant
representations in
extended dot
notation.

Radix-8 digit set [–4, 7]

Radix-8 digit set [–4, 4]

The addition algorithm depicted in Fig. 3.9 proceeds as follows. First one completes
the position sums pi that are in [0, 2] for standard binary and [−2, 2] in BSD positions.
The BSD position sums are then broken into an interim sum wi and transfer ti+1, both
in [−1, 1]. For the interim sum digit, the value 1 (−1) is chosen only if it is certain that
the incoming transfer cannot be 1 (−1); that is, when the two binary operand digits in
position i − 1 are (not) both 0s. The worst-case carry propagation spans a single group,
beginning with a BSD that produces a transfer digit in [−1, 1] and ending with the next
higher BSD position.

More generally, the group size can be g rather than 3. A larger group size reduces
the hardware complexity (since the adder block in a BSD position is more complex than
that in other positions) but adds to the carry-propagation delay in the worst case; hence,
the hybrid scheme offers a trade-off between speed and cost.

Hybrid signed-digit representation with uniform spacing of BSD positions can be
viewed as a special case of GSD systems. For the example of Fig. 3.9, arranging the
numbers in 3-digit groups starting from the right end leads to a radix-8 GSD system with
digit set [−4, 7]: that is, digit values from (−1 0 0)two to (1 1 1)two. So the hybrid scheme
of Fig. 3.9 can be viewed as an implementation of (digit encoding for) this particular
radix-8 GSD representation.

The hybrid-redundant representation of Fig. 3.9, constituting an encoding for the
radix-8 digit set [−4, 7], is depicted in Fig. 3.10 using extended dot notation. The
asymmetry of the digit set, and thus of the number representation range, is an unfortunate
feature of such representations that allow only posibits in nonredundant positions. By
removing the latter restriction, we can obtain more desirable symmetric hybrid-redundant
representations, exemplified by the second encoding of Fig. 3.10, which constitutes
an encoding for the radix-8 digit set [−4, 4]. Arithmetic on all such extended hybrid-
redundant representations can be performed with equal ease [Jabe06].

3.5 CARRY-FREE ADDITION ALGORITHMS

The GSD carry-free addition algorithm, corresponding to the scheme of Fig. 3.2b, is as
follows:

Carry-free addition algorithm for GSD numbers

Compute the position sums pi = xi + yi.

Divide each pi into a transfer ti+1 and an interim sum wi = pi − rti+1.

Add the incoming transfers to obtain the sum digits si = wi + ti.

54 Chapter 3 Redundant Number Systems

Let us assume that the transfer digits ti are from the digit set [−λ, µ]. To ensure that the
last step leads to no new transfer, the following condition must be satisfied:

−α + λ ≤ pi − rti+1 ≤ β − µ

| interim sum |
Smallest interim sum Largest interim sum
if a transfer of −λ if a transfer of µ

is to be absorbable is to be absorbable

From the preceding inequalities, we can easily derive the conditions λ ≥ α/(r − 1)

and µ ≥ β/(r − 1). Once λ and µ are known, we choose the transfer digit value by
comparing the position sum pi against λ + µ + 2 constants Cj,−λ ≤ j ≤ µ + 1, with
the transfer digit taken to be j if and only if Cj ≤ pi < Cj+1. Formulas giving possible
values for these constants can be found in [Parh90]. Here, we describe a simple intuitive
method for deriving these constants.

■ EXAMPLE 3.5 For r = 10 and digit set [−5, 9], we need λ ≥ 5/9 and µ ≥ 1. Given
minimal values for λ and µ that minimize the hardware complexity, we find by choosing
the minimal values for λ and µ

λmin = µmin = 1 (i.e., transfer digits are in [−1, 1])

−∞ = C−1 − 4 ≤ C0 ≤ −1 6 ≤ C1 ≤ 9 C2 = +∞
We next show how the allowable values for the comparison constant C1, shown above,

are derived. The position sum pi is in [−10, 18]. We can set ti+1 to 1 for pi values as low
as 6; for pi = 6, the resulting interim sum of −4 can absorb any incoming transfer in [−1,
1] without falling outside [−5, 9]. On the other hand, we must transfer 1 for pi values of
9 or more. Thus, for pi ≥ C1, where 6 ≤ C1 ≤ 9, we choose an outgoing transfer of 1.
Similarly, for pi < C0, we choose an outgoing transfer of −1, where −4 ≤ C0 ≤ −1. In
all other cases, the outgoing transfer is 0.

Assuming that the position sum pi is represented as a 6-bit, 2’s-complement
number abcdef , good choices for the comparison constants in the above ranges
are C0 = −4 and C1 = 8. The logic expressions for the signals g1 and g−1 then become

g−1 = a(c̄ ∨ d̄) Generate a transfer of −1

g1 = ā(b ∨ c) Generate a transfer of 1

An example addition is shown in Fig. 3.11.

It is proven in [Parh90] that the preceding carry-free addition algorithm is applicable
to a redundant representation if and only if one of the following sets of conditions is
satisfied:

a. r > 2, ρ ≥ 3
b. r > 2, ρ = 2, α �= 1, β �= 1

Carry-Free Addition Algorithms 55

Figure 3.11 Adding
radix-10 numbers
with the digit set
[−5, 9].

(a) Three-stage carry estimate. (b) Three-stage repeated carry.

si+1 si–1si

e i

t i

xi–1,y i–1,x ixi+1,y i+1 y i

si+1 si–1si

ti

t'i

xi–1,y i–1,x ixi+1,y i+1 y i

(c) Two-stage parallel carries.

si+1 si–1si

t i
(2)

t i
(1)

xi–1,y i–1,x ixi+1,y i+1 y i

Figure 3.12 Some implementations for limited-carry addition.

In other words, the carry-free algorithm is not applicable for r = 2, ρ = 1, or ρ = 2
with α = 1 or β = 1. In such cases, a limited-carry addition algorithm is available:

Limited-carry addition algorithm for GSD numbers

Compute the position sums pi = xi + yi.

Compare each pi to a constant to determine whether ei+1 = “low” or “high” (ei+1 is
a binary range estimate for ti+1).

Given ei, divide each pi into a transfer ti+1 and an interim sum wi = pi − rti+1.

Add the incoming transfers to obtain the sum digits si = wi + ti.

This “limited-carry” GSD addition algorithm is depicted in Fig. 3.12a; in an alternative
implementation (Fig. 3.12b), the “transfer estimate” stage is replaced by another transfer
generation/addition phase.

Even though Figs. 3.12a and 3.12b appear similar, they are quite different in terms
of the internal designs of the square boxes in the top and middle rows. In both cases,
however, the sum digit si depends on xi, yi, xi−1, yi−1, xi−2, and yi−2. Rather than wait for
the limited transfer propagation from stage i−2 to i, one can try to provide the necessary

56 Chapter 3 Redundant Number Systems

Figure 3.13 Limited-carry addition of radix-2 numbers with the digit set [−1, 1] by means of
carry estimates. A position sum of−1 is kept intact when the incoming transfer is in [0, 1],
whereas it is rewritten as 1 with a carry of−1 if the incoming transfer is in [−1, 0].This scheme
guarantees that ti �= wi and thus−1 ≤ si ≤ 1.

information directly from stage i − 2 to stage i. This leads to an implementation with
parallel carries t(1)

i+1 and t(2)
i+2 from stage i, which is sometimes applicable (Fig. 3.12c).

■ EXAMPLE 3.6 Figure 3.13 depicts the use of carry estimates in limited-carry addition of
radix-2 numbers with the digit set [−1, 1]. Here we have ρ = 1, λmin = 1, and µmin = 1.
The “low” and “high” subranges for transfer digits are [−1, 0] and [0, 1], respectively, with
a transfer ti+1 in “high” indicated if pi ≥ 0.

■ EXAMPLE 3.7 Figure 3.14 shows another example of limited-carry addition with r = 2,
digit set [0, 3], ρ = 2, λmin = 0, and µmin = 3, using carry estimates. The “low” and
“high” subranges for transfer digits are [0, 2] and [1, 3], respectively, with a transfer ti+1 in
“high” indicated if pi ≥ 4.

■ EXAMPLE 3.8 Figure 3.15 shows the same addition as in Example 3.7 (r = 2, digit set
[0, 3], ρ = 2, λmin = 0, µmin = 3) using the repeated-carry scheme of Fig. 3.12b.

■ EXAMPLE 3.9 Figure 3.16 shows the same addition as in Example 3.7 (r = 2, digit set
[0, 3], ρ = 2, λmin = 0, µmin = 3) using the parallel-carries scheme of Fig. 3.12c.

Subtraction of GSD numbers is very similar to addition. With a symmetric digit set,
one can simply invert the signs of all digits in the subtractor y to obtain a representation of

Carry-Free Addition Algorithms 57

Figure 3.14 Limited-carry addition of radix-2 numbers with the digit set [0, 3] by means of
carry estimates. A position sum of 1 is kept intact when the incoming transfer is in [0, 2],
whereas it is rewritten as−1 with a carry of 1 if the incoming transfer is in [1, 3].

Figure 3.15
Limited-carry
addition of radix-2
numbers with the
digit set [0, 3] by
means of the
repeated-carry
scheme.

Figure 3.16
Limited-carry
addition of radix-2
numbers with the
digit set [0, 3] by
means of the
parallel-carries
scheme.

58 Chapter 3 Redundant Number Systems

−y and then perform the addition x+(−y) using a carry-free or limited-carry algorithm as
already discussed. Negation of a GSD number with an asymmetric digit set is somewhat
more complicated, but can still be performed by means of a carry-free algorithm [Parh93].
This algorithm basically converts a radix-r number from the digit set [−β, α], which
results from changing the signs of the individual digits of y, to the original digit set
[−α, β]. Alternatively, a direct subtraction algorithm can be applied by first computing
position differences in [−α − β, α + β], then forming interim differences and transfer
digits. Details are omitted here.

3.6 CONVERSIONS AND SUPPORT FUNCTIONS

Since input numbers provided from the outside (machine or human interface) are in
standard binary or decimal and outputs must be presented in the same way, conversions
between binary or decimal and GSD representations are required.

■ EXAMPLE 3.10 Consider number conversions from or to standard binary to or from
BSD representation. To convert from signed binary to BSD, we simply attach the common
number sign to each digit, if the (s, v) code of Fig. 3.7 is to be used for the BSD digits.
Otherwise, we need a simple digitwise converter from the (s, v) code to the desired code.
To convert from BSD to signed binary, we separate the positive and negative digits into a
positive and a negative binary number, respectively. A subtraction then yields the desired
result. Here is an example:

1 −1 0 −1 0 BSD representation of +6
1 0 0 0 0 Positive part (1 digits)
0 1 0 1 0 Negative part (−1 digits)
0 0 1 1 0 Difference = conversion result

The positive and negative parts required above are particularly easy to obtain if the BSD
number is represented using the (n, p) code of Fig. 3.7. The reader should be able to modify
the process above for dealing with numbers, or deriving results, in 2’s-complement format.

The conversion from redundant to nonredundant representation essentially involves
carry propagation and is thus rather slow. It is expected, however, that we will not
need conversions very often. Conversion is done at the input and output. Thus, if
long sequences of computation are performed between input and output, the conversion
overhead can become negligible.

Storage overhead (the larger number of bits that may be needed to represent a GSD
digit compared to a standard digit in the same radix) used to be a major disadvantage of
redundant representations. However, with advances in VLSI (very large-scale integra-
tion) technology, this is no longer a major drawback; though the increase in the number
of pins for input and output may still be a factor.

Problems 59

In the rest of this section, we review some properties of GSD representations that are
important for the implementation of arithmetic support functions: zero detection, sign
test, and overflow handling [Parh93].

In a GSD number system, the integer 0 may have multiple representations. For
example, the three-digit numbers 0 0 0 and −1 4 0 both represent 0 in radix 4. However,
in the special case of α < r and β < r, zero is uniquely represented by the all-0s vector.
So despite redundancy and multiple representations, comparison of numbers for equality
can be simple in this common special case, since it involves subtraction and detecting
the all-0s pattern.

Sign test, and thus any relational comparison (<,≤, etc.), is more difficult. The
sign of a GSD number in general depends on all its digits. Thus sign test is slow if
done through signal propagation (ripple design) or expensive if done by a fast lookahead
circuit (contrast this with the trivial sign test for signed-magnitude and 2’s-complement
representations). In the special case of α < r and β < r, the sign of a number is identical
to the sign of its most significant nonzero digit. Even in this special case, determination
of sign requires scanning of all digits, a process that can be as slow as worst-case carry
propagation.

Overflow handling is also more difficult in GSD arithmetic. Consider the addition
of two k-digit numbers. Such an addition produces a transfer-out digit tk . Since tk is
produced using the worst-case assumption about the as yet unknown tk−1, we can get
an overflow indication (tk �= 0) even when the result can be represented with k digits.
It is possible to perform a test to see whether the overflow is real and, if it is not, to
obtain a k-digit representation for the true result. However, this test and conversion are
fairly slow.

The difficulties with sign test and overflow detection can nullify some or all of the
speed advantages of GSD number representations. This is why applications of GSD
are presently limited to special-purpose systems or to internal number representations,
which are subsequently converted to standard representation.

PROBLEMS 3.1 Stored-carry and stored-borrow representations

The radix-2 number systems using the digit sets [0, 2] and [−1, 1] are known as
binary stored-carry and stored-borrow representations, respectively. The general
radix-r stored-carry and stored-borrow representations are based on the digit sets
[0, r] and [−1, r − 1], respectively.

a. Show that carry-free addition is impossible for stored-carry/borrow numbers.
Do not just refer to the results in [Parh90]; rather, provide your own proof.

b. Supply the details of limited-carry addition for radix-r stored-carry numbers.
c. Supply the details of limited-carry addition for radix-r stored-borrow numbers.
d. Compare the algorithms of parts b and c and discuss.

3.2 Stored-double-carry and stored-triple-carry representations

The radix-4 number system using the digit set [0, 4] is a stored-carry representation.
Use the digit sets [0, 5] and [0, 6] to form the radix-4 stored-double-carry and
stored-triple-carry number systems, respectively.

60 Chapter 3 Redundant Number Systems

a. Find the relevant parameters for carry-free addition in the two systems (i.e.,
the range of transfer digits and the comparison constants). Where there is a
choice, select the best value and justify your choice.

b. State the advantages (if any) of one system over the other.

3.3 Stored-carry-or-borrow representations

The general radix-r stored-carry-or-borrow representations use the digit set
[−1, r].

a. Show that carry-free addition is impossible for stored-carry-or-borrow
numbers.

b. Develop a limited-carry addition algorithm for such radix-r numbers.
c. Compare the stored-carry-or-borrow representation to the stored-double-carry

representation based on the digit set [0, r + 1] and discuss.

3.4 Addition with parallel carries

a. The redundant radix-2 representation with the digit set [0, 3], used in several
examples in Section 3.5, is known as the binary stored-double-carry number
system [Parh96]. Design a digit slice of a binary stored-double-carry adder
based on the addition scheme of Fig. 3.16.

b. Repeat part a with the addition scheme of Fig. 3.14.
c. Repeat part a with the addition scheme of Fig. 3.15.
d. Compare the implementations of parts a–c with respect to speed and cost.

3.5 Addition with parallel or repeated carries

a. Develop addition algorithms similar to those discussed in Section 3.5 for binary
stored-triple-carry number system using the digit set [0, 4].

b. Repeat part a for the binary stored-carry-or-borrow number system based on
the digit set [−1, 2].

c. Develop a sign detection scheme for binary stored-carry-or-borrow numbers.
d. Can one use digit sets other than [0, 3], [0, 4], and [−1, 2] in radix-2 addition

with parallel carries?
e. Repeat parts a–d for addition with repeated carries.

3.6 Nonredundant and redundant digit sets

Consider a fixed-point, symmetric radix-3 number system, with k whole and l
fractional digits, using the digit set [−1, 1].

a. Determine the range of numbers represented as a function of k and l.
b. What is the representation efficiency relative to binary representation, given

that each radix-3 digit needs a 2-bit code?
c. Devise a carry-free procedure for converting a symmetric radix-3 positive

number to an unsigned radix-3 number with the redundant digit set [0, 3], or
show that such a procedure is impossible.

d. What is the representation efficiency of the redundant number system of part c?

Problems 61

3.7 Digit-set and radix conversions

Consider a fixed-point, radix-4 number system, with k whole and l fractional
digits, using the digit set [−3, 3].

a. Determine the range of numbers represented as a function of k and l.
b. Devise a procedure for converting such a radix-4 number to a radix-8 number

that uses the digit set [−7, 7].
c. Specify the numbers K and L of integer and fractional digits in the new radix

of part b as functions of k and l.
d. Devise a procedure for converting such a radix-4 number to a radix-4 number

that uses the digit set [−2, 2].

3.8 Hybrid signed-digit representation

Consider a hybrid radix-2 number representation system with the repeating pattern
of two standard binary positions followed by one BSD position. The addition
algorithm for this system is similar to that in Fig. 3.9. Show that this algorithm can
be formulated as carry-free radix-8 GSD addition and derive its relevant parameters
(range of transfer digits and comparison constants for transfer digit selection).

3.9 GSD representation of zero

a. Obtain necessary and sufficient conditions for zero to have a unique represen-
tation in a GSD number system.

b. Devise a 0 detection algorithm for cases in which 0 has multiple representa-
tions.

c. Design a hardware circuit for detecting 0 in an 8-digit radix-4 GSD represen-
tation using the digit set [−2, 4].

3.10 Imaginary-radix GSD representation

Show that the imaginary-radix number system with r = 2j, where j = √−1, and
digit set [−2, 2] lends itself to a limited-carry addition process. Define the process
and derive its relevant parameters.

3.11 Negative-radix GSD representation

Do you see any advantage to extending the definition of GSD representations to
include the possibility of a negative radix r? Explain.

3.12 Mixed redundant-conventional arithmetic

We have seen that BSD numbers cannot be added in a carry-free manner but that
a limited-carry process can be applied to them.

a. Show that one can add a conventional binary number to a BSD number to
obtain their BSD sum in a carry-free manner.

b. Supply the complete logic design for the carry-free adder of part a.
c. Compare your design to a carry-save adder and discuss.

62 Chapter 3 Redundant Number Systems

3.13 Negation of GSD numbers

One disadvantage of GSD representations with asymmetric digit sets is that nega-
tion (change of sign) becomes nontrivial. Show that negation of GSD numbers is
always a carry-free process and derive a suitable algorithm for this purpose.

3.14 Digit-serial GSD arithmetic

Generalized signed-digit representations allow fast carry-free or limited-carry par-
allel addition. Generalized signed-digit representations may seem less desirable
for digit-serial addition because the simpler binary representation already allows
very efficient bit-serial addition. Consider a radix-4 GSD representation using the
digit set [−3, 3].

a. Show that two such GSD numbers can be added digit-serially beginning at the
most significant end (most-significant-digit-first arithmetic).

b. Present a complete logic design for your digit-serial adder and determine its
latency.

c. Do you see any advantage for most-significant-digit-first, as opposed to least-
significant-digit-first, arithmetic?

3.15 BSD arithmetic

Consider BSD numbers with digit set [−1, 1] and the 2-bit (n, p) encoding of the
digits (see Fig. 3.7). The code (1, 1) never appears and can be used as don’t-care.

a. Design a fast sign detector for a 4-digit BSD input operand using full lookahead.
b. How can the design of part a be used for 16-digit inputs?
c. Design a single-digit BSD full adder producing the sum digit si and transfer

ti+1.

3.16 Unsigned-digit redundant representations

Consider the hex-digit decimal number system with r = 10 and digit set [0, 15]
for representing unsigned integers.

a. Find the relevant parameters for carry-free addition in this system.
b. Design a hex-digit decimal adder using 4-bit binary adders and a simple

postcorrection circuit.

3.17 Double-least-significant-bits 2’s-complement numbers

Consider k-bit 2’s-complement numbers with an extra least-significant bit attached
to them [Parh08]. Show that such redundant numbers have symmetric range,
allow for bitwise 2’s-complementation, and can be added using a standard k-bit
adder.

3.18 Choice of digit set in redundant representations

Prove or disprove the following assertions about the range [−λ, µ] of the transfer
digits in a radix-r redundant number system.

Problems 63

a. The transfer digit set [−λ, µ] is a function of σ = α + β only (i.e., it is
unaffected if α is changed to α − δ and β to β + δ).

b. The transfer digit set [−λ, µ] is minimized for a given even value of σ = α+β

if α = β.

3.19 Hybrid-redundant representations

For each of the hybrid-redundant representations, shown in the following diagram
using extended dot notation, specify the digit set in the corresponding radix-16
GSD interpretation and devise an appropriate addition algorithm.

a.

b.

c.

3.20 Digit-set conversions

Convert the radix-10 number 2 −8 9 6 −7 8, using the digit set [−9, 9] into each
of the following digit sets.

a. [0, 9]
b. [0, 12]
c. [−4, 5]
d. [−7, 7]

3.21 Over-redundant digit sets

The digit set [−α, β] in radix r is over-redundant if α ≥ r and β ≥ r. Even though
this level of redundancy may appear excessive, such representations do find some
applications. For example, the over-redundant digit set [−2, 2] in radix 2 is useful
for fast division. Convert the over-redundant radix-2 number 1 −1 2 0 −2 2 into
each of the following digit sets.

a. [0, 1]
b. [0, 2]
c. [−1, 1]
d. [−2, 1]

3.22 Carry-free addition algorithm

Find the relevant parameters for carry-free addition (similar to Example 3.5) in
the case of radix-4 addition with the following digit sets.

a. [0, 5]
b. [−2, 3]

64 Chapter 3 Redundant Number Systems

3.23 Limited-carry addition algorithm

Find the relevant parameters for limited-carry addition (similar to Examples 3.6
and 3.7) in the case of radix-4 addition with the following digit sets.

a. [0, 4]
b. [−2, 2]

3.24 Shifting of stored-carry numbers

An unsigned binary number can be divided by 2 via a single-bit right shift. The
same property holds for 1’s- and 2’s-complement numbers, provided that the sign
bit is shifted into the vacated bit at the left end of the number (sign extension).

a. Show, by means of an example, that a stored-carry number cannot be divided
by 2 via independent right shift of both the sum and carry bit-vectors [Tenc06].

b. Design a simple circuit that allows division by 2 via right shift, by supplying
correct bit values to be shifted into the vacated positions at the left end.

c. Show that the modification of part b is not needed when the right-shifted stored-
carry number is generated by adding an ordinary binary number to a standard
stored-carry number.

3.25 Redundancy of a number system

Near the beginning of Section 3.4, we introduced the redundancy index ρ =
α + β + 1 − r for a radix-r number system with the digit set [−α, β]. We also
mentioned that the ratio h = α/(r − 1) has been used for quantifying redundancy
in the special case of α = β in connection with high-radix division algorithms.

a. Derive an equation that relates the two redundancy indices ρ and h in the case
of α = β.

b. What would be a suitable formulation, applicable to an arbitrary digit set
[−α, β] in radix r, if we were to define our redundancy index as a ratio, rather
than a difference?

REFERENCES AND FURTHER READINGS

[Aviz61] Avizienis, A., “Signed-Digit Number Representation for Fast Parallel Arithmetic,”
IRE Trans. Electronic Computers, Vol. 10, pp. 389–400, 1961.

[Glas81] Glaser, A., History of Binary and Other Nondecimal Numeration, rev. ed., Tomash
Publishers, 1981.

[Jabe05] Jaberipur, G., B. Parhami, and M. Ghodsi, “Weighted Two-Valued Digit-Set
Encodings: Unifying Efficient Hardware Representation Schemes for Redundant
Number Systems,” IEEE Trans. Circuits and Systems I, Vol. 52, No. 7,
pp. 1348–1357, 2005.

References and Further Readings 65

[Jabe06] Jaberipur, G., B. Parhami, and M. Ghodsi, “An Efficient Universal Addition Scheme
for All Hybrid-Redundant Representations with Weighted Bit-Set Encoding,” J. VLSI
Signal Processing, Vol. 42, pp. 149–158, 2006.

[Korn94] Kornerup, P., “Digit-Set Conversions: Generalizations and Applications,” IEEE
Trans. Computers, Vol. 43, No. 8, pp. 622–629, 1994.

[Metz59] Metze, G., and J. E. Robertson, “Elimination of Carry Propagation in Digital
Computers,” Information Processing ’59 (Proceedings of a UNESCO Conference),
1960, pp. 389–396.

[Parh88] Parhami, B., “Carry-Free Addition of Recoded Binary Signed-Digit Numbers,” IEEE
Trans. Computers, Vol. 37, No. 11, pp. 1470–1476, 1988.

[Parh90] Parhami, B., “Generalized Signed-Digit Number Systems: A Unifying Framework for
Redundant Number Representations,” IEEE Trans. Computers, Vol. 39, No. 1, pp.
89–98, 1990.

[Parh93] Parhami, B., “On the Implementation of Arithmetic Support Functions for
Generalized Signed-Digit Number Systems,” IEEE Trans. Computers, Vol. 42, No. 3,
pp. 379–384, 1993.

[Parh96] Parhami, B., “Comments on ‘High-Speed Area-Efficient Multiplier Design Using
Multiple-Valued Current Mode Circuits,’” IEEE Trans. Computers, Vol. 45, No. 5,
pp. 637–638, 1996.

[Parh08] Parhami, B., “Double-Least-Significant-Bits 2’s-Complement Number
Representation Scheme with Bitwise Complementation and Symmetric Range,” IET
Circuits, Devices & Systems, Vol. 2, No. 2, pp. 179–186, 2008.

[Phat94] Phatak, D. S., and I. Koren, “Hybrid Signed-Digit Number Systems: A Unified
Framework for Redundant Number Representations with Bounded Carry Propagation
Chains,” IEEE Trans. Computers, Vol. 43, No. 8, pp. 880–891, 1994.

[Phat01] Phatak, D. S., T. Goff, and I. Koren, “Constant-Time Addition and Simultaneous
Format Conversion Based on Redundant Binary Representations,” IEEE Trans.
Computers, Vol. 50, No. 11, pp. 1267–1278, 2001.

[Tenc06] Tenca, A. F., S. Park, and L. A. Tawalbeh, “Carry-Save Representation Is
Shift-Unsafe: The Problem and Its Solution,” IEEE Trans. Computers, Vol. 55, No. 5,
pp. 630–635, 2006.

4 Residue Number
Systems

■ ■ ■

“God created the integers, all else is the work of man”
L E O P O L D K R O N E C K E R , 1 8 8 6

■ ■ ■

B y converting arithmetic on large numbers to arithmetic on a collection of smaller

numbers, residue number system (RNS) representations produce significant

speedup for some classes of arithmetic-intensive algorithms in signal processing

applications. Additionally, RNS arithmetic is a valuable tool for theoretical studies

of the limits of fast arithmetic. In this chapter, we study RNS representations and

arithmetic, along with their advantages and drawbacks. Chapter topics include:

4.1 RNS Representation and Arithmetic

4.2 Choosing the RNS Moduli

4.3 Encoding and Decoding of Numbers

4.4 Difficult RNS Arithmetic Operations

4.5 Redundant RNS Representations

4.6 Limits of Fast Arithmetic in RNS

4.1 RNS REPRESENTATION AND ARITHMETIC

What number has the remainders of 2, 3, and 2 when divided by the numbers 7, 5, and
3, respectively? This puzzle, written in the form of a verse by the Chinese scholar Sun
Tsu more than 1500 years ago [Jenk93], is perhaps the first documented use of number
representation using multiple residues. The puzzle essentially asks us to convert the
coded representation (2|3|2) of a residue number system, based on the moduli (7|5|3),
into standard decimal format.

66

RNS Representation and Arithmetic 67

In a residue number system (RNS), a number x is represented by the list of its residues
with respect to k pairwise relatively prime moduli mk−1 > · · · > m1 > m0. The residue
xi of x with respect to the ith modulus mi is akin to a digit and the entire k-residue
representation of x can be viewed as a k-digit number, where the digit set for the ith
position is [0, mi − 1]. Notationally, we write

xi = x mod mi = 〈x〉mi

and specify the RNS representation of x by enclosing the list of residues, or digits, in
parentheses. For example,

x = (2|3|2)RNS(7|5|3)

represents the puzzle given at the beginning of this section. The list of moduli can be
deleted from the subscript when we have agreed on a default set. In many of the examples
of this chapter, the following RNS is assumed:

RNS(8|7|5|3) Default RNS for Chapter 4

The product M of the k pairwise relatively prime moduli is the number of different
representable values in the RNS and is known as its dynamic range.

M = mk−1 × · · · × m1 × m0

For example, M = 8× 7× 5× 3 = 840 is the total number of distinct values that are
representable in our chosen 4-modulus RNS. Because of the equality

〈−x〉mi = 〈M − x〉mi

the 840 available values can be used to represent numbers 0 through 839, −420 through
+419, or any other interval of 840 consecutive integers. In effect, negative numbers are
represented using a complement system with the complementation constant M .

Here are some example numbers in RNS(8|7|5|3):

(0 | 0 | 0 | 0)RNS Represents 0 or 840 or · · ·
(1 | 1 | 1 | 1)RNS Represents 1 or 841 or · · ·
(2 | 2 | 2 | 2)RNS Represents 2 or 842 or · · ·
(0 | 1 | 3 | 2)RNS Represents 8 or 848 or · · ·
(5 | 0 | 1 | 0)RNS Represents 21 or 861 or · · ·
(0 | 1 | 4 | 1)RNS Represents 64 or 904 or · · ·
(2 | 0 | 0 | 2)RNS Represents −70 or 770 or · · ·
(7 | 6 | 4 | 2)RNS Represents −1 or 839 or · · ·
Given the RNS representation of x, the representation of −x can be found by comple-
menting each of the digits xi with respect to its modules mi (0 digits are left unchanged).

68 Chapter 4 Residue Number Systems

mod 8 mod 7 mod 5 mod 3

Figure 4.1 Binary-coded number format for RNS (8 | 7 | 5 | 3)

Thus, given that 21 = (5 | 0 | 1 | 0)RNS, we find

−21 = (8− 5 | 0 | 5 − 1 | 0)RNS = (3 | 0 | 4 | 0)RNS

Any RNS can be viewed as a weighted representation. We will present a general method
for determining the position weights (the Chinese remainder theorem) in Section 4.3.
For RNS(8|7|5|3), the weights associated with the four positions are

105 120 336 280

As an example, (1 | 2 | 4 | 0)RNS represents the number

〈(105× 1)+ (120× 2)+ (336× 4)+ (280× 0)〉840 = 〈1689〉840 = 9

In practice, each residue must be represented or encoded in binary. For our example
RNS, such a representation would require 11 bits (Fig. 4.1). To determine the num-
ber representation efficiency of our 4-modulus RNS, we note that 840 different values
are being represented using 11 bits, compared with 2048 values possible with binary
representation. Thus, the representational efficiency is

840/2048 = 41%

Since log2 840 = 9.714, another way to quantify the representational efficiency is to
note that in our example RNS, about 1.3 bits of the 11 bits go to waste.

As noted earlier, the sign of an RNS number can be changed by independently
complementing each of its digits with respect to its modulus. Similarly, addition, sub-
traction, and multiplication can be performed by independently operating on each digit.
The following examples for RNS(8 | 7 | 5 | 3) illustrate the process:

(5 | 5 | 0 | 2)RNS Represents x = +5

(7 | 6 | 4 | 2)RNS Represents y = −1

(4 | 4 | 4 | 1)RNS x + y : 〈5+ 7〉8 = 4, 〈5+ 6〉7 = 4, etc.

(6 | 6 | 1 | 0)RNS x − y : 〈5− 7〉8 = 6, 〈5− 6〉7 = 6, etc.

(alternatively, find −y and add to x)

(3 | 2 | 0 | 1)RNS x × y : 〈5× 7〉8 = 3, 〈5× 6〉7 = 2, etc.

Figure 4.2 depicts the structure of an adder, subtractor, or multiplier for RNS arith-
metic. Since each digit is a relatively small number, these operations can be quite fast
and simple in RNS. This speed and simplicity are the primary advantages of RNS arith-
metic. In the case of addition, for example, carry propagation is limited to within a single

Choosing the RNS Moduli 69

mod 8 mod 7 mod 5 mod 3

mod-8
 unit

mod-7
 unit

mod-5
 unit

mod-3
 unit

3 3 3 2

Operand 1 Operand 2

Result

Figure 4.2 The structure of an adder, subtractor, or multiplier for RNS(8 | 7 | 5 | 3).

residue (a few bits). Thus, RNS representation pretty much solves the carry-propagation
problem. As for multiplication, a 4 × 4 multiplier for example is considerably more
than four times simpler than a 16 × 16 multiplier, besides being much faster. In fact,
since the residues are small (say, 6 bits wide), it is quite feasible to implement addition,
subtraction, and multiplication by direct table lookup. With 6-bit residues, say, each
operation requires a 4K × 6 table. Thus, excluding division, a complete arithmetic unit
module for one 6-bit residue can be implemented with 9 KB of memory.

Unfortunately, however, what we gain in terms of the speed and simplicity of addi-
tion, subtraction, and multiplication can be more than nullified by the complexity of
division and the difficulty of certain auxiliary operations such as sign test, magnitude
comparison, and overflow detection. Given the numbers

(7 | 2 | 2 | 1)RNS and (2 | 5 | 0 | 1)RNS

we cannot easily tell their signs, determine which of the two is larger, or find out whether
(1 | 0 | 2 | 2)RNS represents their true sum as opposed to the residue of their sum
modulo 840.

These difficulties have thus far limited the application of RNS representations to cer-
tain signal processing problems in which additions and multiplications are used either
exclusively or predominantly and the results are within known ranges (e.g., digital fil-
ters, Fourier transforms). We discuss division and other “difficult” RNS operations in
Section 4.4.

4.2 CHOOSING THE RNS MODULI

The set of the moduli chosen for RNS affects both the representational efficiency and the
complexity of arithmetic algorithms. In general, we try to make the moduli as small as

70 Chapter 4 Residue Number Systems

possible, since it is the magnitude of the largest modulus mk−1 that dictates the speed of
arithmetic operations. We also often try to make all the moduli comparable in magnitude
to the largest one, since with the computation speed already dictated by mk−1, there is
usually no advantage in fragmenting the design of Fig. 4.2 through the use of very small
moduli at the right end.

We illustrate the process of selecting the RNS moduli through an example. Let
us assume that we want to represent unsigned integers in the range 0 to (100 000)ten,
requiring 17 bits with unsigned binary representation.

A simple strategy is to pick prime numbers in sequence until the dynamic range M
becomes adequate. Thus, we pick m0 = 2, m1 = 3, m2 = 5, etc. After we add m5 = 13
to our list, the dynamic range becomes

RNS(13 | 11 | 7 | 5 | 3 | 2) M = 30 030

This range is not yet adequate, so we add m6 = 17 to the list:

RNS(17 | 13 | 11 | 7 | 5 | 3 | 2) M = 510 510

The dynamic range is now 5.1 times as large as needed, so we can remove the modulus
5 and still have adequate range:

RNS(17 | 13 | 11 | 7 | 3 | 2) M = 102 102

With binary encoding of the six residues, the number of bits needed for encoding each
number is

5+ 4+ 4+ 3+ 2+ 1 = 19 bits

Now, since the speed of arithmetic operations is dictated by the 5-bit residues modulo
m5, we can combine the pairs of moduli 2 and 13, and 3 and 7, with no speed penalty.
This leads to:

RNS(26 | 21 | 17 | 11) M = 102 102

This alternative RNS still needs 5+ 5+ 5+ 4 = 19 bits per operand, but has two fewer
modules in the arithmetic unit.

Better results can be obtained if we proceed as above, but include powers of smaller
primes before moving to larger primes. The chosen moduli will still be pairwise relatively
prime, since powers of any two prime numbers are relatively prime. For example, after
including m0 = 2 and m1 = 3 in our list of moduli, we note that 22 is smaller than the
next prime 5. So we modify m0 and m1 to get

RNS(22 | 3) M = 12

This strategy is consistent with our desire to minimize the magnitude of the largest
modulus. Similarly, after we have included m2 = 5 and m3 = 7, we note that both 23

Choosing the RNS Moduli 71

and 32 are smaller than the next prime 11. So the next three steps lead to

RNS(32 | 23 | 7 | 5) M = 2520
RNS(11 | 32 | 23 | 7 | 5) M = 27 720
RNS(13 | 11 | 32 | 23 | 7 | 5) M = 360 360

The dynamic range is now 3.6 times as large as needed, so we can replace the modulus
9 with 3 and then combine the pair 5 and 3 to obtain

RNS(15 | 13 | 11 | 23 | 7) M = 120 120

The number of bits needed by this last RNS is

4+ 4+ 4+ 3+ 3 = 18 bits

which is better than our earlier result of 19 bits. The speed has also improved because
the largest residue is now 4 bits wide instead of 5.

Other variations are possible. For example, given the simplicity of operations with
power-of-2 moduli, we might want to backtrack and maximize the size of our even
modulus within the 4-bit residue limit

RNS(24 | 13 | 11 | 32 | 7 | 5) M = 720 720

We can now remove 5 or 7 from the list of moduli, but the resulting RNS is in fact
inferior to RNS(15|13|11|23|7). This might not be the case with other examples; thus,
once we have converged on a feasible set of moduli, we should experiment with
other sets that can be derived from it by increasing the power of the even modulus
at hand.

The preceding strategy for selecting the RNS moduli is guaranteed to lead to the
smallest possible number of bits for the largest modulus, thus maximizing the speed
of RNS arithmetic. However, speed and cost do not just depend on the widths of the
residues but also on the moduli chosen. For example, we have already noted that power-
of-2 moduli simplify the required arithmetic operations, so that the modulus 16 might be
better than the smaller modulus 13 (except, perhaps, with table-lookup implementation).
Moduli of the form 2a − 1 are also desirable and are referred to as low-cost moduli
[Merr64], [Parh76]. From our discussion of addition of 1’s-complement numbers in
Section 2.4, we know that addition modulo 2a − 1 can be performed using a standard
a-bit binary adder with end-around carry.

Hence, we are motivated to restrict the moduli to a power of 2 and odd numbers of
the form 2a − 1. One can prove (left as exercise) that the numbers 2a − 1 and 2b − 1 are
relatively prime if and only if a and b are relatively prime. Thus, any list of relatively
prime numbers ak−2 > · · · > a1 > a0 can be the basis of the following k-modulus RNS

RNS(2ak−2 | 2ak−2 − 1 | · · · | 2a1 − 1 | 2a0 − 1)

72 Chapter 4 Residue Number Systems

for which the widest residues are ak−2-bit numbers. Note that to maximize the dynamic
range with a given residue width, the even modulus is chosen to be as large as possible.

Applying this strategy to our desired RNS with the target range [0, 100 000], leads
to the following steps:

RNS (23 | 23 − 1 | 22 − 1) Basis: 3, 2 M = 168
RNS (24 | 24 − 1 | 23 − 1) Basis: 4, 3 M = 1680
RNS (25 | 25 − 1 | 23 − 122 − 1) Basis: 5, 3, 2 M = 20 832
RNS (25 | 25 − 1 | 24 − 1 | 23 − 1) Basis: 5, 4, 3 M = 104 160

This last system, RNS(32 | 31 | 15 | 7), possesses adequate range. Note that once the
number 4 is included in the base list, 2 must be excluded because 4 and 2, and thus 24−1
and 22 − 1, are not relatively prime.

The derived RNS requires 5 + 5 + 4 + 3 = 17 bits for representing each number,
with the largest residues being 5 bits wide. In this case, the representational efficiency is
close to 100% and no bit is wasted. In general, the representational efficiency of low-cost
RNS is provably better than 50% (yet another exercise!), leading to the waste of no more
than 1 bit in number representation.

To compare the RNS above to our best result with unrestricted moduli, we list the
parameters of the two systems together:

RNS (15 | 13 | 11 | 23 | 7) 18 bits M = 120 120
RNS (25 | 25 − 1 | 24 − 1 | 23 − 1)| 17 bits M = 104 160

Both systems provide the desired range. The latter has wider, but fewer, residues. How-
ever, the simplicity of arithmetic with low-cost moduli makes the latter a more attractive
choice. In general, restricting the moduli tends to increase the width of the largest residues
and the optimal choice is dependent on both the application and the target implementation
technology.

4.3 ENCODING AND DECODING OF NUMBERS

Since input numbers provided from the outside (machine or human interface) are in
standard binary or decimal and outputs must be presented in the same way, conversions
between binary/decimal and RNS representations are required.

Conversion from binary/decimal to RNS

The binary-to-RNS conversion problem is stated as follows: Given an integer y, find
its residues with respect to the moduli mi, 0 ≤ i ≤ k − 1. Let us assume that y is an
unsigned binary integer. Conversion of signed-magnitude or 2’s-complement numbers
can be accomplished by converting the magnitude and then complementing the RNS
representation if needed.

To avoid time-consuming divisions, we take advantage of the following equality:

〈(yk−1 · · · y1y0)two〉mi = 〈〈2k−1yk−1〉mi + · · · + 〈2y1〉mi + 〈y0〉mi 〉mi

Encoding and Decoding of Numbers 73

Table 4.1 Precomputed residues of the
first 10 powers of 2

j 2j 〈2j〉7 〈2j〉5 〈2j〉3

0 1 1 1 1

1 2 2 2 2

2 4 4 4 1

3 8 1 3 2

4 16 2 1 1

5 32 4 2 2

6 64 1 4 1

7 128 2 3 2

8 256 4 1 1

9 512 1 2 2

If we precompute and store 〈2j〉mi for each i and j, then the residue xi of y (mod mi) can
be computed by modulo-mi addition of some of these constants.

Table 4.1 shows the required lookup table for converting 10-bit binary numbers in
the range [0, 839] to RNS(8 | 7 | 5 | 3). Only residues mod 7, mod 5, and mod 3 are given
in the table, since the residue mod 8 is directly available as the three least-significant
bits of the binary number y.

■ EXAMPLE 4.1 Represent y = (1010 0100)two = (164)ten in RNS(8 | 7 | 5 | 3).
The residue of y mod 8 is x3 = (y2y1y0)two = (100)two = 4. Since y = 27 + 25 + 22, the
required residues mod 7, mod 5, and mod 3 are obtained by simply adding the values stored
in the three rows corresponding to j = 7, 5, 2 in Table 4.1:

x2 = 〈y〉7 = 〈2+ 4+ 4〉7 = 3

x1 = 〈y〉5 = 〈3+ 2+ 4〉5 = 4

x0 = 〈y〉3 = 〈2+ 2+ 1〉3 = 2

Therefore, the RNS(8 | 7 | 5 | 3) representation of (164)ten is (4 | 3 | 4 | 2)RNS.

In the worst case, k modular additions are required for computing each residue of a
k-bit number. To reduce the number of operations, one can view the given input number
as a number in a higher radix. For example, if we use radix 4, then storing the residues
of 4i, 2×4i and 3×4i in a table would allow us to compute each of the required residues
using only k/2 modular additions.

The conversion for each modulus can be done by repeatedly using a single lookup
table and modular adder or by several copies of each arranged into a pipeline. For a
low-cost modulus m = 2a − 1, the residue can be determined by dividing up y into a-bit
segments and adding them modulo 2a − 1.

74 Chapter 4 Residue Number Systems

Conversion from RNS to mixed-radix form

Associated with any residue number system RNS(mk−1 | · · · |m2 |m1 |m0) is a mixed-
radix number system MRS(mk−1 | · · · | m2 | m1 | m0), which is essentially a k-digit
positional number system with position weights

mk−2 · · ·m2m1m0 · · · m2m1m0 m1m0 m0 1

and digit sets [0, mk−1 − 1], · · · , [0, m2 − 1], [0, m1 − 1], and [0, m0 − 1] in its k-digit
positions. Hence, the MRS digits are in the same ranges as the RNS digits (residues).
For example, the mixed-radix system MRS(8 | 7 | 5 | 3) has position weights 7×5×3 =
105, 5× 3 = 15, 3, and 1, leading to

(0 | 3 | 1 | 0)MRS(8 | 7 | 5 | 3) = (0× 105)+ (3× 15)+ (1× 3)+ (0× 1) = 48

The RNS-to-MRS conversion problem is that of determining the zi digits of MRS, given
the xi digits of RNS, so that

y = (xk−1| · · · | x2 | x1 | x0)RNS = (zk−1 | · · · | z2 | z1 | z0)MRS

From the definition of MRS, we have

y = zk−1(mk−2 · · ·m2m1m0)+ · · · + z2(m1m0)+ z1(m0)+ z0

It is thus immediately obvious that z0 = x0. Subtracting z0 = x0 from both the RNS and
MRS representations, we get

y − x0 = (x′k−1 | · · · | x′2 | x′1 | 0)RNS = (zk−1 | · · · | z2 | z1 | 0)MRS

where x′j = 〈xj−x0〉mj . If we now divide both representations by m0, we get the following
in the reduced RNS and MRS from which m0 has been removed:

(x′′k−1 | · · · | x′′2 | x′′1)RNS = (zk−1 | · · · | z2 | z1)MRS

Thus, if we demonstrate how to divide the number y′ = (x′k−1 | · · · | x′2 | x′1 | 0)RNS
by m0 to obtain (x′′k−1 | · · · | x′′2 | x′′1)RNS, we have converted the original problem to a
similar problem with one fewer modulus. Repeating the same process then leads to the
determination of all the zi digits in turn.

Dividing y′, which is a multiple of m0, by a given constant (in this case m0) is
known as scaling and is much simpler than general division in RNS. Division by m0 can
be accomplished by multiplying each residue by the multiplicative inverse of m0 with
respect to the associated modulus. For example, the multiplicative inverses of 3 relative
to 8, 7, and 5 are 3, 5, and 2, respectively, because

〈3× 3〉8 = 〈3× 5〉7 = 〈3× 2〉5 = 1

Encoding and Decoding of Numbers 75

Thus, the number y′ = (0 | 6 | 3 | 0)RNS can be divided by 3 through multiplication by
(3 | 5 | 2 | −)RNS:

(0 | 6 | 3 | 0)RNS

3
= (0 | 6 | 3 | 0)RNS × (3 | 5 | 2 | −)RNS = (0 | 2 | 1 | −)RNS

Multiplicative inverses of the moduli can be precomputed and stored in tables to facilitate
RNS-to-MRS conversion.

■ EXAMPLE 4.2 Convert y = (0 | 6 | 3 | 0)RNS to mixed-radix representation.
We have z0 = x0 = 0. Based on the preceding discussion, dividing y by 3 yields:

(0 | 6 | 3 | 0)RNS

3
= (0 | 6 | 3 | 0)RNS × (3 | 5 | 2 | −)RNS

= (0 | 2 | 1 | −)RNS

Thus we have z1 = 1. Subtracting 1 and dividing by 5, we get:

(7 | 1 | 0 | −)RNS

5
= (7 | 1 | 0 | −)RNS × (5 | 3 | − | −)RNS

= (3 | 3 | − | −)RNS

Next, we get z2 = 3. Subtracting 3 and dividing by 7, we find:

(0 | 0 | − | −)RNS

7
= (0 | 0 | − | −)RNS × (7 | − | − | −)RNS

= (0 | − | − | −)RNS

We conclude by observing that z3 = 0. The conversion is now complete:

y = (0 | 6 | 3 | 0)RNS = (0 | 3 | 1 | 0)MRS = 48

Mixed-radix representation allows us to compare the magnitudes of two RNS
numbers or to detect the sign of a number. For example, the RNS representations
(0 | 6 | 3 | 0)RNS and (5 | 3 | 0 | 0)RNS of 48 and 45 provide no clue to their rela-
tive magnitudes, whereas the equivalent mixed-radix representations (0 | 3 | 1 | 0)MRS
and (0 | 3 | 0 | 0)MRS, or (000 | 011 | 001 | 00)MRS and (000 | 011 | 000 | 00)MRS, when
coded in binary, can be compared as ordinary numbers.

Conversion from RNS to binary/decimal

One method for RNS-to-binary conversion is to first derive the mixed-radix representa-
tion of the RNS number and then use the weights of the mixed-radix positions to complete
the conversion. We can also derive position weights for the RNS directly based on the
Chinese remainder theorem (CRT), as discussed below.

76 Chapter 4 Residue Number Systems

Consider the conversion of y = (3 | 2 | 4 | 2)RNS from RNS(8 | 7 | 5 | 3) to decimal.
Based on RNS properties, we can write

(3 | 2 | 4 | 2)RNS = (3 | 0 | 0 | 0)RNS + (0 | 2 | 0 | 0)RNS

+ (0 | 0 | 4 | 0)RNS + (0 | 0 | 0 | 2)RNS

= 3× (1 | 0 | 0 | 0)RNS + 2× (0 | 1 | 0 | 0)RNS

+ 4× (0 | 0 | 1 | 0)RNS + 2× (0 | 0 | 0 | 1)RNS

Thus, knowing the values of the following four constants (the RNS position weights)
would allow us to convert any number from RNS(8 | 7 | 5 | 3) to decimal using four
multiplications and three additions.

(1 | 0 | 0 | 0)RNS = 105

(0 | 1 | 0 | 0)RNS = 120

(0 | 0 | 1 | 0)RNS = 336

(0 | 0 | 0 | 1)RNS = 280

Thus, we find

(3 | 2 | 4 | 2)RNS = 〈(3× 105)+ (2× 120)+ (4× 336)+ (2× 280)〉840 = 779

It only remains to show how the preceding weights were derived. How, for example, did
we determine that w3 = (1 | 0 | 0 | 0)RNS = 105?

To determine the value of w3, we note that it is divisible by 3, 5, and 7, since its
last three residues are 0s. Hence, w3 must be a multiple of 105. We must then pick the
appropriate multiple of 105 such that its residue with respect to 8 is 1. This is done by
multiplying 105 by its multiplicative inverse with respect to 8. Based on the preceding
discussion, the conversion process can be formalized in the form of CRT.

THEOREM 4.1 (The Chinese remainder theorem) The magnitude of an RNS
number can be obtained from the CRT formula:

x = (xk−1 | · · · | x2 | x1 | x0)RNS =
〈

k−1∑
i=0

Mi 〈αixi〉mi

〉

M

where, by definition, Mi = M /mi, and αi = 〈M−1
i 〉mi is the multiplicative

inverse of Mi with respect to mi.

To avoid multiplications in the conversion process, we can store the values of
〈Mi〈αixi〉mi 〉M for all possible i and xi in tables of total size

∑k−1
i=0 mi words. Table 4.2

Difficult RNS Arithmetic Operations 77

Table 4.2 Values needed in
applying the Chinese remainder
theorem to RNS (8 |7 |5 |3)

i mi xi 〈Mi〈αi xi〉mi 〉M

3 8 0 0

1 105

2 210

3 315

4 420

5 525

6 630

7 735

2 7 0 0

1 120

2 240

3 360

4 480

5 600

6 720

1 5 0 0

1 336

2 672

3 168

4 504

0 3 0 0

1 280

2 560

shows the required values for RNS(8 | 7 | 5 | 3). Conversion is then performed exclusively
by table lookups and modulo-M additions.

4.4 DIFFICULT RNS ARITHMETIC OPERATIONS

In this section, we discuss algorithms and hardware designs for sign test, magnitude
comparison, overflow detection, and general division in RNS. The first three of these
operations are essentially equivalent in that if an RNS with dynamic range M is used
for representing signed numbers in the range [−N , P], with M = N + P + 1, then sign
test is the same as comparison with P and overflow detection can be performed based
on the signs of the operands and that of the result. Thus, it suffices to discuss magnitude
comparison and general division.

To compare the magnitudes of two RNS numbers, we can convert both to binary
or mixed-radix form. However, this would involve a great deal of overhead. A more

78 Chapter 4 Residue Number Systems

efficient approach is through approximate CRT decoding. Dividing the equality in the
statement of Theorem 4.1 by M , we obtain the following expression for the scaled value
of x in [0, 1):

x

M
= (xk−1 | · · · | x2 | x1 | x0)RNS

M
=

〈
k−1∑
i=0

m−1
i 〈αixi〉mi

〉

1

Here, the addition of terms is performed modulo 1, meaning that in adding the terms
m−1

i 〈αixi〉mi , each of which is in [0, 1), the whole part of the result is discarded and only
the fractional part is kept; this is much simpler than the modulo-M addition needed in
conventional CRT decoding.

Again, the terms m−1
i 〈αixi〉mi can be precomputed for all possible i and xi and stored in

tables of total size
∑k−1

i=0 mi words. Table 4.3 shows the required lookup table for approx-
imate CRT decoding in RNS(8 | 7 | 5 | 3). Conversion is then performed exclusively by

Table 4.3 Values needed in applying
approximate Chinese remainder theorem
decoding to RNS (8 |7 |5 |3)

i mi xi 〈m−1
i 〈αi xi〉mi 〉1

3 8 0 .0000

1 .1250

2 .2500

3 .3750

4 .5000

5 .6250

6 .7500

7 .8750

2 7 0 .0000

1 .1429

2 .2857

3 .4286

4 .5714

5 .7143

6 .8571

1 5 0 .0000

1 .4000

2 .8000

3 .2000

4 .6000

0 3 0 .0000

1 .3333

2 .6667

Difficult RNS Arithmetic Operations 79

table lookups and modulo-1 additions (i.e., fractional addition, with the carry-out simply
ignored).

■ EXAMPLE 4.3 Use approximate CRT decoding to determine the larger of the two
numbers x = (0 | 6 | 3 | 0)RNS and y = (5 | 3 | 0 | 0)RNS.
Reading values from Table 4.3, we get:

x

M
≈ 〈.0000+ .8571+ .2000+ .0000〉1 = .0571

y

M
≈ 〈.6250+ .4286+ .0000+ .0000〉1 = .0536

Thus, we can conclude that x > y, subject to approximation errors to be discussed next.

If the maximum error in each table entry is ε, then approximate CRT decoding yields
the scaled value of an RNS number with an error of no more than kε. In Example 4.3,
assuming that the table entries have been rounded to four decimal digits, the maximum
error in each entry is ε = 0.000 05 and the maximum error in the scaled value is
4ε = 0.0002. The conclusion x > y is, therefore, safe.

Of course we can use highly precise table entries to avoid the possibility of erroneous
conclusions altogether. But this would defeat the advantage of approximate CRT decod-
ing in simplicity and speed. Thus, in practice, a two-stage process might be envisaged: a
quick approximate decoding process is performed first, with the resulting scaled value(s)
and error bound(s) used to decide whether a more precise or exact decoding is needed
for arriving at a conclusion.

In many practical situations, an exact comparison of x and y might not be required
and a ternary decision result x < y, x ≈ y (i.e., too close to call), or x > y might do.
In such cases, approximate CRT decoding is just the right tool. For example, in certain
division algorithms (to be discussed in Chapter 14), the sign and the magnitude of the
partial remainder s are used to choose the next quotient digit qj from the redundant digit
set [−1, 1] according to the following:

s < 0 quotient digit=−1
s ≈ 0 quotient digit= 0
s > 0 quotient digit= 1

In this case, the algorithm’s built-in tolerance to imprecision allows us to use it for
RNS division. Once the quotient digit in [−1, 1] has been chosen, the value qjd , where d
is the divisor, is subtracted from the partial remainder to obtain the new partial remainder
for the next iteration. Also, the quotient, derived in positional radix-2 format using the
digit set [−1, 1], is converted to RNS on the fly.

In other division algorithms, to be discussed in Chapters 14 and 15, approximate
comparison of the partial remainder s and divisor d is used to choose a radix-r quotient
digit in [−α, β]. An example includes radix-4 division with the redundant quotient digit
set [−2, 2]. In these cases, too, approximate CRT decoding can be used to facilitate RNS
division [Hung94].

80 Chapter 4 Residue Number Systems

Figure 4.3 Adding a
4-bit ordinary
mod-13 residue x to a
4-bit pseudoresidue
y, producing a 4-bit
mod-13
pseudoresidue z.

Adder

Adder

x y

z

cout
0 0

Drop

4.5 REDUNDANT RNS REPRESENTATIONS

Just as the digits in a positional radix-r number system do not have to be restricted to
the set [0, r − 1], we are not obliged to limit the residue digits for the modulus mi to the
set [0, mi − 1]. Instead, we can agree to use the digit set [0, βi] for the mod-mi residue,
provided βi ≥ mi − 1. If βi ≥ mi, then the resulting RNS is redundant.

One reason to use redundant residues is to simplify the modular reduction step needed
after each arithmetic operation. Consider, for example, the representation of mod-13
residues using 4-bit binary numbers. Instead of using residues in [0, 12], we can use
pseudoresidues in [0, 15]. Residues 0, 1, and 2 will then have two representations, since
13 = 0 mod 13, 14 = 1 mod 13, and 15 = 2 mod 13. Addition of such a pseudoresidue
y to an ordinary residue x, producing a pseudoresidue z, can be performed by a 4-bit
binary adder. If the carry-out is 0, the addition result is kept intact; otherwise, the carry-
out, which is worth 16 units, is dropped and 3 is added to the result. Thus, the required
mod-13 addition unit is as shown in Fig. 4.3. Addition of two pseudoresidues is possible
in a similar way [Parh01].

One can go even further and make the pseudoresidues 2h bits wide, where normal
mod-m residues would be only h bits wide. This simplifies a multiply-accumulate oper-
ation, which is done by adding the 2h-bit product of two normal residues to a 2h-bit
running total, reducing the (2h+ 1)-bit result to a 2h-bit pseudoresidue for the next step
by subtracting 2hm from it if needed (Fig. 4.4). Reduction to a standard h-bit residue is
then done only once at the end of accumulation.

4.6 LIMITS OF FAST ARITHMETIC IN RNS

How much faster is RNS arithmetic than conventional (say, binary) arithmetic? We will
see later in Chapters 6 and 7 that addition of binary numbers in the range [0, M − 1]
can be done in O(log log M) time and with O(log M) cost using a variety of methods
such as carry-lookahead, conditional-sum, or multilevel carry-select. Both these are
optimal to within constant factors, given the fixed-radix positional representation. For
example, one can use the constant fan-in argument to establish that the circuit depth of
an adder must be at least logarithmic in the number k = logr M of digits. Redundant

Limits of Fast Arithmetic in RNS 81

Figure 4.4
A modulo-m
multiply-add cell that
accumulates the sum
into a double width
redundant
pseudoresidue.

Sum in Sum out

Mux

0

2h

Operand residue

Coefficient
residue

h

2h +1

h

–m

LSBs

 h

2h
 h

 h
2h

MSB

�

+ +

0
1

La
tc

h

representations allow O(1)-time, O(log M)-cost addition. What is the best one can do
with RNS arithmetic?

Consider the residue number system RNS(mk−1 | · · · | m1 | m0). Assume that the
moduli are chosen as the smallest possible prime numbers to minimize the size of the
moduli, and thus maximize computation speed. The following theorems from number
theory help us in figuring out the complexity.

THEOREM 4.2 The ith prime pi is asymptotically equal to i ln i.

THEOREM 4.3 The number of primes in [1, n] is asymptotically equal to
n/(ln n).

THEOREM 4.4 The product of all primes in [1, n] is asymptotically equal to en.

Table 4.4 lists some numerical values that can help us understand the asymptotic
approximations given in Theorems 4.2 and 4.3.

Armed with these results from number theory, we can derive an interesting limit on
the speed of RNS arithmetic.

THEOREM 4.5 It is possible to represent all k-bit binary numbers in RNS with
O(k/log k) moduli such that the largest modulus has O(log k) bits.

Proof: If the largest needed prime is n, by Theorem 4.4, we must have en ≈ 2k .
This equality implies n < k. The number of moduli required is the number of
primes less than n, which by Theorem 4.3 is O(n/log n) = O(k/log k).

As a result, addition of such residue numbers can be performed in O(log log log M) time
and with O(log M) cost. So, the cost of addition is asymptotically comparable to that of
binary representation whereas the delay is much smaller, though not constant.

82 Chapter 4 Residue Number Systems

Table 4.4 The ith-prime pi and the number of primes in [1, n]
versus their asymptotic approximations

Error Primes Error
i pi i ln i (%) n in [1, n] n/(ln n) (%)

1 2 0.000 100 5 2 3.107 55

2 3 1.386 54 10 4 4.343 9

3 5 3.296 34 15 6 5.539 8

4 7 5.545 21 20 8 6.676 17

5 11 8.047 27 25 9 7.767 14

10 29 23.03 21 30 10 8.820 12

15 47 40.62 14 40 12 10.84 10

20 71 59.91 16 50 15 12.78 15

30 113 102.0 10 100 25 21.71 13

40 173 147.6 15 200 46 37.75 18

50 229 195.6 15 500 95 80.46 15

100 521 460.5 12 1000 170 144.8 15

If for implementation ease, we limit ourselves to moduli of the form 2a or 2a − 1,
the following results from number theory are applicable.

THEOREM 4.6 The numbers 2a − 1 and 2b − 1 are relatively prime if and only
if a and b are relatively prime.

THEOREM 4.7 The sum of the first i primes is asymptotically O(i2 ln i).

These theorems allow us to prove the following asymptotic result for low-cost residue
number systems.

THEOREM 4.8 It is possible to represent all k-bit binary numbers in RNS with
O((k/ log k)1/2) low-cost moduli of the form 2a−1 such that the largest modulus
has O((k log k)1/2) bits.

Proof: If the largest modulus that we need is 2l − 1, by Theorem, 4.7, we must
have l2 ln l ≈ k. This implies that l = O((k/ log k)1/2). By Theorem 4.2, the
lth prime is approximately pl ≈ l ln l ≈ O((k log k)1/2). The proof is complete
upon noting that to minimize the size of the moduli, we pick the ith modulus to
be 2pi − 1.

As a result, addition of low-cost residue numbers can be performed in O(log log M)
time with O(log M) cost and thus, asymptotically, offers little advantage over binary
representation.

Problems 83

PROBLEMS 4.1 RNS representation and arithmetic

Consider the RNS system RNS(15 | 13 | 11 | 8 | 7) derived in Section 4.2.

a. Represent the numbers x = 168 and y = 23 in this RNS.
b. Compute x + y, x − y, x × y, checking the results via decimal arithmetic.
c. Knowing that x is a multiple of 56, divide it by 56 in the RNS. Hint: 56 = 7×8.
d. Compare the numbers (5 | 4 | 3 | 2 | 1)RNS and (1 | 2 | 3 | 4 | 5)RNS using

mixed-radix conversion.
e. Convert the numbers (5 | 4 | 3 | 2 | 1)RNS and (1 | 2 | 3 | 4 | 5)RNS to decimal.
f. What is the representational efficiency of this RNS compared with standard

binary?

4.2 RNS representation and arithmetic

Consider the low-cost RNS system RNS(32 | 31 |15 | 7) derived in Section 4.2.

a. Represent the numbers x = 168 and y = −23 in this RNS.
b. Compute x + y, x − y, x × y, checking the results via decimal arithmetic.
c. Knowing that x is a multiple of 7, divide it by 7 in the RNS.
d. Compare the numbers (4 | 3 | 2 | 1)RNS and (1 | 2 | 3 | 4)RNS using mixed-radix

conversion.
e. Convert the numbers (4 | 3 | 2 | 1)RNS and (1 | 2 | 3 | 4)RNS to decimal.
f. What is the representational efficiency of this RNS compared with standard

binary?

4.3 RNS representation

Find all numbers for which the RNS(8 | 7 | 5 | 3) representation is palindromic
(i.e., the string of four “digits” reads the same forward and backward).

4.4 RNS versus GSD representation

We are contemplating the use of 16-bit representations for fast integer arithmetic.
One option, radix-8 GSD representation with the digit set [−5, 4], can accom-
modate four-digit numbers. Another is RNS(16 | 15 | 13 | 11) with complement
representation of negative values.

a. Compute and compare the range of representable integers in the two systems.
b. Represent the integers +441 and −228 and add them in the two systems.
c. Briefly discuss and compare the complexity of multiplication in the two

systems.

4.5 RNS representation and arithmetic

Consider an RNS that can be used to represent the equivalent of 24-bit 2’s-
complement numbers.

a. Select the set of moduli to maximize the speed of arithmetic operations.
b. Determine the representational efficiency of the resulting RNS.
c. Represent the numbers x = +295 and y = −322 in this number system.
d. Compute the representations of x + y, x − y, and x × y; check the results.

84 Chapter 4 Residue Number Systems

4.6 Binary-to-RNS conversion

In an RNS, 11 is used as one of the moduli.

a. Design a mod-11 adder using two standard 4-bit binary adders and a few logic
gates.

b. Using the adder of part a and a 10-word lookup table, show how the mod-11
residue of an arbitrarily long binary number can be computed by a serial-in,
parallel-out circuit.

c. Repeat part a, assuming the use of mod-11 pseudoresidues in [0, 15].
d. Outline the changes needed in the design of part b if the adder of part c is used.

4.7 Low-cost RNS

Consider RNSs with moduli of the form 2ai or 2ai − 1.

a. Prove that mi = 2ai − 1 and mj = 2aj − 1 are relatively prime if and only if ai

and aj are relatively prime.
b. Show that such a system wastes at most 1 bit relative to binary representation.
c. Determine an efficient set of moduli to represent the equivalent of 32-bit

unsigned integers. Discuss your efficiency criteria.

4.8 Special RNS representations

It has been suggested that moduli of the form 2ai + 1 also offer speed advan-
tages. Evaluate this claim by devising a suitable representation for the (ai + 1)-bit
residues and dealing with arithmetic operations on such residues. Then, determine
an efficient set of moduli of the form 2ai and 2ai ± 1 to represent the equivalent of
32-bit integers.

4.9 Overflow in RNS arithmetic

Show that if 0 ≤ x, y < M , then (x+ y) mod M causes overflow if and only if the
result is less than x (thus the problem of overflow detection in RNS arithmetic is
equivalent to the magnitude comparison problem).

4.10 Discrete logarithm

Consider a prime modulus p. From number theory, we know that there always exists
an integer generator g such that the powers g0, g1, g2, g3, . . . (mod p) produce all
the integers in [1, p − 1]. If gi = x mod p, then i is called the mod-p, base-g
discrete logarithm of x. Outline a modular multiplication scheme using discrete
log and log−1 tables and an adder.

4.11 Halving even numbers in RNS

Given the representation of an even number in an RNS with only odd moduli, find
an efficient algorithm for halving the given number.

Problems 85

4.12 Symmetric RNS

In a symmetric RNS, the residues are signed integers, possessing the smallest
possible absolute values, rather than unsigned integers. Thus, for an odd modulus
m, symmetric residues range from −(m− 1)/2 to (m− 1)/2 instead of from 0 to
m− 1. Discuss the possible advantages of a symmetric RNS over ordinary RNS.

4.13 Approximate CRT decoding

Consider the numbers x = (0 | 6 | 3 | 0)RNS and y = (5 | 3 | 0 | 0)RNS of Example 4.3
in Section 4.4.

a. Redo the example and its associated error analysis with table entries rounded
to two decimal digits. How does the conclusion change?

b. Redo the example with table entries rounded to three decimal digits and discuss.

4.14 Division of RNS numbers by the moduli

a. Show how an RNS number can be divided by one of the moduli to find the
quotient and the remainder, both in RNS form.

b. Repeat part a for division by the product of two or more moduli.

4.15 RNS base extension

Consider a k-modulus RNS and the representation of a number x in that RNS.
Develop an efficient algorithm for deriving the representation of x in a (k + 1)-
modulus RNS that includes all the moduli of the original RNS plus one more
modulus that is relatively prime with respect to the preceding k. This process of
finding a new residue given k existing residues is known as base extension.

4.16 Automorphic numbers

An n-place automorph is an n-digit decimal number whose square ends in the same
n digits. For example, 625 is a 3-place automorph, since 6252 = 390 625.

a. Prove that x > 1 is an n-place automorph if and only if x mod 5n = 0 or 1 and
x mod 2n = 1 or 0, respectively.

b. Relate n-place automorphs to a 2-residue RNS with m1 = 5n and m0 = 2n.
c. Prove that if x is an n-place automorph, then (3x2−2x3) mod 102n is a 2n-place

automorph.

4.17 RNS moduli and arithmetic

We need an RNS to represent the equivalent of 8-bit 2’s-complement numbers.

a. Suggest an efficient 3-modulus RNS for this purpose.
b. Design logic circuits that can negate (change the sign of) a given number

represented in your number system.
c. Design an adder circuit for one of the moduli that is not a power of 2 (pick the

most convenient one).

86 Chapter 4 Residue Number Systems

d. Design a multiplier circuit for one of your moduli (pick the most conve-
nient one).

4.18 Binary-to-RNS conversion

Design the needed algorithms and circuits to translate a 16-bit 2’s-complement
binary number into RNS(32 | 31 | 15 | 7) format.

4.19 RNS arithmetic

Consider the residue number system RNS(31 | 16 | 15 | 7) leading to a 16-bit
representation.

a. Represent the numbers x = 98 and y = −54 in this system.
b. Compute x + y, x − y, and x × y.
c. Check the computations of part b by reconverting the results, showing all

computation steps.
d. Compare the range of numbers to that of the 16-bit 2’s-complement system.

4.20 RNS arithmetic

Consider the residue number system RNS(16 | 15 | 13 | 11) leading to a 16-bit
representation.

a. Represent the numbers x = 56 and y = −23 in this system.
b. Compute x + y, x − y, and x × y. Check the results.
c. Represent the number 3 and compute 38. Check the result.
d. Compare the range of numbers to that of the 16-bit 2’s-complement system.

4.21 RNS moduli and range

a. Determine the smallest possible RNS moduli for representing the equivalent
of 64-bit integers.

b. Find the largest RNS representation range that is possible with residues that
are no wider than 6 bits.

4.22 Selection of RNS moduli

We would like to represent the equivalent of 4-digit unsigned decimal integers in
an RNS.

a. Choose a suitable set of moduli if there is no restriction on your choice.
b. Choose a suitable set of low-cost moduli.

4.23 RNS range and arithmetic

Consider the residue number system RNS(32 | 31 | 29 | 27 | 25 | 23 | 19).

a. Compare the efficiency of this RNS to that of binary representation.
b. Discuss the structure of a table-based adder/subtractor/multiplier using 1K× 8

ROM modules.

Problems 87

c. What is the maximum possible range extension without sacrificing the speed
of arithmetic?

4.24 RNS representations and arithmetic

Consider the residue number system RNS(16 | 15 | 7).

a. Derive the range of signed integers that can be represented, assuming an almost
symmetric range.

b. Find the representations of x = +38 and y = −5 and compute their sum,
difference, and product.

c. Determine what values are represented by (0 | 1 | 0)RNS and (1 | 0 | 1)RNS.

4.25 RNS with redundant range

Consider the residue number system RNS(8 | 7 | 3) used to represent numbers in the
range [0, 63] by means of 8 bits. This number system possesses some redundancy
in that only 64 of its 168 combinations are used. Is this redundancy adequate to
detect any single-bit error in one of the residues? Fully justify your answer.

4.26 RNS design

Select the best RNS moduli for representing the equivalent of 16-bit signed-
magnitude integers with the highest possible speed of arithmetic.

4.27 RNS arithmetic

Consider RNS(16 | 15), with 4-bit binary encoding of the residues, for representing
the equivalent of 7-bit unsigned binary integers.

a. Show the representations of the unsigned integers 25, 60, and 123.
b. Using only standard 4-bit adders and 4 × 4 multipliers (and no other

component), design an adder and a multiplier for the given RNS.
c. Using the same components as in part b, design a 7-bit binary adder and a 7×7

unsigned binary multiplier, producing a 7-bit result.
d. Compare the circuits of parts b and c with regard to speed and complexity.

4.28 Special RNSs

a. Show that residue-to-binary conversion for an RNS with moduli m2 = 2h+ 1,
m1 = 2h, and m0 = 2h− 1 can be performed using a 3-to-2 (carry-save) adder
and a 2h-bit fast adder with end-around carry. Therefore, latency and cost of
the converter are only slightly more than those for a 2h-bit fast adder.

b. Generalize the result of part a to an RNS with more than two moduli of the
form 2h ± 1 as well as one that is a power of 2.

4.29 A four-modulus RNS

Consider the 4-modulus number system RNS(2n + 3 | 2n + 1|2n − 1|2n − 3).

a. Show that the four moduli are pairwise relatively prime.

88 Chapter 4 Residue Number Systems

b. Derive a simple residue-to-binary conversion scheme for the number system
RNS(2n + 3 | 2n − 1).

c. Repeat part b for RNS(2n + 1 | 2n − 3).
d. Show how the results of parts b and c can be combined into a simple residue-

to-binary converter for the original 4-modulus RNS.

REFERENCES AND FURTHER READINGS

[Garn59] Garner, H. L., “The Residue Number System,” IRE Trans. Electronic Computers, Vol.
8, pp. 140–147, 1959.

[Hung94] Hung, C. Y., and B. Parhami, “An Approximate Sign Detection Method for Residue
Numbers and Its Application to RNS Division,” Computers & Mathematics with
Applications, Vol. 27, No. 4, pp. 23–35, 1994.

[Hung95] Hung, C. Y., and B. Parhami, “Error Analysis of Approximate Chinese-Remainder-
Theorem Decoding,” IEEE Trans. Computers, Vol. 44, No. 11, pp. 1344–1348, 1995.

[Jenk93] Jenkins, W. K., “Finite Arithmetic Concepts,” in Handbook for Digital Signal
Processing, S. K. Mitra and J. F. Kaiser (eds.), Wiley, 1993, pp. 611–675.

[Merr64] Merrill, R.D., “Improving Digital Computer Performance Using Residue Number
Theory,” IEEE Trans. Electronic Computers, Vol. 13, No. 2, pp. 93–101, 1964.

[Omon07] Omondi, A., and B. Premkumar, Residue Number Systems: Theory and
Implementation, Imperial College Press, 2007.

[Parh76] Parhami, B., “Low-Cost Residue Number Systems for Computer Arithmetic,”
AFIPS Conf. Proc., Vol. 45 (1976 National Computer Conference), AFIPS Press,
1976, pp. 951–956.

[Parh93] Parhami, B., and H.-F. Lai, “Alternate Memory Compression Schemes for Modular
Multiplication,” IEEE Trans. Signal Processing, Vol. 41, pp. 1378–1385, 1993.

[Parh96] Parhami, B., “A Note on Digital Filter Implementation Using Hybrid RNS-Binary
Arithmetic,” Signal Processing, Vol. 51, pp. 65-67, 1996.

[Parh01] Parhami, B., “RNS Representations with Redundant Residues,” Proc. 35th Asilomar
Conf. Signals, Systems, and Computers, pp. 1651–1655, 2001.

[Sode86] Soderstrand, M. A., W. K. Jenkins, G. A. Jullien, and F. J. Taylor (eds.), Residue
Number System Arithmetic, IEEE Press, 1986.

[Szab67] Szabo, N. S., and R. I. Tanaka, Residue Arithmetic and Its Applications to Computer
Technology, McGraw-Hill, 1967.

[Verg08] Vergos, H. T., “A Unifying Approach for Weighted and Diminished-1 Modulo 2n + 1
Addition,” IEEE Trans. Circuits and Systems II, Vol. 55, No. 10, pp. 1041–1045, 2008.

II
ADDITION/
SUBTRACTION

■ ■ ■

“In the arithmetic of love, one plus one equals everything, and two minus one equals nothing.”
M I G N O N M C L A U G H L I N

“A man has one hundred dollars and you leave him with two dollars, that’s subtraction.”
M A E W E S T, M Y L I T T L E C H I C K A D E E , 1 9 4 0

■ ■ ■

A DDITION IS THE MOST COMMON ARITHMETIC OPERATION AND ALSO SERVES AS

a building block for synthesizing many other operations.

Within digital computers, addition is performed extensively both

in explicitly specified computation steps and as a part of implicit

ones dictated by indexing and other forms of address arithmetic.

In simple arithmatic/logic units that lack dedicated hardware

for fast multiplication and division, these latter operations are

performed as sequences of additions. A review of fast addition

schemes is thus an apt starting point in investigating arithmetic

algorithms. Subtraction is normally performed by negating the

subtrahend and adding the result to the minuend. This is quite

natural, given that an adder must handle signed numbers anyway.

Even when implemented directly, a subtractor is quite similar to

an adder.Thus, in the following four chapters that constitute this

part, we focus almost exclusively on addition:

C H A P T E R 5
Basic Addition and Counting

C H A P T E R 6
Carry-Lookahead Adders

C H A P T E R 7
Variations in Fast Adders

C H A P T E R 8
Multioperand Addition

89

5 Basic Addition
and Counting

■ ■ ■

“Not everything that can be counted counts, and
not everything that counts can be counted.”

A L B E R T E I N S T E I N

■ ■ ■

A s stated in Section 3.1, propagation of carries is a major impediment to high-

speed addition with fixed-radix positional number representations. Before

exploring various ways of speeding up the carry-propagation process, however,

we need to examine simple ripple-carry adders, the building blocks used in their

construction, the nature of the carry-propagation process, and the special case of

counting. Chapter topics include:

5.1 Bit-Serial and Ripple-Carry Adders

5.2 Conditions and Exceptions

5.3 Analysis of Carry Propagation

5.4 Carry Completion Detection

5.5 Addition of a Constant: Counters

5.6 Manchester Carry Chains and Adders

5.1 BIT-SERIAL AND RIPPLE-CARRY ADDERS

Single-bit half-adders (HAs) and full adders (FAs) are versatile building blocks that
are used in synthesizing adders and many other arithmetic circuits. A HA receives two
input bits x and y, producing a sum bit s = x ⊕ y = xy ∨ xy and a carry bit c = xy.
Figure 5.1 depicts three of the many possible logic realizations of a HA. A HA can be
viewed as a single-bit binary adder that produces the 2-bit sum of its 1-bit inputs, namely,

91

92 Chapter 5 Basic Addition and Counting

Figure 5.1 Three
implementations
of a HA.

c

s

x

y

x

y

x

y

c

s

s

c
x

y

x

y

(a) AND/XOR HA. NOR-gate HA.(b)

 NAND-gate HA with complemented carry.(c)

x + y = (cout s)two, where the plus sign in this expression stands for arithmetic sum
rather than logical OR.

A single-bit FA is defined as follows:

Inputs: Operand bits x, y and carry-in cin (or xi, yi, ci for stage i)
Outputs: Sum bit s and carry-out cout (or si and ci+1 for stage i)

s = x ⊕ y ⊕ cin (odd parity function)
= xycin ∨ x ycin ∨ xycin ∨ xy cin

cout = xy ∨ xcin ∨ ycin (majority function)

An FA can be implemented by using two HAs and an OR gate as shown in Fig. 5.2a.
The OR gate in Fig. 5.2a can be replaced with a NAND gate if the two HAs are NAND-
gate HAs with complemented carry outputs. Alternatively, one can implement an FA as
two-level AND-OR/NAND-NAND circuits according to the preceding logic equations
for s and cout (Fig. 5.2b). Because of the importance of the FA as an arithmetic building
block, many optimized FA designs exist for a variety of implementation technologies.
Figure 5.2c shows an FA, built of seven inverters and two 4-to-1 multiplexers (mux), that
is suitable for complementary metal-oxide semiconductor (CMOS) transmission-gate
logic implementation.

Full and half-adders can be used for realizing a variety of arithmetic functions. We
will see many examples in this and the following chapters. For instance, a bit-serial
adder can be built from an FA and a carry flip-flop, as shown in Fig. 5.3a. The operands
are supplied to the FA 1 bit per clock cycle, beginning with the least-significant bit,
from a pair of shift registers, and the sum is shifted into a result register. Addition of
k-bit numbers can thus be completed in k clock cycles. A k-bit ripple-carry binary adder
requires k FAs, with the carry-out of the ith FA connected to the carry-in input of the
(i + 1)th FA. The resulting k-bit adder produces a k-bit sum output and a carry-out;
alternatively, cout can be viewed as the most-significant bit of a (k + 1)-bit sum. Figure
5.3b shows a ripple-carry adder for 4-bit operands, producing a 4-bit or 5-bit sum.

Bit-Serial and Ripple-Carry Adders 93

HA

HA

xy

cin

cout

(a) Built of HAs.

s

(b) Built as an AND-OR circuit.

(c) Suitable for CMOS realization.

s

xy xy

cin

cout

s

0

1

0
1
2
3

0
1
2
3

Mux

cout

cin

cin

s

cout

Figure 5.2 Possible designs for an FA in terms of HAs, logic gates, and CMOS transmission
gates.

Figure 5.3 Using FAs
in building bit-serial
and ripple-carry
adders.

(a) Bit-serial adder.

FA

xiyi

c ic i+1

si

Carry
latch

FAFA

xy 11 x0y0

c 0c 1

s0s1

FAFA

xy 33 x2y2

c 2c 3

s2s3

c 4
cout cin

(b) Four-bit ripple-carry adder.

Clock

s4

x

y

Shift

s

Shift

The ripple-carry adder shown in Fig. 5.3b leads directly to a CMOS implementation
with transmission-gate logic using the FA design of Fig. 5.2c. A possible layout is
depicted in Fig. 5.4, which also shows the approximate area requirements for the 4-bit
ripple-carry adder in units of λ (half the minimum feature size). For details of this
particular design, refer to [Puck94, pp. 213–223].

94 Chapter 5 Basic Addition and Counting

xy 11 x0y0

c 1c 2cout cinc 3

x2y2x3y3

Clock

s1 s0s2s3

150

760λ

λ

7 Inverters

 Two
4-to-1
mux’s

VDD
V SS

Figure 5.4 Layout of a 4-bit ripple-carry adder in CMOS implementation [Puck94].

Figure 5.5 Critical
path in a k-bit
ripple-carry adder.

FA
FA

xy 11 x0y 0

c 0c1

s0s1

FA
FA

c2

sk–1

cout cin

sk

. . .

ck–1
ck–2

sk–2

ck

xk–2yk–2xk–1yk–1

The latency of a k-bit ripple-carry adder can be derived by considering the worst-
case signal propagation path. As shown in Fig. 5.5, the critical path usually begins at
the x0 or y0 input, proceeds through the carry-propagation chain to the leftmost FA, and
terminates at the sk−1 output. Of course, it is possible that for some FA implementations,
the critical path might begin at c0 and/or terminate at ck . However, given that the delay
from carry-in to carry-out is more important than from x to carry-out or from carry-in to
s, FAdesigns often minimize the delay from carry-in to carry-out, making the path shown
in Fig. 5.5 the one with the largest delay. We can thus write the following expression for
the latency of a k-bit ripple-carry adder:

Tripple−add = TFA(x, y → cout)+ (k − 2)× TFA(cin → cout)+ TFA(cin → s)

where TFA(input → output) represents the latency of an FA on the path between its
specified input and output. As an approximation to the foregoing, we can say that the
latency of a ripple-carry adder is kTFA.

We see that the latency grows linearly with k, making the ripple-carry design unde-
sirable for large k or for high-performance arithmetic units. Note that the latency of
a bit-serial adder is also O(k), although the constant of proportionality is larger here
because of the latching and clocking overheads.

Full and half-adders, as well as multibit binary adders, are powerful building blocks
that can also be used in realizing nonarithmetic functions if the need arises. For example,
a 4-bit binary adder with cin, two 4-bit operand inputs, cout, and a 4-bit sum output can
be used to synthesize the four-variable logic function w ∨ xyz and its complement, as
depicted and justified in Fig. 5.6. The logic expressions written next to the arrows in

Conditions and Exceptions 95

Figure 5.6 A 4-bit
binary adder used to
realize the logic
function f = w ∨ xyz
and its complement. 0

xy0z1w10

xyxyzw ∨ xyzw ∨ xyz

w ∨ xyz

Bit 3 Bit 2 Bit 1 Bit 0

c1 cincout c2c3

Fig. 5.6 represent the carries between various stages. Note, however, that the 4-bit adder
need not be implemented as a ripple-carry adder for the results at the outputs to be valid.

5.2 CONDITIONS AND EXCEPTIONS

When a k-bit adder is used in an arithmetic/logic unit (ALU), it is customary to provide
the k-bit sum along with information about the following outcomes, which are associated
with flag bits within a condition/exception register:

cout Indicating that a carry-out of 1 is produced
Overflow Indicating that the output is not the correct sum
Negative Indicating that the addition result is negative
Zero Indicating that the addition result is 0

When we are adding unsigned numbers, cout and “overflow” are one and the same,
and the “sign” condition is obviously irrelevant. For 2’s-complement addition, overflow
occurs when two numbers of like sign are added and a result of the opposite sign is
produced. Thus

Overflow2’s-compl = xk−1yk−1sk−1 ∨ xk−1yk−1sk−1

It is fairly easy to show that overflow in 2’s-complement addition can be detected from
the leftmost two carries as follows:

Overflow2’s-compl = ck ⊕ ck−1 = ckck−1 ∨ ckck−1

In 2’s-complement addition, cout has no significance. However, since a single adder
is frequently used to add both unsigned and 2’s-complement numbers, cout is a use-
ful output as well. Figure 5.7 shows a ripple-carry implementation of an unsigned or
2’s-complement adder with auxiliary outputs for conditions and exceptions. Because of
the large number of inputs into the NOR gate that tests for 0, it must be implemented as
an OR tree followed by an inverter.

When the sum of unsigned input operands is too large for representation in k bits,
an overflow exception is indicated by the cout signal in Fig. 5.5 and a “wrapped” value,
which is 2k less than the correct sum, appears as the output. A similar wrapped value may
appear for signed addition in the event of overflow. In certain applications, a “saturated”
value would be more appropriate than a wrapped value because a saturated value at

96 Chapter 5 Basic Addition and Counting

FAFA

xy 11 x0y0

c 0c1

s0s1

FA
c 2

sk–1

cout cin
. . .

c k–1
c k–2

sk–2

ck

xk–2yk–2xk–1yk–1

FA

Overflow

Negative

Zero

Figure 5.7 A 2’s-complement adder with provisions for detecting conditions and exceptions.

least maintains the proper ordering of various sums. For example, if the numbers being
manipulated represent the pixel intensities in an image, then an intensity value that is
too large should be represented as the maximum possible intensity level, rather than as a
wrapped value that could be much smaller. A saturating unsigned adder can be obtained
from any unsigned adder design by using a multiplexer at the output, with its control input
tied to the adder’s overflow signal. A signed saturating adder can be similarly designed.

5.3 ANALYSIS OF CARRY PROPAGATION

Various ways of dealing with the carry problem were enumerated in Section 3.1. Some of
the methods already discussed include limiting the propagation of carries (hybrid signed-
digit, residue number system) or eliminating carry propagation altogether (redundant
representation). The latter approach, when used for adding a set of numbers in carry-
save form, can be viewed as a way of amortizing the propagation delay of the final
conversion step over many additions, thus making the per-add contribution of the carry-
propagation delay quite small. What remains to be discussed, in this and the following
two chapters, is how one can speed up a single addition operation involving conventional
(binary) operands.

We begin by analyzing how and to what extent carries propagate when adding two
binary numbers. Consider the example addition of 16-bit binary numbers depicted in
Fig. 5.8, where the carry chains of lengths 2, 3, 6, and 4 are shown. The length of a
carry chain is the number of digit positions from where the carry is generated up to
and including where it is finally absorbed or annihilated. A carry chain of length 0 thus
means “no carry production,” and a chain of length 1 means that the carry is absorbed
in the next position. We are interested in the length of the longest propagation chain (6
in Fig. 5.8), which dictates the adder’s latency.

Given binary numbers with random bit values, for each position i we have

Probability of carry generation = 1/4
Probability of carry annihilation = 1/4
Probability of carry propagation = 1/2

Analysis of Carry Propagation 97

Bit no.

4 6 3 2

Carry chains and their lengths

outc inc

\ \\/ \// /

15 14 13 12

1 1 1

1 1

0

0 0

11 10 9 8

1 1

1 1

0 0

0 0

7 6 5 4

1 1

1 1

0 0

0 0

3 2 1 0

1 1 1

1 1

0

00

Figure 5.8 Example addition and its carry-propagation chains.

The probability that a carry generated at position i will propagate up to and including
position j − 1 and stop at position j (j > i) is 2−(j−1−i) × 1/2 = 2−(j−i). The expected
length of the carry chain that starts at bit position i is, therefore, given by

k−1∑
j=i+1

(j − i)2−(j−i) + (k − i)2−(k−1−i) =
k−1−i∑

l=1

l2−l + (k − i)2−(k−1−i)

= 2− (k − i + 1) 2−(k−1−i) + (k − i)2−(k−1−i) = 2− 2−(k−i−1)

where the simplification is based on the identity
∑p

l=1 l2−l = 2 − (p + 2)2−p. In the
preceding derivation, the term (k− i) 2−(k−1−i) is added to the summation because carry
definitely stops at position k; so we do not multiply the term 2−(k−1−i) by 1/2, as was
done for the terms within the summation.

The preceding result indicates that for i � k, the expected length of the carry chain
that starts at position i is approximately 2. Note that the formula checks out for the
extreme case of i = k − 1, since in this case, the exact carry chain length, and thus its
expected value, is 1. We conclude that carry chains are usually quite short.

On the average, the longest carry chain in adding k-bit numbers is of length log2 k.
This was first observed and proved by Burks, Goldstine, and von Neumann in their classic
report defining the structure of a stored-program computer [Burk46]. An interesting
analysis based on Kolmogorov complexity theory has been offered in [Beig98]. The
latter paper also cites past attempts at providing alternate or more complete proofs of
the proposition.

Here is one way to prove the logarithmic average length of the worst-case carry
chain. The reader can skip the rest of this section without any loss of continuity.

Let ηk(h) be the probability that the longest carry chain in a k-bit addition is of length
h or more. Clearly, the probability of the longest carry chain being of length exactly h is
ηk(h)− ηk(h+ 1). We can use a recursive formulation to find ηk(h). The longest carry
chain can be of length h or more in two mutually exclusive ways:

a. The least-significant k − 1 bits have a carry chain of length h or more.
b. The least-significant k − 1 bits do not have such a carry chain, but the most

significant h bits, including the last bit, have a chain of the exact length h.

98 Chapter 5 Basic Addition and Counting

Thus, we have

ηk(h) ≤ ηk−1(h)+ 2−(h+1)

where 2−(h+1) is the product of 1/4 (representing the probability of carry generation)
and 2−(h−1) (probability that carry propagates across h − 2 intermediate positions and
stops in the last one). The inequality occurs because the second term is not multiplied
by a probability as discussed above. Hence, assuming ηi(h) = 0 for i < h:

ηk(h) =
k∑

i=h

[ηi(h)− ηi−1(h)] ≤ (k − h+ 1) 2−(h+1) ≤ 2−(h+1)k

To complete our derivation of the expected length λ of the longest carry chain, we
note that

λ =
k∑

h=1

h[ηk(h)− ηk(h+ 1)]

= [ηk(1)− ηk(2)] + 2[ηk(2)− ηk(3)] + · · · + k[ηk(k)− 0]

=
k∑

h=1

ηk(h)

We next break the final summation above into two parts: the first γ = �log2 k�−1 terms
and the remaining k − γ terms. Using the upper bound 1 for terms in the first part and
2−(h+1)k for terms in the second part, we get

λ =
k∑

h=1

ηk(h) ≤
γ∑

h=1

1+
k∑

h=γ+1

2−(h+1)k < γ + 2−(γ+1)k

Now let ε = log2 k−�log2 k� or γ = log2 k−1−ε, where 0 ≤ ε < 1. Then, substituting
the latter expression for γ in the preceding inequality and noting that 2log2 k = k and
2ε < 1+ ε, we get

λ < log2 k − 1− ε + 2ε < log2 k

This concludes our derivation of the result that the expected length of the worst-case carry
chain in a k-bit addition with random operands is upper-bounded by log2 k. Experimental
results verify the log2 k approximation to the length of the worst-case carry chain and
suggest that log2(1.25k) is a better estimate [Hend61].

5.4 CARRY-COMPLETION DETECTION

A ripple-carry adder is the simplest and slowest adder design. For k-bit operands, both
the worst-case delay and the implementation cost of a ripple-carry adder are linear in k.

Carry-Completion Detection 99

However, based on the analysis in Section 5.3, the worst-case carry-propagation chain
of length k almost never materializes.

A carry-completion detection adder takes advantage of the log2 k average length of
the longest carry chain to add two k-bit binary numbers in O(log k) time on the average.
It is essentially a ripple-carry adder in which a carry of 0 is also explicitly represented
and allowed to propagate between stages. The carry into stage i is represented by the
two-rail code:

(bi, ci) = (0, 0) Carry not yet known
(0, 1) Carry known to be 1
(1, 0) Carry known to be 0

Thus, just as two 1s in the operands generate a carry of 1 that propagates to the
left, two 0s would produce a carry of 0. Initially, all carries are (0, 0) or unknown.
After initialization, a bit position with xi = yi makes the no-carry/carry determination
and injects the appropriate carry (bi+1, ci+1) = (xi ∨ yi, xiyi) into the carry-propagation
chain of Fig. 5.9 via the OR gates. The carry (cin, cin) is injected at the right end. When
every carry has assumed one of the values (0, 1) or (1, 0), carry propagation is complete.
The local “done” signals di = bi ∨ ci are combined by a global AND function into
alldone, which indicates the end of carry propagation.

In designing carry-completion adders, care must be taken to avoid hazards that might
lead to a spurious alldone signal. Initialization of all carries to 0 through clearing of input
bits and simultaneous application of all input data is one way of ensuring hazard-free
operation.

Excluding the initialization and carry-completion detection times, which must be
considered and are the same in all cases, the latency of a k-bit carry-completion adder
ranges from 1 gate delay in the best case (no carry propagation at all: i.e., when adding a
number to itself) to 2k + 1 gate delays in the worst case (full carry propagation from cin

. . .

. . .

. . .

. . .

x y = x y

alldone
From other bit positions

i+1

c = c

b = c

b = 1: No carry
c = 1: Carry

b

i+1c 0

i i i i

ib

ic

x yi i

x yi i

x yi i

0

in

in

}

di+1 i
i

c = c k out

bk

 ∨

∨

Figure 5.9 The carry network of an adder with two-rail carries and carry-completion
detection logic.

100 Chapter 5 Basic Addition and Counting

to cout), with the average latency being about 2 log2 k+1 gate delays. Note that once the
final carries have arrived in all bit positions, the derivation of the sum bits is overlapped
with completion detection and is thus not accounted for in the preceding latencies.

Because the latency of the carry-completion adder is data-dependent, the design of
Fig. 5.9 is suitable for use in asynchronous systems. Most modern computers, however,
use synchronous logic and thus cannot take advantage of the high average speed of a
carry-completion adder.

5.5 ADDITION OF A CONSTANT: COUNTERS

When one input of the addition operation is a constant number, the design can be sim-
plified or optimized compared with that of a general two-operand adder. With binary
arithmetic, we can assume that the constant y to be added to x is odd, since in the addition
s = x + yeven = x + (yodd × 2h), one can ignore the h rightmost bits in x and add yodd
to the remaining bits. The special case of y = 1 corresponds to standard counters, while
y = ±1 yields an up/down counter.

Let the constant to be added to x = (xk−1 · · · x2x1x0)two be y = (yk−1 · · · y2y1 1)two.
The least-significant bit of the sum is x0. The remaining bits of s can be determined by
a (k − 1)-bit ripple-carry adder, with cin = x0, each of its cells being a HA (yi = 0) or
a modified HA (yi = 1). The fast-adder designs to be covered in Chapters 6 and 7 can
similarly be optimized to take advantage of the known bits of y.

When y = 1(−1), the resulting circuit is known as an incrementer (decrementer)
and is used in the design of up (down) counters. Figure 5.10 depicts an up counter,
with parallel load capability, built of a register, an incrementer, and a multiplexer. The
design shown in Fig. 5.10 can be easily converted to an up/down counter by using an
incrementer/decrementer and an extra control signal. Supplying the details is left as an
exercise.

Many designs for fast counters are available [Ober81]. Conventional synchronous
designs are based on full carry propagation in each increment/decrement cycle, thus

0 1

EnableLoad

 Counter
overflow outc

Count register

Mux

Data in

Clear
Reset

Count/Initialize

Data out

Clock

(–1)

 Incrementer
(decrementer)

1

Figure 5.10 An up (down) counter built of a register, an incrementer (decrementer), and a
multiplexer.

Addition of a Constant: Counters 101

T

Q

Q T

Q

Q T

Q

T

Q

Q
Increment

0

0

1

1

2

2

3

3

Count output

Q

Figure 5.11 A 4-bit asynchronous up counter built only of negative-edge-triggered T
flip-flops.

Load

Load Increment

Control
 1

Control
 2

Incrementer

1

Incrementer

1

Count register divided into three stages

Figure 5.12 Fast three-stage up counter.

limiting the counter’s operating speed. In some cases, special features of the storage
elements used can lead to simplifications. Figure 5.11 depicts an asynchronous counter
built of cascaded negative-edge-triggered T (toggle) flip-flops. Each input pulse toggles
the flip-flop at the least significant position, each 1-to-0 transition of the least-significant
bit flip-flop toggles the next flip-flop, and so on. The next input pulse can be accepted
before the carry has propagated all the way to the left.

Certain applications require high-speed counting, with the count potentially becom-
ing quite large. In such cases, a high-speed incrementer must be used. Methods of
designing fast adders (Chapters 6 and 7) can all be adapted for building fast incre-
menters. When even the highest-speed incrementer cannot keep up with the input rate
or when cost considerations preclude the use of an ultrafast incrementer, the frequency
of the input can be reduced by applying it to a prescaler. The lower-frequency output of
the prescaler can then be counted with less stringent speed requirements. In the latter
case, the resulting count will be approximate.

Obviously, the count value can be represented in redundant format, allowing carry-
free increment or decrement in constant time [Parh87]. However, with a redundant
format, reading out the stored count involves some delay to allow for conversion of
the internal representation to standard binary. Alternatively, one can design the counter
as a cascade that begins with a very narrow, and thus fast, counter and continues with
increasingly wider counters [Vuil91]. The wider counters on the left are incremented
only occasionally and thus need not be very fast (their incremented counts can be pre-
computed by a slow incrementer and then simply loaded into the register when required).
Figure 5.12 shows this principle applied to the design of a three-stage counter. Some
details of this design, as well as its extension to up/down counting, will be explored in
the end-of-chapter problems.

102 Chapter 5 Basic Addition and Counting

5.6 MANCHESTER CARRY CHAINS AND ADDERS

In the next three chapters, we will examine methods for speeding up the addition process
for two operands (Chapters 6 and 7) and for multiple operands (Chapter 8). For two
operands, the key to fast addition is a low-latency carry network, since once the carry
into position i is known, the sum digit can be determined from the operand digits xi and
yi and the incoming carry ci in constant time through modular addtition:

si = (xi + yi + ci) mod r

In the special case of radix 2, the relation above reduces to

si = xi ⊕ yi ⊕ ci

So, the primary problem in the design of two-operand adders is the computation of the
k carries ci+1 based on the 2k operand digits xi and yi, 0 ≤ i < k.

From the point of view of carry propagation and the design of a carry network, the
actual operand digits are not important. What matters is whether in a given position a carry
is generated, propagated, or annihilated (absorbed). In the case of binary addition, the
generate, propagate, and annihilate (absorb) signals are characterized by the following
logic equations:

gi = xiyi

pi = xi ⊕ yi

ai = xiyi = xi ∨ yi

It is also helpful to define a transfer signal corresponding to the event that the carry-out
will be 1, given that the carry-in is 1:

ti = gi ∨ pi = ai = xi ∨ yi

More generally, for radix r, we have

gi = 1 iff xi + yi ≥ r

pi = 1 iff xi + yi = r − 1

ai = 1 iff xi + yi < r − 1

Thus, assuming that the signals above are produced and made available, the rest of the
carry network design can be based on them and becomes completely independent of the
operands or even the number representation radix.

Using the preceding signals, the carry recurrence can be written as follows:

ci+1 = gi ∨ cipi

Manchester Carry Chains and Adders 103

The carry recurrence essentially states that a carry will enter stage i+ 1 if it is generated
in stage i or it enters stage i and is propagated by that stage. Since

ci+1 = gi ∨ cipi = gi ∨ cigi ∨ cipi

= gi ∨ ci(gi ∨ pi) = gi ∨ citi

the carry recurrence can be written in terms of ti instead of pi. This latter version of the
carry recurrence leads to slightly faster adders because in binary addition, ti is easier to
produce than pi (OR instead of XOR).

In what follows, we always deal with the carry recurrence in its original form ci+1 =
gi ∨ cipi, since it is more intuitive, but we keep in mind that in most cases, pi can be
replaced by ti if desired.

The carry recurrence forms the basis of a simple carry network known as Manchester
carry chain. A Manchester adder is one that uses a Manchester carry chain as its carry
network. Each stage of a Manchester carry chain can be viewed as consisting of three
switches controlled by the signals pi, gi, and ai, so that the switch closes (conducts
electricity) when the corresponding control signal is 1. As shown in Fig. 5.13a, the
carry-out signal ci+1 is connected to 0 if ai = 1, to 1 if gi = 1, and to ci if pi = 1, thus
assuming the correct logical value ci+1 = gi ∨ cipi. Note that one, and only one, of the
signals pi, gi, and ai is 1.

Figure 5.13b shows how a Manchester carry chain might be implemented in CMOS.
When the clock is low, the c nodes precharge. Then, when the clock goes high, if gi is
high, ci+1 is asserted or drawn low. To prevent gi from affecting ci, the signal pi must
be computed as the XOR (rather than OR) of xi and yi. This is not a problem because
we need the XOR of xi and yi for computing the sum anyway.

For a k-bit Manchester carry chain, the total delay consists of three components:

1. The time to form the switch control signals.
2. The setup time for the switches.
3. Signal propagation delay through k switches in the worst case.

The first two components of delay are small, constant terms. The delay is thus dominated
by the third component, which is at best linear in k. For modern CMOS technology,
the delay is roughly proportional to k2 (as k pass transistors are connected in series),

p

ga

Logic 1Logic 0

cci+1

i i

i
i

01 01

1

0

(a) Conceptual representation.

c i+1 ic

Clock

ip

VDD

VSS

ig

(b) Possible CMOS realization.

Figure 5.13 One stage in a Manchester carry chain.

104 Chapter 5 Basic Addition and Counting

making the method undesirable for direct realization of fast adders. However, when
the delay is in fact linear in k, speed is gained over gate-based ripple-carry adders
because we have one switch delay rather than two gate delays per stage. The linear or
superlinear delay of a Manchester carry chain limits its usefulness for wide words or in
high-performance designs. Its main application is in implementing short chains (say, up to
8 bits) as building blocks for use with a variety of fast addition schemes and certain hybrid
designs.

We conclude this chapter by setting the stage for fast addition schemes to follow in
Chapters 6 and 7. Taking advantage of generate and propagate signals defined in this
section, an adder design can be viewed in the generic form of Fig. 5.14. Any adder
will have the two sets of AND and XOR gates at the top to form the gi and pi signals,
and it will have a set of XOR gates at the bottom to produce the sum bits si. It will
differ, however, in the design of its carry network, which is represented by the large
oval block in Fig. 5.14. For example, a ripple-carry adder can be viewed as having the
carry network shown in Fig. 5.15. Inserting this carry network into the generic design

Carry network

.

xi yi

gi pi

si

ci

ck

c0

g1 p1 g0 p0
gk–1

gk–2pk–1
pk–2

.

0 0
0 1
1 0
1 1

annihilated or killed
propagated
generated
(impossible)

Carry is:gi pi

gi+1 pi+1

ck–1 ck–2 ci+1
c1

c0

Figure 5.14 Generic structure of a binary adder, highlighting its carry network.

. . .
ck

gk−1 pk−1 pk−2gk−2

ck−2ck−1 c2 c1

c0

g1 p1 g0 p0

Figure 5.15 Alternate view of a ripple-carry network in connection with the generic adder
structure shown in Fig. 5.14.

Problems 105

of Fig. 5.14 will produce a complete adder. Thus, in our subsequent discussions, we
will focus on different designs for the carry network, and we will compare adders with
respect to latency and cost of the carry network only.

PROBLEMS 5.1 Bit-serial 2’s-complement adder

Present the complete design of a bit-serial 2’s-complement adder for 32-bit num-
bers. Include in your design the control details and provisions for overflow
detection.

5.2 Four-function ALU

Extend the design of Fig. 5.2c into a bit-slice for a four-function ALU that pro-
duces any of the following functions of the inputs x and y based on the values of
two control signals: Sum, OR, AND, XOR. Hint: What happens if cin is forced
to 0 or 1?

5.3 Subtractive adder for 1’s-complement numbers

Show that the alternate representation of 0 in 1’s complement, which is obtained
only when x and−x are added, can be avoided by using a “subtractive adder” that
always complements y and performs subtraction to compute x + y.

5.4 Digit-serial adders

a. A radix-2g digit-serial adder can be faster than a bit-serial adder. Show the
detailed design of a radix-16 digit-serial adder for 32-bit unsigned numbers
and compare it with respect to latency and cost to bit-serial and ripple-carry
binary adders.

b. Design a digit-serial binary-coded decimal (BCD) adder to add decimal
numbers whose digits are encoded as 4-bit binary numbers.

c. Combine the designs of parts a and b into an adder than can act as radix-16 or
BCD adder according to the value of a control signal.

5.5 Binary adders as versatile building blocks

A 4-bit binary adder can be used to implement many logic functions besides its
intended function. An example appears in Fig. 5.6. Show how a 4-bit binary adder,
and nothing else, can be used to realize the following:

a. A 3-bit adder, with carry-in and carry-out.
b. Two independent single-bit FAs.
c. A single-bit FA and a 2-bit binary adder operating independently.
d. A 4-bit odd parity generator (4-bit XOR).
e. A 4-bit even or odd parity generator under the control of an even/odd signal.
f. Two independent 3-bit odd parity generators.
g. A five-input AND circuit.
h. A five-input OR circuit.

106 Chapter 5 Basic Addition and Counting

i. A circuit to realize the four-variable logic function wx ∨ yz.
j. A circuit to realize the four-variable logic function wxȳ ∨ wxz̄ ∨ w̄yz ∨ x̄yz.
k. A multiply-by-15 circuit for a 2-bit number x1x0, resulting in a 6-bit product.
l. A circuit to compute x+4y+8z, where x, y, and z are 3-bit unsigned numbers.

m. A five-input “parallel counter” producing the sum s2s1s0 of five 1-bit
numbers.

5.6 Binary adders as versatile building blocks

Show how an 8-bit binary adder can be used to realize the following:

a. Three independent 2-bit binary adders, each with carry-in and carry-out.
b. A circuit to realize the six-variable logic function uv ∨ wx ∨ yz.
c. A circuit to compute 2w + x and 2y + z, where w, x, y, z are 3-bit numbers.
d. A multiply-by-85 circuit for a number x3x2x1x0, resulting in an 11-bit product.
e. A circuit to compute the 5-bit sum of three 3-bit unsigned numbers.
f. A seven-input “parallel counter” producing the sum s2s1s0 of seven 1-bit

numbers.

5.7 Decimal addition

Many microprocessors provide an 8-bit unsigned “add with carry” instruction
that is defined as unsigned addition using the “carry flag” as cin and produc-
ing two carries: carry-out or c8, stored in the carry flag, and “middle carry” or
c4, stored in a special flag bit for subsequent use (e.g., as branch condition).
Show how the “add with carry” instruction can be used to construct a routine for
adding unsigned decimal numbers that are stored in memory with two BCD digits
per byte.

5.8 2’s-complement adder

a. Prove that in adding k-bit 2’s-complement numbers, overflow occurs if and
only if ck−1 �= ck .

b. Show that in a 2’s-complement adder that does not provide cout, we can produce
it externally using cout = xk−1yk−1 ∨ sk−1(xk−1 ∨ yk−1).

5.9 Carry-completion adder

The computation of a k-input logic function requires O(log k) time if gates with
constant fan-in are used. Thus, the AND gate in Fig. 5.9 that generates the alldone
signal is really a tree of smaller AND gates that implies O(log k) delay. Wouldn’t
this imply that the addition time of the carry completion adder is O(log2 k) rather
than O(log k)?

5.10 Carry-completion adder

a. Design the sum logic for the carry-completion adder of Fig. 5.9.
b. Design a carry-completion adder using FAs and HAs plus inverters as the only

building blocks (besides the completion detection logic).

Problems 107

c. Repeat part a if the sum bits are to be obtained with two-rail (z, p) encoding
whereby 0 and 1 are represented by (1, 0) and (0, 1), respectively. In this way,
the sum bits are independently produced as soon as possible, allowing them to
be processed by other circuits in an asynchronous fashion.

5.11 Balanced ternary adder

Consider the balanced ternary number system with r = 3 and digit set [−1, 1].
Addition of such numbers involves carries in {−1, 0, 1}. Assuming that both the
digit set and carries are represented using the (n, p) encoding of Fig. 3.7:

a. Design a ripple-carry adder cell for balanced ternary numbers.
b. Convert the adder cell of part a to an adder/subtractor with a control input.
c. Design and analyze a carry-completion sensing adder for balanced ternary

numbers.

5.12 Synchronous binary counter

Design a synchronous counterpart for the asynchronous counter shown in
Fig. 5.11.

5.13 Negabinary up/down counter

Design an up/down counter based on the negabinary (radix −2) number repre-
sentation in the count register. Hint: Consider the negabinary representation as a
radix-4 number system with the digit set [−2, 1].

5.14 Design of fast counters

Design the two control circuits in Fig. 5.12 and determine optimal lengths for the
three counter segments, as well as the overall counting latency (clock period), in
each of the following cases. Assume the use of ripple-carry incrementers.

a. An overall counter length of 48 bits.
b. An overall counter length of 80 bits.

5.15 Fast up/down counters

Extend the fast counter design of Fig. 5.12 to an up/down counter. Hint: Incorporate
the sign logic in “Control 1,” use a fast 0 detection mechanism, and save the old
value when incrementing a counter stage.

5.16 Manchester carry chains

Study the effects of inserting a pair of inverters after every g stages in a CMOS
Manchester carry chain (Fig. 5.13b). In particular, discuss whether the carry-
propagation time can be made linear in k by suitable placement of the inverter
pairs.

108 Chapter 5 Basic Addition and Counting

5.17 Analysis of carry-propagation

In deriving the average length of the worst-case carry-propagation chain, we made
substitutions and simplifications that led to the upper bound log2k. By deriving
an O(log k) lower bound, show that the exact average is fairly close to this upper
bound.

5.18 Binary adders as versatile building blocks

Show how to use a 4-bit binary adder as:

a. A multiply-by-3 circuit for a 4-bit unsigned binary number.
b. Two independent 3-input majority circuits implementing 2-out-of-3 voting.
c. Squaring circuit for a 2-bit binary number.

5.19 Negabinary adder or subtractor

Derive algorithms and present hardware structures for adding or subtracting two
negabinary, or radix-(−2), numbers.

5.20 Carry-propagation chains

Consider the addition of two k-bit unsigned binary numbers whose bit positions
are indexed from k − 1 to 0 (most to least significant). Assume that the bit values
in the two numbers are completely random.

a. What is the probability that a carry is generated in bit position i?
b. What is the probability that a carry generated in bit position i affects the sum

bit in position j, where j > i? The answer should be derived and presented as
a function of i and j.

c. What is the probability that a carry chain starting at bit position i will terminate
at bit position j? Hint: For this to happen, position j must either absorb the
carry or generate a carry of its own.

d. What is the probability that the incoming carry cin propagates all the way to
the most significant end and affects the outgoing carry cout?

e. What is the expected length of a carry chain that starts in bit position i? Fully
justify your answer and each derivation step.

5.21 FA hardware realization

Realize a FA by means of a minimum number of 2-to-1 multiplexers and no other
logic component, not even inverters [Jian04].

5.22 Latency of a ripple-carry adder

A ripple-carry adder can be implemented by inserting the FA design of Fig. 5.2a or
Fig. 5.2b into the k-stage cascade of Fig. 5.5. This leads to four different designs,
given that HAs can take one of the three forms shown in Fig. 5.1. A fifth design can
be based on Figs. 5.14 and 5.15. Compare these implementations with respect to
latency and hardware complexity, using reasonable assumptions about gate delays
and costs.

References and Further Readings 109

5.23 Self-dual logic functions

The dual of a logic function f (x1, x2, . . . , xn) is another function g(x1, x2, . . . , xn)

such that the value of g with all n inputs complemented is the complement of f
with uncomplemented inputs. A logic function f is self-dual if f = g. Thus, com-
plementing all inputs of a logic circuit implementing the self-dual logic function
f will lead to its output being complemented. Self-dual functions have applica-
tions in the provision of fault tolerance in digital systems via time redundancy
(recomputation with complemented inputs, and comparison).

a. Show that binary HAs and FAs are self-dual with respect to both outputs.
b. Is a k-bit 1’s-complement binary adder, with 2k + 1 inputs and k + 1 outputs,

self-dual?
c. Repeat part b for a 2’s-complement adder.

5.24 FA with unequal input arrival times

Show that a FA can be designed such that if its 3 input bits arrive at times u, v, and
w, with u ≤ v ≤ w, it will produce the sum output bit at time max(v + 2, w + 1)

and its carry-out bit at time w + 1, where the unit of time is the delay of an XOR
gate [Stel98].

REFERENCES AND FURTHER READINGS

[Beig98] Beigel, R., B. Gasarch, M. Li, and L. Zhang, “Addition in log2n+ O(1) Steps on
Average: A Simple Analysis,” Theoretical Computer Science, Vol. 191, Nos. 1–2,
pp. 245–248, 1998.

[Bui02] Bui, H. T., Y. Wang, and Y. Jiang, “Design and Analysis of Low-Power 10-Transistor
Full Adders Using Novel XOR-XNOR Gates,” IEEE Trans. Circuits and Systems II,
Vol. 49, No. 1, pp. 25–30, 2002.

[Burk46] Burks, A. W., H. H. Goldstine, and J. von Neumann, “Preliminary Discussion of the
Logical Design of an Electronic Computing Instrument,” Institute for Advanced
Study, Princeton, NJ, 1946.

[Gilc55] Gilchrist, B., J. H. Pomerene, and S. Y. Wong, “Fast Carry Logic for Digital
Computers,” IRE Trans. Electronic Computers, Vol. 4, pp. 133–136, 1955.

[Hend61] Hendrickson, H. C., “Fast High-Accuracy Binary Parallel Addition,” IRE Trans.
Electronic Computers, Vol. 10, pp. 465–468, 1961.

[Jian04] Jiang, Y., A. Al-Sheraidah, Y. Wang, E. Sha, and J.-G. Chung, “A Novel
Multiplexer-Based Low-Power Full Adder,” IEEE Trans. Circuits and Systems II,
Vol. 51, No. 7, pp. 345–353, 2004.

[Kilb60] Kilburn, T., D. B. G. Edwards, and D. Aspinall, “A Parallel Arithmetic Unit Using a
Saturated Transistor Fast-Carry Circuit,” Proc. IEE, Vol. 107B, pp. 573–584,
1960.

[Laps97] Lapsley, P., DSP Processor Fundamentals: Architectures and Features, IEEE Press,
1997.

110 Chapter 5 Basic Addition and Counting

[Lin07] Lin, J. F., Y.-T. Hwang, M.-H. Sheu, and C.-C. Ho, “A Novel High-Speed and Energy
Efficient 10-Transistor Full Adder Design,” IEEE Trans. Circuits and Systems I,
Vol. 54, No. 5, pp. 1050–1059, 2007.

[Ober81] Oberman, R. M. M., Counting and Counters, Macmillan, London, 1981.

[Parh87] Parhami, B., “Systolic Up/Down Counters with Zero and Sign Detection,” Proc.
Symp. Computer Arithmetic, pp. 174–178, 1987.

[Puck94] Pucknell, D. A., and K. Eshraghian, Basic VLSI Design, 3rd ed., Prentice-Hall, 1994.

[Stel98] Stelling, P. F., C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Optimal Circuits for
Parallel Multipliers,” IEEE Trans. Computers, Vol. 47, No. 3, pp. 273–285, 1998.

[Vuil91] Vuillemin, J. E., “Constant Time Arbitrary Length Synchronous Binary Counters,”
Proc. Symp. Computer Arithmetic, pp. 180–183, 1991.

6 Carry-Lookahead
Adders

■ ■ ■

“Computers can figure out all kinds of problems, except the things
in the world that just don’t add up.”

A N O N Y M O U S

■ ■ ■

A dder designs considered in Chapter 5 have worst-case delays that grow at least

linearly with the word width k. Since the most-significant bit of the sum is a

function of all the 2k input bits, assuming that the gate fan-in is limited to d, a lower

bound on addition latency is logd (2k). An interesting question, therefore, is whether

one can add two k-bit binary numbers in O(log k) worst-case time. Carry-lookahead

adders, covered in this chapter, represent a commonly used scheme for logarithmic

time addition. Other schemes are introduced in Chapter 7.

6.1 Unrolling the Carry Recurrence

6.2 Carry-Lookahead Adder Design

6.3 Ling Adder and Related Designs

6.4 Carry Determination as Prefix Computation

6.5 Alternative Parallel Prefix Networks

6.6 VLSI Implementation Aspects

6.1 UNROLLING THE CARRY RECURRENCE

Recall the gi (generate), pi (propagate), ai (annihilate or absorb), and ti (transfer)
auxiliary signals introduced in Section 5.6:

gi = 1 iff xi + yi ≥ r Carry is generated
pi = 1 iff xi + yi = r − 1 Carry is propagated
ti = ai = gi ∨ pi Carry is not annihilated

111

112 Chapter 6 Carry-Lookahead Adders

These signals, along with the carry recurrence

ci+1 = gi ∨ pici = gi ∨ tici

allow us to decouple the problem of designing a fast carry network from details of the
number system (radix, digit set). In fact it does not even matter whether we are adding or
subtracting; any carry network can be used as a borrow network if we simply redefine the
preceding signals to correspond to borrow generation, borrow propagation, and so on.

The carry recurrence ci+1 = gi ∨ pici states that a carry will enter stage i+ 1 if it is
generated in stage i or it enters stage i and is propagated by that stage. One can easily
unroll this recurrence, eventually obtaining each carry ci as a logical function of the
operand bits and cin. Here are three steps of the unrolling process for ci:

ci = gi−1 ∨ ci−1pi−1

= gi−1 ∨ (gi−2 ∨ ci−2pi−2)pi−1 = gi−1 ∨ gi−2pi−1 ∨ ci−2pi−2pi−1

= gi−1 ∨ gi−2pi−1 ∨ gi−3pi−2pi−1 ∨ ci−3pi−3pi−2pi−1

= gi−1 ∨ gi−2pi−1 ∨ gi−3pi−2pi−1 ∨ gi−4pi−3pi−2pi−1 ∨ ci−4pi−4pi−3pi−2pi−1

The unrolling can be continued until the last product term contains c0 = cin. The unrolled
version of the carry recurrence has the following simple interpretation: carry enters into
position i if and only if a carry is generated in position i− 1 (gi−1), or a carry generated
in position i − 2 is propagated by position i − 1 (gi−2pi−1), or a carry generated in
position i − 3 is propagated at i − 2 and i − 1 (gi−3pi−2pi−1), etc.

After full unrolling, we can compute all the carries in a k-bit adder directly from the
auxiliary signals (gi, pi) and cin, using two-level AND-OR logic circuits with maximum
gate fan-in of k + 1. For k = 4, the logic expressions are as follows:

c4 = g3 ∨ g2p3 ∨ g1p2p3 ∨ g0p1p2p3 ∨ c0p0p1p2p3

c3 = g2 ∨ g1p2 ∨ g0p1p2 ∨ c0p0p1p2

c2 = g1 ∨ g0p1 ∨ c0p0p1

c1 = g0 ∨ c0p0

Here, c0 and c4 are the 4-bit adder’s cin and cout, respectively. A carry network based on
the preceding equations can be used in conjunction with two-input ANDs, producing the
gi signals, and two-input XORs, producing the pi and sum bits, to build a 4-bit binary
adder. Such an adder is said to have full carry lookahead.

Note that since c4 does not affect the computation of the sum bits, it can be derived
based on the simpler equation

c4 = g3 ∨ c3p3

with little or no speed penalty. The resulting carry network is depicted in Fig. 6.1.
Clearly, full carry lookahead is impractical for wide words. The fully unrolled carry

equation for c31, for example, consists of 32 product terms, the largest of which contains

Carry-Lookahead Adder Design 113

Figure 6.1 A 4-bit
carry network with
full lookahead.

g0

g1

g2

g3

c0

c4

c1

c2

c3

p3

p2

p1

p0

32 literals. Thus, the required AND and OR functions must be realized by tree net-
works, leading to increased latency and cost. Two schemes for managing this complexity
immediately suggest themselves:

High-radix addition (i.e., radix 2h)

Multilevel lookahead

High-radix addition increases the latency for generating the auxiliary signals and sum
digits but simplifies the carry network. Depending on the implementation method and
technology, an optimal radix might exist. Multilevel lookahead is the technique used in
practice and is covered in Section 6.2.

6.2 CARRY-LOOKAHEAD ADDER DESIGN

Consider radix-16 addition of two binary numbers that are characterized by their gi and
pi signals. For each radix-16 digit position, extending from bit position i to bit position
i + 3 of the original binary numbers (where i is a multiple of 4), “block generate” and
“block propagate” signals can be derived as follows:

g[i,i+3] = gi+3 ∨ gi+2pi+3 ∨ gi+1pi+2pi+3 ∨ gipi+1pi+2pi+3

p[i,i+3] = pipi+1pi+2pi+3

114 Chapter 6 Carry-Lookahead Adders

The preceding equations can be interpreted in the same way as unrolled carry
equations: the four bit positions collectively propagate an incoming carry ci if and only
if each of the four positions propagates; they collectively generate a carry if a carry is
produced in position i+ 3, or it is produced in position i+ 2 and propagated by position
i + 3, etc.

If we replace the c4 portion of the carry network of Fig. 6.1 with circuits that produce
the block generate and propagate signals g[i,i+3] and p[i,i+3], the 4-bit lookahead carry
generator of Fig. 6.2a is obtained. Figure 6.2b shows the 4-bit lookahead carry generator
in schematic form. We will see shortly that such a block can be used in a multilevel
structure to build a carry network of any desired width.

First, however, let us take a somewhat more general view of the block generate and
propagate signals. Assuming i0 < i1 < i2, we can write

g[i0,i2−1] = g[i1,i2−1] ∨ g[i0,i1−1]p[i1,i2−1]

This equation essentially says that a carry is generated by the block of positions from i0
to i2 − 1 if and only if a carry is generated by the [i1, i2 − 1] block or a carry generated

gi

gi+1

g
i+2

gi+3

c

(a) Gate network

i

ci+1

ci+2

ci+3

pi+3

pi+2

pi+1

pi

g

p [i,i+3]

Block signal generation

Intermediate carries

[i,i+3]

ic
4-bit lookahead carry generator

(b) Schematic diagram

g p g p g p g p

 [i,i+3]
p

i+1ci+2ci+3c

g

iii+1i+1i+2 i+2i+3 i+3

 [i,i+3]

Figure 6.2 A 4-bit lookahead carry generator.

Carry-Lookahead Adder Design 115

by the [i0, i1 − 1] block is propagated by the [i1, i2 − 1] block. Similarly

p[i0,i2−1] = p[i0,i1−1]p[i1,i2−1]

In fact the two blocks being merged into a larger block do not have to be contiguous;
they can also be overlapping. In other words, for the possibly overlapping blocks [i1, j1]
and [i0, j0], i0 ≤ i1 − 1 ≤ j0 < j1, we have

g[i0,j1] = g[i1,j1] ∨ g[i0,j0]p[i1,j1]
p[i0,j1] = p[i0,j0]p[i1,j1]

Figure 6.3 shows that a 4-bit lookahead carry generator can be used to combine the
g and p signals from adjacent or overlapping blocks into the p and g signals for the
combined block.

Given the 4-bit lookahead carry generator of Fig. 6.2, it is an easy matter to synthesize
wider adders based on a multilevel carry-lookahead scheme. For example, to construct a
two-level 16-bit carry-lookahead adder, we need four 4-bit adders and a 4-bit lookahead
carry generator, connected together as shown on the upper right quadrant of Fig. 6.4.
The 4-bit lookahead carry generator in this case can be viewed as predicting the three
intermediate carries in a 4-digit radix-16 addition. The latency through this 16-bit adder
consists of the time required for:

Producing the g and p signals for individual bit positions (1 gate level).

Producing the g and p signals for 4-bit blocks (2 gate levels).

Predicting the carry-in signals c4, c8, and c12 for the blocks (2 gate levels).

2
j +1j +1 c

0

ic
4-bit lookahead carry generator

g p

0

i 0
i1

i2
i3

j 0
j1

j 2
j 3

j +1c
1

c

g pg p g p

g p

Figure 6.3 Combining of g and p signals of four (contiguous or overlapping) blocks of
arbitrary widths into the g and p signals for the overall block [i0, j3].

116 Chapter 6 Carry-Lookahead Adders

cccc

4-bit lookahead carry generator

4-bit lookahead carry generator

g
p

ccc

g
p

12 8 4 0

48 32 16

[0,63]

16-bit
carry-lookahead
adder

[0,63]

[48,63]

[48,63] g
p [32,47]

[32,47] g
p [0,15]

[0,15]g
p [16,31]

[16,31]

g
p [12,15]

[12,15] g
p [8,11]

[8,11] g
p[4,7]

[4,7] g
p [0,3]

[0,3]

Figure 6.4 Building a 64-bit carry-lookahead adder from 16 4-bit adders and 5 lookahead
carry generators.

Predicting the internal carries within each 4-bit block (2 gate levels).

Computing the sum bits (2 gate levels).

Thus the total latency for the 16-bit adder is 9 gate levels, which is much better than the
32 gate levels required by a 16-bit ripple-carry adder.

Similarly, to construct a three-level 64-bit carry-lookahead adder, we can use four
of the 16-bit adders above plus one 4-bit lookahead carry generator, connected together
as shown in Fig. 6.4. The delay will increase by four gate levels with each additional
level of lookahead: two levels in the downward movement of the g and p signals, and
two levels for the upward propagation of carries through the extra level. Thus, the delay
of a k-bit carry-lookahead adder based on 4-bit lookahead blocks is

Tlookahead−add = 4 log4 k + 1 gate levels

Hence, the 64-bit carry-lookahead adder of Fig. 6.4 has a latency of 13 gate levels.
One can of course use 6-bit or 8-bit lookahead blocks to reduce the number of

lookahead levels for a given word width. But this may not be worthwhile in view of
the longer delays introduced by gates with higher fan-in. When the word width is not a
power of 4, some of the inputs and/or outputs of the lookahead carry generators remain
unused, and the latency formula becomes 4	log4 k
 + 1.

One final point about the design depicted in Fig. 6.4: this 64-bit adder does not
produce a carry-out signal (c64), which would be needed in many applications. There
are two ways to remedy this problem in carry-lookahead adders. One is to generate cout
externally based on auxiliary signals or the operand and sum bits in position k − 1:

cout = g[0,k−1] ∨ c0p[0,k−1] = xk−1yk−1 ∨ sk−1(xk−1 ∨ yk−1)

Another is to design the adder to be 1 bit wider than needed (e.g., 61 bits instead of 60),
using the additional sum bit as cout.

Ling Adder and Related Designs 117

6.3 LING ADDER AND RELATED DESIGNS

The Ling adder is a type of carry-lookahead adder that achieves significant hardware
savings. Consider the carry recurrence and its unrolling by four steps:

ci = gi−1 ∨ ci−1pi−1 = gi−1 ∨ ci−1ti−1

= gi−1 ∨ gi−2ti−1 ∨ gi−3ti−2ti−1 ∨ gi−4ti−3ti−2ti−1 ∨ ci−4ti−4ti−3ti−2ti−1

Ling’s modification consists of propagating hi = ci ∨ ci−1 instead of ci. To understand
the following derivations, we note that gi−1 implies ci (ci = 1 if gi−1 = 1), which in
turn implies hi.

ci−1pi−1 = ci−1pi−1 ∨ gi−1pi−1 {zero} ∨ pi−1ci−1pi−1 {repeated term}
= ci−1pi−1 ∨ (gi−1 ∨ pi−1ci−1)pi−1

= (ci−1 ∨ ci)pi−1 = hipi−1

ci = gi−1 ∨ ci−1pi−1

= higi−1{since gi−1 implies hi} ∨ hipi−1 {from above}
= hi(gi−1 ∨ pi−1) = hi ti−1

hi = ci ∨ ci−1 = (gi−1 ∨ ci−1pi−1) ∨ ci−1

= gi−1 ∨ ci−1 = gi−1 ∨ hi−1ti−2 {from above}

Unrolling the preceding recurrence for hi, we get

hi = gi−1 ∨ ti−2 hi−1 = gi−1 ∨ ti−2(gi−2 ∨ hi−2 ti−3)

= gi−1 ∨ gi−2 ∨ hi−2 ti−2 ti−3 {since ti−2 gi−2 = gi−2}
= gi−1 ∨ gi−2 ∨ gi−3 ti−3 ti−2 ∨ hi−3 ti−4 ti−3 ti−2

= gi−1 ∨ gi−2 ∨ gi−3 ti−2 ∨ gi−4 ti−3 ti−2 ∨ hi−4 ti−4 ti−3 ti−2

We see that expressing hi in terms of hi−4 needs five product terms, with a maximum
four-input AND gate, and a total of 14 gate inputs. By contrast, expressing ci as

ci = gi−1 ∨ gi−2ti−1 ∨ gi−3ti−2ti−1 ∨ gi−4ti−3ti−2ti−1 ∨ ci−4ti−4ti−3ti−2ti−1

requires five terms, with a maximum five-input AND gate, and a total of 19 gate inputs.
The advantage of hi over ci is even greater if we can use wired-OR (3 gates with 9 inputs
vs. 4 gates with 14 inputs). Once hi is known, however, the sum is obtained by a slightly
more complex expression compared with si = pi ⊕ ci:

si = pi ⊕ ci = pi ⊕ hiti−1

This concludes our presentation of Ling’s improved carry-lookahead adder. The reader
can skip the rest of this section with no harm to continuity.

118 Chapter 6 Carry-Lookahead Adders

A number of related designs have been developed based on ideas similar to Ling’s.
For example, Doran [Dora88] suggests that one can in general propagate η instead of c
where

ηi+1 = f (xi, yi, ci) = ψ(xi, yi)ci ∨ φ(xi, yi)c̄i

The residual functions ψ and φ in the preceding Shannon expansion of f around ci must
be symmetric, and there are but eight symmetric functions of the two variables xi and
yi. Doran shows that not all 8 × 8 = 64 possibilities are valid choices for ψ and φ,
since in some cases the sum cannot be computed based on the ηi values. Dividing the
eight symmetric functions of xi and yi into the two disjoint subsets {0, t̄i, gi, p̄i} and
{1, ti, ḡi, pi}, Doran proves that ψ and φ cannot both belong to the same subset. Thus,
there are only 32 possible adders. Four of these 32 possible adders have the desirable
properties of Ling’s adder, which represents the special case of ψ(xi, yi) = 1 and
φ(xi, yi) = gi = xiyi.

6.4 CARRY DETERMINATION AS PREFIX COMPUTATION

Consider two contiguous or overlapping blocks B′ and B′′ and their associated generate
and propagate signal pairs (g′, p′) and (g′′, p′′), respectively. As shown in Fig. 6.5,
the generate and propagate signals for the merged block B can be obtained from the
equations:

g = g′′ ∨ g′p′′

p = p′p′′

That is, carry generation in the larger group takes place if the left group generates a carry
or the right group generates a carry and the left one propagates it, while propagation
occurs if both groups propagate the carry.

Figure 6.5
Combining of g and p
signals of two
(contiguous or
overlapping) blocks
B′ and B′′ of arbitrary
widths into the g and
p signals for the
overall block B.

g�� p��

i 0
i 1

j 0
j 1

g p

g� p�

Block B�

The carry
operator

Block B��

Block B

(g, p)

(g��, p��) (g�, p�)

¢

g = g�� ∨ g�p��
p = p� p��

Carry Determination as Prefix Computation 119

We note that in the discussion above, the indices i0, j0, i1, and j1 defining the two
contiguous or overlapping blocks are in fact immaterial, and the same expressions can be
written for any two adjacent groups of any width. Let us define the “carry” operator c/ on
(g, p) signal pairs as follows (right side of Fig. 6.5):

(g, p) = (g′, p′) c/ (g′′, p′′) means g = g′′ ∨ g′p′′, p = p′p′′

The carry operator c/ is associative, meaning that the order of evaluation does not affect
the value of the expression (g′, p′) c/ (g′′, p′′) c/ (g′′′, p′′′), but it is not commutative, since
g′′ ∨ g′p′′ is in general not equal to g′ ∨ g′′p′.

Observe that in an adder with no cin, we have ci+1 = g[0,i]; that is, a carry enters
position i+1 if and only if one is generated by the block [0, i]. In an adder with cin, a carry-
in of 1 can be viewed as a carry generated by stage −1; we thus set p−1 = 0, g−1 = cin
and compute g[−1,i] for all i. So, the problem remains the same, but with an extra stage
(k + 1 rather than k). The problem of carry determination can, therefore, be formulated
as follows:

Given
(g0, p0) (g1, p1) · · · (gk−2, pk−2) (gk−1, pk−1)

Find
(g[0,0], p[0,0]) (g[0,1], p[0,1]) · · · (g[0,k−2], p[0,k−2]) (g[0,k−1], p[0,k−1])

The desired signal pairs can be obtained by evaluating all the prefixes of

(g0, p0) c/ (g1, p1) c/ · · · c/ (gk−2, pk−2) c/ (gk−1, pk−1)

in parallel. In this way, the carry problem is converted to a parallel prefix computation,
and any prefix computation scheme can be used to find all the carries.

A parallel prefix computation can be defined with any associative operator. In the
following, we use the addition operator with integer operands, in view of its simplicity
and familiarity, to illustrate the methods. The parallel prefix sums problem is defined as
follows:

Given: x0 x1 x2 x3 · · · xk−1

Find: x0 x0 + x1 x0 + x1 + x2 x0 + x1 + x2 + x3 · · · x0 + x1 + · · · + xk−1

Any design for this parallel prefix sums problem can be converted to a carry computation
network by simply replacing each adder cell with the carry operator of Fig. 6.5. There
is one difference worth mentioning, though. Addition is commutative. So if prefix sums
are obtained by computing and combining the partial sums in an arbitrary manner, the
resulting design may be unsuitable for a carry network. However, as long as blocks
whose sums we combine are always contiguous and we do not change their ordering, no
problem arises.

Just as one can group numbers in any way to add them, (g, p) signal pairs can be
grouped in any way for combining them into block signals. In fact, (g, p) signals give us
an additional flexibility in that overlapping groups can be combined without affecting the
outcome, whereas in addition, use of overlapping groups would lead to incorrect sums.

120 Chapter 6 Carry-Lookahead Adders

26 5�1

712 56

+ +

+ +

(a) Prefix sums network

¢ ¢

¢ ¢

(b) Carry network

c4 c3 c2 c1

g3, p3 g2, p2 g1, p1 g0, p0

g[0,3], p[0,3] g[0,2], p[0,2] g[0,1], p[0,1] g[0,0], p[0,0]

Figure 6.6 Four-input parallel prefix sums network and its corresponding carry network.

Figure 6.6a depicts a four-input prefix sums network composed of four adder blocks,
arranged in two levels. It produces the prefix sums 5, 7, 6, and 12 when supplied with
the inputs 5, 2, −1, and 6, going from right to left. Note that we use the right-to-left
ordering of inputs and outputs on diagrams, because this corresponds to how we index
digit positions in positional number representation. So, what we are computing really
constitutes postfix sums of the expression x3+ x2+ x1+ x0. However, we will continue
to use the terms “prefix sums” and “parallel prefix networks” in accordance with the
common usage. As long as we remember that the indexing in carry network diagrams
goes from right to left, no misinterpretation will arise. Figure 6.6b shows the carry
network derived from the prefix sums network of Fig. 6.6a by replacing each adder with
a carry operator. It also shows how the outputs of this carry network are related to carries
that we need to complete a 4-bit addition.

6.5 ALTERNATIVE PARALLEL PREFIX NETWORKS

Now, focusing on the problem of computing prefix sums, we can use several strategies
to synthesize a parallel prefix sum network. Figure 6.7 is based on a divide-and-conquer
approach as proposed by Ladner and Fischer [Ladn80]. The low-order k/2 inputs are
processed by the subnetwork at the right to compute the prefix sums s0, s1, . . . , sk/2−1.
Partial prefix sums are computed for the high-order k/2 values (the left subnetwork) and
sk/2−1 (the leftmost output of the first subnetwork) is added to them to complete the
computation. Such a network is characterized by the following recurrences for its delay
(in terms of adder levels) and cost (number of adder cells):

Delay recurrence: D(k) = D(k/2)+ 1 = log2 k
Cost recurrence: C(k) = 2C(k/2)+ k/2 = (k/2) log2 k

Alternative Parallel Prefix Networks 121

Figure 6.7
Ladner–Fischer
parallel prefix sums
network built of two
k/2-input networks
and k/2 adders. . . .

Prefix sums k/2 Prefix sums k/2

. . .

xk–1 xk/2 xk/2–1 x0

sk–1 sk/2

sk/2–1 s0+ +
. . .

. . .

.

. . .

.

Figure 6.8 Parallel
prefix sums network
built of one k/2-input
network and k − 1
adders.

xk–1 xk–2 x3 x2 x1 x0

sk–1 sk–2 s3 s2 s1 s0

��

�

�

�

. . .

. . .

. . .

. . .

Prefix sums k/2

A second divide-and-conquer design for computing prefix sums, proposed by Brent
and Kung [Bren82], is depicted in Fig. 6.8. Here, the inputs are first combined pairwise
to obtain the following sequence of length k/2:

x0 + x1 x2 + x3 x4 + x5 · · · xk−4 + xk−3 xk−2 + xk−1

Parallel prefix sum computation on this new sequence yields the odd-indexed prefix sums
s1, s3, s5, . . . for the original sequence. Even-indexed prefix sums are then computed by
using s2j = s2j−1 + x2j. The cost and delay recurrences for the design of Fig. 6.8 are:

Delay recurrence: D(k) = D(k/2)+ 2 = 2 log2 k − 1
actually we will see later that D(k) = 2 log2 k − 2

Cost recurrence: C(k) = C(k/2)+ k − 1 = 2k − 2− log2 k

So, the Ladner–Fischer design is faster than the Brent–Kung design (log2 k as opposed
to 2 log2 k − 2 adder levels) but also much more expensive [(k/2) log2 k as opposed
to 2k − 2 − log2 k adder cells]. The Ladner–Fischer design also leads to large fan-out
requirements if implemented directly in hardware. In other words, the output of one of
the adders in the right part must feed the inputs of k/2 adders in the left part.

The 16-input instance of the Brent–Kung design of Fig. 6.8 is depicted in Fig. 6.9.
Note that even though the graph of Fig. 6.9 appears to have seven levels, two of the
levels near the middle are independent, thus implying a single level of delay. In general,

122 Chapter 6 Carry-Lookahead Adders

Figure 6.9
Brent–Kung parallel
prefix graph for 16
inputs.

x0x1x2x3x4x5x6x7
x8x9x10x11

x12x13x14x15

s0s1s2s3s4s5s6s7
s8s9s10s11

s12s13s14s15

1

2

3

4

5

6

Level

Figure 6.10
Kogge–Stone parallel
prefix graph for 16
inputs.

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

x
11

x
12

x
13

x
14

x
15

s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15

a k-input Brent–Kung parallel prefix graph will have a delay of 2 log2 k − 2 levels and
a cost of 2k − 2− log2 k cells.

Figure 6.10 depicts a Kogge–Stone parallel prefix graph that has the same delay as the
design shown in Fig. 6.7 but avoids its fan-out problem by distributing the computations.
A k-input Kogge–Stone parallel prefix graph has a delay of log2 k levels and a cost of
k log2 k − k + 1 cells. The Kogge–Stone parallel prefix graph represents the fastest

Alternative Parallel Prefix Networks 123

x0x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15

s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15

Brent�
Kung

Brent�
Kung

Kogge�
Stone

Figure 6.11 A hybrid Brent–Kung/Kogge–Stone parallel prefix graph for 16 inputs.

possible implementation of a parallel prefix computation if only two-input blocks are
allowed. However, its cost can be prohibitive for large k, in terms of both the number of
cells and the dense wiring between them.

Many other parallel prefix network designs are possible. For example, it has been
suggested that the Brent–Kung and Kogge–Stone approaches be combined to form hybrid
designs [Sugl90]. In Fig. 6.11, the middle four of the six levels in the design of Fig. 6.9
(representing an eight-input parallel prefix computation) have been replaced by the eight-
input Kogge–Stone network. The resulting design has five levels and 32 cells, placing it
between the pure Brent–Kung (six levels, 26 cells) and pure Kogge–Stone (four levels,
49 cells) designs.

More generally, if a single Brent–Kung level is used along with a k/2-input Kogge–
Stone design, delay and cost of the hybrid network become log2 k + 1 and (k/2)log2 k,
respectively. The resulting design is thus close to minimum in terms of delay (only one
level more than Kogge–Stone) but costs roughly half as much.

The theory of parallel prefix graphs is quite rich and well developed. There exist
both theoretical bounds and actual designs with different restrictions on fan-in/fan-out
and with various optimality criteria in terms of cost and delay (see, e.g., Chapters 5–7,
pp. 133–211, of [Laks94]).

In devising their design, Brent and Kung [Bren82] were motivated by the need to
reduce the chip area in very large-scale integration (VLSI) layout of the carry network.
Other performance or hardware limitations may also be considered. The nice thing about
formulating the problem of carry determination as a parallel prefix computation is that
theoretical results and a wealth of design strategies carry over with virtually no effort.
Not all such relationships between carry networks and parallel prefix networks, or the
virtually unlimited hybrid combinations, have been explored in full.

124 Chapter 6 Carry-Lookahead Adders

6.6 VLSI IMPLEMENTATION ASPECTS

The carry network of Fig. 6.9 is quite suitable for VLSI implementation, but it might be
deemed too slow for high-performance designs and/or wide words. Many designers have
proposed alternate networks that offer reduced latency by using features of particular
technologies and taking advantage of related optimizations. We review one example here
that is based on radix-256 addition of 56-bit numbers as implemented in the Advanced
Micro Devices Am29050 microprocessor. The following description is based on a 64-bit
version of the adder.

In radix-256 addition of 64-bit numbers, only the carries c8, c16, c24, c32, c40, c48,
and c56 need to be computed. First, 4-bit Manchester carry chains (MCCs) of the type
shown in Fig. 6.12a are used to derive g and p signals for 4-bit blocks. These signals,
denoted by [0, 3], [4, 7], [8, 11], etc. on the left side of Fig. 6.13, then form the inputs to
one 5-bit and three 4-bit MCCs that in turn feed two more MCCs in the third level. The
six MCCs in levels 2 and 3 in Fig. 6.13 are of the type shown in Fig. 6.12b; that is, they
also produce intermediate g and p signals. For example, the MCC with inputs [16, 19],
[20, 23], [24, 27], and [28, 31] yields the intermediate outputs [16, 23] and [16, 27], in
addition to the signal pair [16, 31] for the entire group.

Various parallel-prefix adders, all with minimum-latency designs when only node
delays are considered, may turn out quite different when the effects of interconnects
(including fan-in, fan-out, and signal propagation delay on wires) are considered
[Beau01], [Huan00], [Know99].

PH2
g2

PH2
g3

PH2
g1

PH2
g0

p3

p2

p1

p0

g[0,3]

PH2
p[0,3]

(a)

PH2

PH2

p

p

p[0,3]

g [0,2]

p [0,2]

g [0,1]

p[0,1]

PH2

(b)

g

g

g

p

2

p

0

PH2

g

g [0,3]

PH2

PH2

PH2

PH2

PH2

PH2

PH2

PH2

3

3

2

1

1

0

Figure 6.12 Example 4-bit MCC designs in CMOS technology [Lync92].

Problems 125

[48, 55]

[32, 47]
[16, 31]
[–1, 15]

[32, 39]
[16, 31]
[16, 23]

[48, 63]
[48, 59]
[48, 55]

[32, 47]
[32, 43]
[32, 39]

[16, 31]
[16, 27]

[16, 23]

[60, 63]
[56, 59]
[52, 55]
[48, 51]

[44, 47]
[40, 43]
[36, 39]
[32, 35]

[28, 31]
[24, 27]
[20, 23]

[16, 19]

[12, 15]

[8, 11]
[4, 7]

[0, 3]

Type-b
MCC

Type-b
MCC

Type-b
MCC

Type-b
MCCType-b

MCC

c56

c40

c16

c8

c0
cin

16
Type-a
MCC

blocks

Type-b*
MCC

Level 1 Level 2

Level 3

Legend: [i, j] represents the
pair of signals p[i, j] and g[i, j]

[–1, –1]

[–1, 15]

[–1, 11]

[–1, 7]

[–1, 15]

[–1, 55]

[–1, 47]
[–1, 31]

[–1, 39]
[–1, 31]

[–1, 23]

c48

c32

c24

Figure 6.13 Spanning-tree carry-lookahead network.Type-a and Type-b MCCs refer to the
circuits of Figs. 6.12a and 6.12b, respectively.

PROBLEMS 6.1 Borrow-lookahead subtractor

We know that any carry network producing the carries ci based on gi and pi

signals can be used, with no modification, as a borrow-propagation circuit to find
the borrows bi.

a. Define the borrow-generate γi and borrow-propagate πi signals in general and
for the special case of binary operands.

b. Present the design of a circuit to compute the difference digit di from γi, πi,
and the incoming borrow bi.

6.2 1’s-complement carry-lookahead adder

Discuss how the requirement for end-around carry in 1’s-complement addition
affects the design and performance of a carry-lookahead adder.

6.3 High-radix carry-lookahead adder

Consider radix-2h addition of binary numbers and assume that the total time needed
for producing the digit g and p signals, and determining the sum digits after all
carries are known, equals δh, where δ is a constant. Carries are determined by a
multilevel lookahead network using unit-time 2-bit lookahead carry generators.
Derive the optimal radix that minimizes the addition latency as a function of δ and
discuss.

126 Chapter 6 Carry-Lookahead Adders

6.4 Unconventional carry-lookahead adder

Consider the following method for synthesizing a k-bit adder from four k/4-bit
adders and a 4-bit lookahead carry generator. The k/4-bit adders have no group g
or p output. Both the gi and pi inputs of the lookahead carry generator are con-
nected to the carry-out of the ith k/4-bit adder, 0 ≤ i ≤ 3. Intermediate carries of
the lookahead carry generator and cin are connected to the carry-in inputs of the
k/4-bit adders. Will the suggested circuit add correctly? Find the adder’s latency
or justify your negative answer.

6.5 Decimal carry-lookahead adder

Consider the design of a 15-digit decimal adder for unsigned numbers (width =
60 bits).

a. Design the required circuits for carry-generate and carry-propagate assuming
binary-coded decimal digits.

b. Repeat part a with excess-3 encoding for the decimal digits, where digit value
a is represented by the binary encoding of a + 3.

c. Complete the design of the decimal adder of part b by proposing a carry-
lookahead circuit and the sum computation circuit.

6.6 Carry lookahead with overlapped blocks

a. Write down the indices for the g and p signals on Fig. 6.3. Then present expres-
sions for these signals in terms of g and p signals of nonoverlapping subblocks
such as [i0, i1 − 1] and [i1, j0].

b. Prove that the combining equations for the g and p signals for two contiguous
blocks also apply to overlapping blocks (see Fig. 6.5).

6.7 Latency of a carry-lookahead adder

Complete Fig. 6.4 by drawing boxes for the g and p logic and the sum computation
logic. Then draw a critical path on the resulting diagram and indicate the number
of gate levels of delay on each segment of the path.

6.8 Ling adder or subtractor

a. Show the complete design of a counterpart to the lookahead carry generator
of Fig. 6.2 using Ling’s method.

b. How does the design of a Ling subtractor differ from that of a Ling adder?
Present complete designs for all the parts that are different.

6.9 Ling-type adders

Based on the discussion at the end of Section 6.3, derive one of the other three
Ling-type adders proposed by Doran [Dora88]. Compare the derived adder with
a Ling adder.

Problems 127

6.10 Fixed-priority arbiters

A fixed-priority arbiter has k request inputs Rk−1, . . . , R1, R0, and k grant outputs
Gi. At each arbitration cycle, at most one of the grant signals is 1 and that corre-
sponds to the highest-priority request signal (i.e., Gi = 1 if and only if Ri = 1 and
Rj = 0 for j < i).

a. Design a synchronous arbiter using ripple-carry techniques. Hint: Consider
c0 = 1 along with carry propagation and annihilation rules; there is no carry
generation.

b. Design the arbiter using carry-lookahead techniques. Determine the number of
lookahead levels required with 64 inputs and estimate the total arbitration delay.

6.11 Carry-lookahead incrementer

a. Design a 16-bit incrementer using the carry-lookahead principle.
b. Repeat part a using Ling’s approach.
c. Compare the designs of parts a and b with respect to delay and cost.

6.12 Parallel prefix networks

Find delay and cost formulas for the Brent–Kung and Kogge–Stone designs when
the word width k is not a power of 2.

6.13 Parallel prefix networks

a. Draw Brent–Kung, Kogge–Stone, and hybrid parallel prefix graphs for 12, 20,
and 24 inputs.

b. Using the results of part a, plot the cost, delay, and cost-delay product for the
five types of networks for k = 12, 16, 20, 24, 32 bits and discuss.

6.14 Hybrid carry-lookahead adders

a. Find the depth and cost of a 64-bit hybrid carry network with two levels of
the Brent–Kung scheme at each end and the rest built by the Kogge–Stone
construction.

b. Compare the design of part a to pure Brent–Kung and Kogge–Stone schemes
and discuss.

6.15 Parallel prefix networks

a. Obtain delay and cost formulas for a hybrid parallel prefix network that
has l levels of Brent–Kung design at the top and bottom and a k/2l-input
Kogge–Stone network in the middle.

b. Use the delay-cost-product figure of merit to find the best combination of the
two approaches for word widths from 8 to 64 (powers of 2 only).

128 Chapter 6 Carry-Lookahead Adders

6.16 Speed and cost limits for carry computation

Consider the computation of ci, the carry into the ith stage of an adder, based on
the gj and tj signals using only two-input AND and OR gates. Note that only the
computation of ci, independent of other carries, is being considered.

a. What is the minimum possible number of AND/OR gates required?
b. What is the minimum possible number of gate levels in the circuit?
c. Can one achieve the minima of parts a and b simultaneously? Explain.

6.17 Variable-block carry-lookahead adders

Study the benefits of using nonuniform widths for the MCC blocks in a carry-
lookahead adder of the type discussed in Section 6.6 [Kant93].

6.18 Implementing the carry operator

Show that the carry operator of Fig. 6.5 can be implemented by using g =
(g′ ∨ g′′)(p′′ ∨ g′′), thereby making all signals for p and g go through two levels
of logic using a NOT-NOR or NOR-NOR implementation.

6.19 Parallel prefix networks

a. Formulate the carry-computation problem as an instance of the parallel prefix
problem.

b. Using as few two-input adder blocks as possible, construct a prefix sums
network for 8 inputs. Label the inputs x0, x1, x2, etc., and the outputs
s[0,0], s[0,1], s[0,2], etc.

c. Show the design of the logic block that should replace the adders in part b if
your prefix sums network is to be converted to an 8-bit-wide carry-lookahead
network.

d. What do you need to add to your carry network so that it accommodates a
carry-in signal?

6.20 Parallel prefix networks

In the divide-and-conquer scheme of Fig. 6.7 for designing a parallel prefix net-
work, one may observe that all but one of the outputs of the right block can be
produced one time unit later without affecting the overall latency of the network.
Show that this observation leads to a linear-cost circuit for k-input parallel prefix
computation with 	log2 k
 latency. Hint: Define type-x prefix circuits, x ≥ 0, that
produce their leftmost output with 	log2 k
 latency and all other outputs with laten-
cies not exceeding 	log2 k
+x, where k is the number of inputs. Write recurrences
that relate Cx(k) for such circuits [Ladn80].

6.21 Carry-lookahead adders

Consider an 8-bit carry-lookahead adder with 2-bit blocks. Assume that block p and
g signals are produced after three gate delays and that each block uses ripple-carry
internally. The design uses a 4-bit lookahead carry generator with two gate delays.

Problems 129

Carry ripples through each stage in two gate delays and sum bits are computed
in two gate delays once all the internal carries are known. State your assumptions
whenever the information provided is not sufficient to answer the question.

a. Compute the total addition time, in terms of gate delays, for this 8-bit adder.
b. We gradually increase the adder width to 9, 10, 11, . . . bits using four ripple-

carry groups of equal or approximately equal widths, while keeping the block
p and g delay constant. At what word width k would it be possible to increase
the adder speed by using an additional level of lookahead?

6.22 Asynchronous carry computation

Show that by combining the best-case O(1) delay of an asynchronous ripple-
carry adder with the worst-case O(log k) delay of a lookahead design, and using
whichever result arrives first, an O(log log k) average-time asynchronous adder
can be built [Mano98].

6.23 Carry-lookahead adders

Design a 64-bit carry-lookahead adder that yields both the sum of its inputs and
the sum plus ulp. Such an adder is useful as part of a floating-point adder, because
it allows rounding to be performed with no further carry propagation [Burg99].
Hint: Parallel-prefix carry networks already produce the information that would
be needed to add ulp to the sum without any carry propagation.

6.24 Implementing the carry operator

Show that the logic circuit on the left below implements the carry operator, shown
on the right, and label the inputs and outputs of the circuit accordingly. What
advantage do you see for this circuit compared with the AND-OR version implied
by Fig. 6.5?

p″

g′

p′

g p

g″

¢

6.25 Designing fast comparators

Given a fast carry network of any design, show how it can be used to build a fast
comparator to determine whether x > y, where x and y are unsigned integers.

6.26 Alternative formulation of carry-lookahead addition

Our discussion of carry determination as prefix computation was based on (g, p)
signal pairs. A similar development can be based on (g, a) signal pairs.

130 Chapter 6 Carry-Lookahead Adders

a. Redo Section 6.4 of the book, including Fig. 6.5, using the alternative
formulation above.

b. Show that a ripple-carry type parallel prefix circuit that uses (g, a) pairs leads
to an adder design similar to that in Fig. 5.9.

c. Discuss the advantages and drawbacks of this alternative formulation.

6.27 Parallel prefix Ling adders

Consider the unrolled Ling recurrence h4 = g4 ∨ g3 ∨ t3g2 ∨ t3t2g1 ∨ t3t2t1g0.
Show that the latter formula is equivalent to h4 = (g4 ∨ g3) ∨ (t3t2)(g2 ∨
g1) ∨ (t3t2)(t1t0)g0. Similarly, we have h5 = (g5 ∨ g4) ∨ (t4t3) ∨ (g3 ∨ g2) ∨
(t4t3)(t2t1)(g1 ∨ g0). Discuss how these new formulations lead to parallel prefix
Ling adders in which odd and even “Ling carries” are computed separately and
with greater efficiency [Dimi05].

REFERENCES AND FURTHER READINGS

[Bayo83] Bayoumi, M. A., G. A. Jullien, and W. C. Miller, “An Area-Time Efficient NMOS
Adder,” Integration: The VLSI Journal, Vol. 1, pp. 317–334, 1983.

[Beau01] Beaumont-Smith, A., and C.-C. Lim, “Parallel Prefix Adder Design,” Proc. 15th
Symp. Computer Arithmetic, pp. 218–225, 2001.

[Bren82] Brent, R. P., and H. T. Kung, “A Regular Layout for Parallel Adders,” IEEE Trans.
Computers, Vol. 31, pp. 260–264, 1982.

[Burg99] Burgess, N., and S. Knowles, "Efficient Implementation of Rounding Units", Proc.
33rd Asilomar Conf. Signals Systems and Computers, pp. 1489–1493, 1999.

[Burg05] Burgess, N., “New Models of Prefix Adder Topologies,” J. VLSI Signal Processing,
Vol. 40, pp. 125–141, 2005.

[Dimi05] Dimitrakopoulos, G., and D. Nikolos, “High-Speed Parallel-Prefix VLSI Ling
Adders,” IEEE Trans. Computers, Vol. 54, No. 2, pp. 225–231, 2005.

[Dora88] Doran, R. W., “Variants of an Improved Carry Look-Ahead Adder,” IEEE Trans.
Computers, Vol. 37, No. 9, pp. 1110–1113, 1988.

[Han87] Han, T., and D. A. Carlson, “Fast Area-Efficient Adders,” Proc. 8th Symp. Computer
Arithmetic, pp. 49–56, 1987.

[Harr03] Harris, D., “A Taxonomy of Parallel Prefix Networks,” Proc. 37th Asilomar Conf.
Signals, Systems, and Computers, Vol. 2, pp. 2213–2217, 2003.

[Huan00] Huang, Z., and M. D. Ercegovac, “Effect of Wire Delay on the Design of Prefix
Adders in Deep-Submicron Technology,” Proc. 34th Asilomar Conf. Signals, Systems,
and Computers, October 2000, pp. 1713–1717, 2000.

[Kant93] Kantabutra, V., “A Recursive Carry-Lookahead/Carry-Select Hybrid Adder,” IEEE
Trans. Computers, Vol. 42, No. 12, pp. 1495–1499, 1993.

[Know99] Knowles, S., “A Family of Adders,” Proc. 14th Symp. Computer Arithmetic, 1999,
printed at the end of ARITH-15 Proceedings, pp. 277–284, 2001.

[Kogg73] Kogge, P. M. and H. S. Stone, “A Parallel Algorithm for the Efficient Solution of a
General Class of Recurrences,” IEEE Trans. Computers, Vol. 22, pp. 786–793, 1973.

References and Further Readings 131

[Ladn80] Ladner, R. E., and M. J. Fischer, “Parallel Prefix Computation,” J. ACM, Vol. 27,
No. 4, pp. 831–838, 1980.

[Laks94] Lakshmivarahan, S., and S. K. Dhall, Parallel Computing Using the Prefix Problem,
Oxford University Press, 1994.

[Ling81] Ling, H., “High-Speed Binary Adder,” IBM J. Research and Development, Vol. 25,
No. 3, pp. 156–166, 1981.

[Lync92] Lynch, T., and E. Swartzlander, “A Spanning Tree Carry Lookahead Adder,” IEEE
Trans. Computers, Vol. 41, No. 8, pp. 931–939, 1992.

[Mano98] Manohar, R., and J. A. Tierno, "Asynchronous Parallel Prefix Computation," IEEE
Trans. Computers, Vol. 47, No. 11, pp. 1244–1252, 1998.

[Ngai84] Ngai, T. F., M. J. Irwin, and S. Rawat, “Regular Area-Time Efficient Carry-Lookahead
Adders,” J. Parallel and Distributed Computing, Vol. 3, No. 3, pp. 92–105, 1984.

[Sugl90] Sugla, B., and D. A. Carlson, “Extreme Area-Time Tradeoffs in VLSI,” IEEE Trans.
Computers, Vol. 39, No. 2, pp. 251–257, 1990.

[Wei90] Wei, B. W. Y., and C. D. Thompson, “Area-Time Optimal Adder Design,” IEEE
Trans. Computers, Vol. 39, No. 5, pp. 666–675, 1990.

[Wein56] Weinberger, A., and J. L. Smith, “A One-Microsecond Adder Using One-Megacycle
Circuitry,” IRE Trans. Computers, Vol. 5, pp. 65–73, 1956.

7 Variations in Fast Adders

■ ■ ■

“The most constant difficulty in contriving the engine has arisen from the desire to reduce
the time in which the calculations were executed to the shortest which is possible.”

C H A R L E S B A B B A G E , O N T H E M AT H E M AT I C A L P O W E R S O F T H E

C A L C U L AT I N G E N G I N E

■ ■ ■

T he carry-lookahead method of Chapter 6 represents the most widely used design

for high-speed adders in modern computers.Certain alternative designs,however,

either are quite competitive with carry-lookahead adders or offer advantages with

particular hardware realizations or technology constraints. The most important of

these alternative designs, and various hybrid combinations, are discussed in this

chapter.

7.1 Simple Carry-Skip Adders

7.2 Multilevel Carry-Skip Adders

7.3 Carry-Select Adders

7.4 Conditional-Sum Adder

7.5 Hybrid Designs and Optimizations

7.6 Modular Two-Operand Adders

7.1 SIMPLE CARRY-SKIP ADDERS

Consider a 4-bit group or block in a ripple-carry adder, from stage i to stage i+3, where
i is a multiple of 4 (Fig. 7.1a). A carry into stage i propagates through this group of 4
bits if and only if it propagates through all four of its stages. Thus, a group propagate
signal is defined as p[i,i+3] = pipi+1 pi+2 pi+3, which is computable from individual
propagate signals by a single four-input AND gate. To speed up carry propagation, one
can establish bypass or skip paths around 4-bit blocks, as shown in Fig. 7.1b.

Let us assume that the delay of the skip multiplexer (mux) is equal to carry-
propagation delay through one-bit position. Then, the worst-case propagation delay

132

Simple Carry-Skip Adders 133

4-bit
block

4-bit
block

4-bit
block

c12 c8 c4 c0c16 3 2 1 0

c03 2 1 0
c4

0

1
0

1

c84-bit
block

0
1

c124-bit
block

0
1

c16

(b) Simple carry-skip adder

Ripple-carry stages
(a) Ripple-carry adder

p[12,15] p[8,11] p[4,7] p[0,3]

4-bit
block

Figure 7.1 Converting a 16-bit ripple-carry adder to a simple carry-skip adder with 4-bit skip
blocks.

through the carry-skip adder of Fig. 7.1b corresponds to a carry that is generated in stage
0, ripples through stages 1–3, goes through the multiplexer, skips the middle two groups,
and ripples in the last group from stage 12 to stage 15. This leads to 9 stages of propagation
(18 gate levels) compared to 16 stages (32 gate levels) for a 16-bit ripple-carry adder.

Generalizing from the preceding example, the worst-case carry-propagation delay
in a k-bit carry-skip adder with fixed block width b, assuming that one stage of ripple
has the same delay as one skip, can be derived:

Tfixed-skip-add = (b− 1) + 1 + (k/b− 2) + (b− 1)

in block 0 mux skips in last block
≈ 2b+ k/b− 3 stages

The optimal fixed block size can be derived by equating dTfixed-skip-add/db with 0:

dTfixed−skip−add

db
= 2− k/b2 = 0 ⇒ bopt = √

k/2

The adder delay with the optimal block size above is

T opt
fixed−skip−add = 2

√
k/2+ k√

k/2
− 3 = 2

√
2k − 3

For example, to construct a 32-bit carry-skip adder with fixed-size blocks, we set
k = 32 in the preceding equations to obtain bopt = 4 bits and T opt

fixed−skip−add = 13 stages
(26 gate levels). By comparison, the propagation delay of a 32-bit ripple-carry adder is
about 2.5 times as long.

Clearly, a carry that is generated in, or absorbed by, one of the inner blocks travels a
shorter distance through the skip blocks. We can thus afford to allow more ripple stages
for such a carry without increasing the overall adder delay. This leads to the idea of
variable skip-block sizes.

Let there be t blocks of widths b0, b1, · · · , bt−1 going from right to left (Fig. 7.2).
Consider the two carry paths (1) and (2) in Fig. 7.2, both starting in block 0, one ending

134 Chapter 7 Variations in Fast Adders

bt–1 bt–2 b1 b0. . .

Ripple
Skip

Carry path (1)

Block widths

Carry path (3)

Carry path (2)

Figure 7.2 Carry-skip adder with variable-size blocks and three sample carry paths.

in block t − 1 and the other in block t − 2. Carry path (2) goes through one fewer skip
than (1), so block t − 2 can be 1 bit wider than block t − 1 without increasing the total
adder delay. Similarly, by comparing carry paths (1) and (3), we conclude that block 1
can be 1 bit wider than block 0. So, assuming for ease of analysis that b0 = bt−1 = b
and that the number t of blocks is even, the optimal block widths are

b b+ 1 · · · b+ t

2
− 1 b+ t

2
− 1 · · · b+ 1 b

The first assumption (b0 = bt−1) is justified because the total delay is a function of
b0 + bt−1 rather than their individual values and the second one (t even) does not affect
the results significantly.

Based on the preceding block widths, the total number of bits in the t blocks is

2[b+ (b+ 1)+ · · · + (b+ t/2− 1)] = t(b+ t/4− 1/2)

Equating the total above with k yields

b = k/t − t/4+ 1/2

The adder delay with the preceding assumptions is

Tvar−skip−add = 2(b− 1)+ 1+ t − 2

= 2k

t
+ t

2
− 2

The optimal number of blocks is thus obtained as follows:

dTvar−skip−add

dt
= −2k

t2
+ 1

2
= 0 ⇒ topt = 2

√
k

Note that the optimal number of blocks with variable-size blocks is
√

2 times that
obtained with fixed-size blocks. Note also that with the optimal number of blocks, b
becomes 1/2; thus we take it to be 1. The adder delay with topt blocks is

T opt
var−skip−add ≈ 2

√
k − 2

Multilevel Carry-Skip Adders 135

which is roughly a factor of
√

2 smaller than that obtained with optimal fixed-size
skip-blocks.

The preceding analyses were based on a number of simplifying assumptions. For
example, skip and ripple delays were assumed to be equal and ripple delay was assumed
to be linearly proportional to the block width. These may not be true in practice. With
complementary metal-oxide semiconductor implementation, for example, the ripple
delay in a Manchester carry chain grows as the square of the block width. The analyses for
obtaining the optimal fixed or variable block size carry-skip adder must be appropriately
modified in such cases. A number of researchers have used various assumptions about
technology-dependent parameters to deal with this optimization problem. Some of these
variations are explored in the end-of-chapter problems.

7.2 MULTILEVEL CARRY-SKIP ADDERS

A (single-level) carry-skip adder of the types discussed in Section 7.1 can be represented
schematically as in Fig. 7.3. In our subsequent discussions, we continue to assume that
the ripple and skip delays are equal, although the analyses can be easily modified to
account for different ripple and skip delays. We thus equate the carry-skip adder delay
with the worst-case sum, over all possible carry paths, of the number of ripple stages
and the number of skip stages.

Multilevel carry-skip adders are obtained if we allow a carry to skip over several
blocks at once. Figure 7.4 depicts a two-level carry-skip adder in which second-level
skip logic has been provided for the leftmost three blocks. The signal controlling this
second-level skip logic is derived as the logical AND of the first-level skip signals. A
carry that would need 3 time units to skip these three blocks in a single-level carry-skip
adder can now do so in 1 time unit.

If the rightmost/leftmost block in a carry-skip adder is short, skipping it may not
yield any advantage over allowing the carry to ripple through the block. In this case,

cincout

S1 S1 S1 S1 S1

Figure 7.3 Schematic diagram of a one-level carry-skip adder.

c c

S

inout

2

S1 S1 S1 S1 S1

Figure 7.4 Example of a two-level carry-skip adder.

136 Chapter 7 Variations in Fast Adders

c c

S

inout

2

S1 S1 S1

Figure 7.5 Two-level carry-skip adder optimized by removing the short-block skip circuits.

c
bbbbbbb

0
234567

8
2

incout

S1 S1 S1 S1 S1

0123456

Figure 7.6 Timing constraints of a single-level carry-skip adder with a delay of 8 units.

the carry-skip adder of Fig. 7.4 can be simplified by removing such inefficient skip
circuits. Figure 7.5 shows the resulting two-level carry-skip adder. With our simplifying
assumption about ripple and skip delays being equal, the first-level skip circuit should
be eliminated only for 1-bit, and possibly 2-bit, blocks (remember that generating the
skip control signal also takes some time).

■ EXAMPLE 7.1 Assume that each of the following operations takes 1 unit of time: gener-
ation of gi and pi signals, generation of a level-i skip signal from level-(i− 1) skip signals,
ripple, skip, and computation of sum bit once the incoming carry is known. Build the widest
possible single-level carry-skip adder with a total delay not exceeding 8 time units.

Let bi be the width of block i. The numbers given on the adder diagram of Fig. 7.6 denote
the time steps when the various signals stabilize, assuming that cin is available at time 0.
At the right end, block width is limited by the output timing requirement. For example, b1
cannot be more than 3 bits if its output is to be available at time 3 (1 time unit is taken by
gi , pi generation at the rightmost bit, plus 2 time units for propagation across the other 2 bits).
Block 0 is an exception, because to accommodate cin, its width must be reduced by 1 bit. At
the left end, block width is limited by input timing. For example, b4 cannot be more than 3
bits, given that its input becomes available at time 5 and the total adder delay is to be 8 units.
Based on this analysis, the maximum possible adder width is 1+3+4+4+3+2+1 = 18 bits.

■ EXAMPLE 7.2 With the same assumptions as in Example 7.1, build the widest possible
two-level carry-skip adder with a total delay not exceeding 8 time units.

We begin with an analysis of skip paths at level 2. In Fig. 7.7a, the notation {β, α} for
a block means that the block’s carry-out must become available no later than Tproduce = β

and that the block’s carry-in can take Tassimilate = α time units to propagate within the block
without exceeding the overall time limit of 8 units. The remaining problem is to construct

Multilevel Carry-Skip Adders 137

single-level carry-skip adders with the parameters Tproduce = β and Tassimilate = α. Given
the delay pair {β, α}, the number of first-level blocks (subblocks) will be γ = min(β−1, α),
with the width of the ith subblock, 0 ≤ i ≤ γ − 1, given by bi = min(β− γ + i+ 1, α− i);
the only exception is subblock 0 in block A, which has 1 fewer bit (why?). So, the total width

of such a block is
∑γ−1

i=0 min(β − γ + i + 1, α − i). Table 7.1 summarizes our analyses
for the second-level blocks A–F. Note that the second skip level has increased the adder
width from 18 bits (in Example 7.1) to 30 bits. Figure 7.7b shows the resulting two-level
carry-skip adder.

The preceding analyses of one- and two-level carry-skip adders are based on many
simplifying assumptions. If these assumptions are relaxed, the problem may no longer
lend itself to analytical solution. Chan et al. [Chan92] use dynamic programming to
obtain optimal configurations of carry-skip adders for which the various worst-case

Figure 7.7 Two-level carry-skip adder with a delay of 8 units.

Table 7.1 Second-level constraints Tproduce and Tassimilate, with
associated subblock and block widths, in a two-level carry-skip
adder with a total delay of 8 time units (Fig. 7.7)

Block Tproduce Tassimilate

Number of
subblocks

Subblock widths
(bits)

Block width
(bits)

A 3 8 2 1, 3 4
B 4 5 3 2, 3, 3 8
C 5 4 4 2, 3, 2, 1 8
D 6 3 3 3, 2, 1 6
E 7 2 2 2, 1 3
F 8 1 1 1 1

138 Chapter 7 Variations in Fast Adders

Figure 7.8
Generalized delay
model for carry-skip
adders.

Block of b full-adder units

Level-h skip

Inputs

E (b)
hS (b) h

G(b)

I(b)

A(b)

delays in a block of b full-adder units are characterized by arbitrary given functions
(Fig. 7.8). These delays include:

I(b) Internal carry-propagate delay for the block
G(b) Carry-generate delay for the block
A(b) Carry-assimilate delay for the block

In addition, skip and enable delay functions, Sh(b) and Eh(b), are defined for each skip
level h. In terms of this general model, our preceding analysis can be characterized as
corresponding to I(b) = b − 1, G(b) = b, A(b) = b, Sh(b) = 1, and Eh(b) = h + 1.
This is the model assumed by Turrini [Turr89]. Similar methods can be used to derive
optimal block widths in variable-block carry-lookahead adders [Chan92].

7.3 CARRY-SELECT ADDERS

One of the earliest logarithmic time adder designs is based on the conditional-sum
addition algorithm. In this scheme, blocks of bits are added in two ways: assuming an
incoming carry of 0 or of 1, with the correct outputs selected later as the block’s true
carry-in becomes known. With each level of selection, the number of known output bits
doubles, leading to a logarithmic number of levels and thus logarithmic time addition.
Underlying the building of conditional-sum adders is the carry-select principle, which
is described in this section.

A (single-level) carry-select adder is one that combines three k/2-bit adders of any
design into a k-bit adder (Fig. 7.9). One k/2-bit adder is used to compute the lower half
of the k-bit sum directly. Two k/2-bit adders are used to compute the upper k/2 bits of the
sum and the carry-out under two different scenarios: ck/2 = 0 or ck/2 = 1. The correct
values for the adder’s carry-out signal and the sum bits in positions k/2 through k−1 are
selected when the value of ck/2 becomes known. The delay of the resulting k-bit adder
is two gate levels more than that of the k/2-bit adders that are used in its construction.

The following simple analysis demonstrates the cost-effectiveness of the carry-select
method. Let us take the cost and delay of a single-bit 2-to-1 multiplexer as our units and
assume that the cost and delay of a k-bit adder are Cadd(k) and Tadd(k), respectively.

Carry-Select Adders 139

Figure 7.9
Carry-select adder for
k-bit numbers built
from three k/2-bit
adders.

k/2-bit adder
k/2-bit adder

k– 1 k/2 k/2– 1 0
 0

1

k/2+1 k/2+1 k/2

1 0
Mux

k/2
cout

ck/2

cin

High k/2 bits Low k/2 bits

k/2-bit adder

Then, the cost and delay of the carry-select adder of Fig. 7.9 are

Cselect−add(k) = 3Cadd(k/2)+ k/2+ 1

Tselect−add(k) = Tadd(k/2)+ 1

If we take the product of cost and delay as our measure of cost-effectiveness, the carry-
select scheme of Fig. 7.9 is more cost-effective than the scheme used in synthesizing its
component adders if and only if

[3Cadd(k/2)+ k/2+ 1][Tadd(k/2)+ 1] < Cadd(k)Tadd(k)

For ripple-carry adders, we have Cadd(k) = αk and Tadd(k) = τk. To simplify the
analysis, assume τ = α/2 > 1. Then, it is easy to show that the carry-select method
is more cost-effective than the ripple-carry scheme if k > 16/(α − 1). For α = 4 and
τ = 2, say, the carry-select approach is almost always preferable to ripple-carry. Similar
analyses can be carried out to compare the carry-select method against other addition
schemes.

Note that in the preceding analysis, the use of three complete k/2-bit adders was
assumed. With some adder types, the two k/2-bit adders at the left of Fig. 7.9 can share
some hardware, thus leading to even greater cost-effectiveness. For example, if the
component adders used are of the carry-lookahead variety, much of the carry network
can be shared between the two adders computing the sum bits with ck/2 = 0 and ck/2 = 1
(how?).

Note that the carry-select method works just as well when the component adders
have different widths. For example, Fig. 7.9 could have been drawn with one a-bit and
two b-bit adders used to form an (a + b)-bit adder. Then ca would be used to select
the upper b bits of the sum through a (b + 1)-bit multiplexer. Unequal widths for the
component adders is appropriate when the delay in deriving the selection signal ca is
different from that of the sum bits.

Figure 7.10 depicts how the carry-select idea can be carried one step further to obtain
a two-level carry-select adder. Sum and carry-out bits are computed for each k/4-bit block

140 Chapter 7 Variations in Fast Adders

k/4-bit adderk/4-bit adder

k/2 – 1 k/4 k/4 – 1 0
 0

1

k/4+1 k/4+1 k/4

1 0
Mux

k/4

k/4-bit adder

k – 1
 0

1

k/4+1 k/4+1 k/4

1 0
Mux

k/4-bit adder

3k/4 – 1 k/2
 0

1

1 0
Mux

k/2+1

k/4

ck/2

ck/4

cout

cin

, High k /2 bits Middle k /4 bits Low k /4 bits

3k/4

Figure 7.10 Two-level carry-select adder built of k/4-bit adders.

(except for the rightmost one) under two scenarios. The three first-level multiplexers,
each of which is k/4 + 1 bits wide, merge the results of k/4-bit blocks into those of
k/2-bit blocks. Note how the carry-out signals of the adders spanning bit positions k/2
through 3k/4 − 1 are used to select the most-significant k/4 bits of the sum under the
two scenarios of ck/2 = 0 or ck/2 = 1. At this stage, k/2 bits of the final sum are known.
The second-level multiplexer, which is k/2 + 1 bits wide, is used to select appropriate
values for the upper k/2 bits of the sum (positions k/2 through k − 1) and the adder’s
carry-out.

Comparing the two-level carry-select adder of Fig. 7.10 with a similar two-level
carry-lookahead adder (Fig. 6.4, but with 2-bit, rather than 4-bit, lookahead carry gen-
erators), we note that the one-directional top-to-bottom data flow in Fig. 7.10 makes
pipelining easier and more efficient. Of course, from Section 6.5 and the example in
Fig. 6.13, we know that carry-lookahead adders can also be implemented to possess
one-directional data flow. In such cases, comparison is somewhat more difficult, inso-
far as carry-select adders have a more complex upper structure (the small adders) and
simpler lower structure (the multiplexers).

Which design comes out ahead for a given word width depends on the implementation
technology, performance requirements, and other design constraints. Very often, the best
choice is a hybrid combination of carry-select and carry-lookahead (see Section 7.5).

To understand the similarities between carry-select and carry-lookahead adders, con-
sider a design similar to Fig. 7.9 in which only carry signals, rather than the final sum
bits, are of interest. Clearly, once all carries are known, the sum bits can be generated
rapidly by means of k XOR gates. Thus, the upper half of the new circuit derived from
Fig. 7.9 will be responsible for generating two versions of the carries, rather than two
versions of the sum bits. The carry ci+1 into position i + 1(i ≥ k/2) is g[k/2,i] when

Conditional-Sum Adder 141

ck/2 = 0, and it is t[k/2,i] when ck/2 = 1. Recall that t[k/2,i] = g[k/2,i] ∨ p[k/2,i]. Thus,
the pair of adders spanning positions k/2 through k − 1 in Fig. 7.9 become a parallel
prefix carry network that uses the signal pair (g, t) instead of the usual (g, p). The entire
structure of the modified design based on producing carries rather than sum bits is thus
quite similar to the Ladner-Fischer carry network of Fig. 6.7. It even suffers from the
same drawback of large fan-out for ck/2, which is used as the selection signal for k/2+1
two-way multiplexers.

7.4 CONDITIONAL-SUM ADDER

The process that led to the two-level carry-select adder of Fig. 7.10 can be continued
to derive a three-level k-bit adder built of k/8-bit adders, a four-level adder composed
of k/16-bit adders, and so on. A logarithmic time conditional-sum adder results if we
proceed to the extreme of having 1-bit adders at the very top. Thus, taking the cost and
delay of a 1-bit 2-to-1 multiplexer as our units, the cost and delay of a conditional-sum
adder are characterized by the following recurrences:

C(k) ≈ 2C(k/2)+ k + 2 ≈ k(log2 k + 2)+ kC(1)

T (k) = T (k/2)+ 1 = log2 k + T (1)

where C(1) and T (1) are the cost and delay of the circuit of Fig. 7.11 used at the top
to derive the sum and carry bits with a carry-in of 0 and 1. The term k + 2 in the first
recurrence represents an upper bound on the number of single-bit 2-to-1 multiplexers
needed for combining two k/2-bit adders into a k-bit adder.

The recurrence for cost is approximate, since for simplicity, we have ignored the fact
that the right half of Fig. 7.10 is less complex than its left half. In other words, we have
assumed that two parallel (b + 1)-bit multiplexers are needed to combine the outputs
from b-bit adders, although in some cases, one is enough.

An exact analysis leads to a comparable count for the number of 1-bit multiplexers
needed in a conditional-sum adder. Assuming that k is a power of 2, the required number

Figure 7.11
Top-level block for
1-bit addition in a
conditional-sum
adder.

sc

xy

sc

ii

ii+1 i+1 i

For c = 0iFor c = 1i

142 Chapter 7 Variations in Fast Adders

Table 7.2 Conditional-sum addition of two 16-bit numbers: The width of the block for
which the sum and carry bits are known doubles with each additional level, leading to
an addition time that grows as the logarithm of the word width k

x 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0
y 0 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1

Block Block Block sum and block carry-out
width carry-in 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

1 0 s 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1
c 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0

1 s 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
c 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

2 0 s 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1
c 0 0 0 1 1 0 1 0

1 s 1 0 1 1 0 0 1 0 0 1 0 0 1 0
c 0 0 1 1 1 1 1

4 0 s 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 1
c 0 1 1 1

1 s 0 1 1 1 0 0 1 0 0 1 0 0
c 0 1 1

8 0 s 0 1 1 1 0 0 0 1 0 1 0 0 0 1 1 1
c 0 1

1 s 0 1 1 1 0 0 1 0
c 0

16 0 s 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1
c 0

1 s
c

cout

cin

0

of multiplexers for a k-bit adder is

(k/2+ 1)+ 3(k/4+ 1)+ 7(k/8+ 1)+ · · · + (k − 1)2 = (k − 1)(log2 k + 1)

leading to an overall cost of (k − 1)(log2 k + 1)+ kC(1).
The conditional-sum algorithm can be visualized by the 16-bit addition example

shown in Table 7.2.
Given that a conditional-sum adder is actually a (log2 k)-level carry-select adder, the

comparisons and trade-offs between carry-select adders and carry-lookahead adders, as
discussed at the end of Section 7.3, are relevant here as well.

Hybrid Designs and Optimizations 143

7.5 HYBRID DESIGNS AND OPTIMIZATIONS

Hybrid adders are obtained by combining elements of two or more “pure” design meth-
ods to obtain adders with higher performance, greater cost-effectiveness, lower power
consumption, and so on. Since any two or more pure design methods can be combined in
a variety of ways, the space of possible designs for hybrid adders is immense. This leads
to a great deal of flexibility in matching the design to given requirements and constraints.
It also makes the designer’s search for an optimal design nontrivial. In this section, we
review several possible hybrid adders as representative examples.

The one- and two-level carry-select adders of Figs. 7.9 and 7.10 are essentially hybrid
adders, since the top-level k/2- or k/4-bit adders can be of any type. In fact, a common use
for the carry-select scheme is in building fast adders whose width would lead to inefficient
implementations with certain pure designs. For example, when 4-bit lookahead carry
blocks are used, both 16-bit and 64-bit carry-lookahead adders can be synthesized quite
efficiently (Fig. 6.4). A 32-bit adder, on the other hand, would require two levels of
lookahead and is thus not any faster than the 64-bit adder. Using 16-bit carry-lookahead
adders, plus a single carry-select level to double the width, is likely to lead to a faster
32-bit adder. The resulting adder has a hybrid carry-select/carry-lookahead design.

The reverse combination (viz., hybrid carry-lookahead/carry-select) is also possible
and is in fact used quite widely. An example hybrid carry-lookahead/carry-select adder
is depicted in Fig. 7.12. The small adder blocks, shown in pairs, may be based on
Manchester carry chains that supply the required g and p signals to the lookahead carry
generator and compute the final intermediate carries as well as the sum bits once the
block carry-in signals have become known.

Awider hybrid carry-lookahead/carry-select adder will likely have a multilevel carry-
lookahead network rather than a single lookahead carry generator as depicted in Fig. 7.12.
If the needed block g and p signals are produced quickly, the propagation of signals in
the carry-lookahead network can be completely overlapped with carry propagation in
the small carry-select adders. The carry-lookahead network of Fig. 6.13 was in fact
developed for use in such a hybrid scheme, with 8-bit carry-select adders based on
Manchester carry chains [Lync92]. The 8-bit adders complete their computation at about

Lookahead carry generator

Carry-select

c

g, p

in

MuxMuxMux

cout

0
1

0
1

0
1

Block

Figure 7.12 A hybrid carry-lookahead/carry-select adder.

144 Chapter 7 Variations in Fast Adders

ccccc
12 8 4 016

16-bit carry-lookahead adder

g
p[12,15]

[12,15] g
p[8,11]

[8,11] g
p[4,7]

[4,7] g
p[0,3]

[0,3]

c32c48

4-bit lookahead carry generator
(with carry-out)

Figure 7.13 Example 48-bit adder with hybrid ripple-carry/carry-lookahead design.

the same time that the carries c24, c32, c40, c48, and c56 become available (Fig. 6.13).
Thus, the total adder delay is only two logic levels more than that of the carry-lookahead
network.

Another interesting hybrid design is the ripple-carry/carry-lookahead adder, an exam-
ple of which is depicted in Fig. 7.13. This hybrid design is somewhat slower than a pure
carry-lookahead scheme, but its simplicity and greater modularity may compensate for
this drawback. The analysis of cost and delay for this hybrid design relative to pure
ripple-carry and carry-lookahead adders is left as an exercise, as is the development and
analysis of the reverse carry-lookahead/ripple-carry hybrid combination.

Another hybrid adder example uses the hybrid carry-lookahead/conditional-sum
combination. One drawback of the conditional-sum adder for wide words is the require-
ment of large fan-out for the signals controlling the multiplexers at the lower levels (Fig.
7.10). This problem can be alleviated by, for example, using conditional-sum addition
in smaller blocks, forming the interblock carries through carry-lookahead. For detailed
description of one such adder, used in Manchester University’s MU5 computer, see
[Omon94, pp. 104–111].

A hybrid adder may use more than two different schemes. For example, the 64-bit
adder in the Compaq/DEC Alpha 21064 microprocessor is designed using four different
methods [Dobb92]. At the lowest level, 8-bit Manchester carry chains are employed.
The lower 32-bits of the sum are derived via carry lookahead at the second level, while
conditional-sum addition is used to obtain two versions of the upper 32 bits. Carry-select
is used to pick the correct version of the sum’s upper 32 bits.

Clearly, it is possible to combine ideas from various designs in many different ways,
giving rise to a steady stream of new implementations and theoretical proposals for the
design of fast adders. Different combinations become attractive with particular tech-
nologies in view of their specific cost factors and fundamental constraints [Kant93].
In addition, application requirements, such as low power consumption, may shift the
balance in favor of a particular hybrid design.

Just as optimal carry-skip adders have variable block widths, it is often possible to
reduce the delay of other (pure or hybrid) adders by optimizing the block widths. For
example, depending on the implementation technology, a carry-lookahead adder with
fixed blocks may not yield the lowest possible delay [Niga95]. Again, the exact opti-
mal configuration is highly technology-dependent. In fact, with modern very large-scale
integration technology, gate count alone is no longer a meaningful measure of imple-
mentation cost. Designs that minimize or regularize the interconnection may actually be

Modular Two-Operand Adders 145

Figure 7.14
Example arrival times
for operand bits in
the final fast adder of
a tree multiplier
[Oklo96].

15

10

 5

 0
Bit position

Latency from inputs
in XOR-gate delays

0 20 40 60

more cost-effective despite using more gates. The ultimate test of cost-effectiveness for
a particular hybrid design or “optimal” configuration is its actual speed and cost when
implemented with the target technology.

So far our discussion of adder delay has been based on the tacit assumption that
all input digits are available at the outset, or at time 0, and that all output digits are
computed and taken out after worst-case carries have propagated. The other extreme,
where input/output digits arrive and leave serially, leads to very simple digit-serial adder
designs. In between the two extremes, there are practical situations in which different
arrival times are associated with the input digits or certain output digits must be produced
earlier than others.

We will later see, for example, that in multiplying two binary numbers, the partial
products are reduced to two binary numbers, which are then added in a fast two-operand
adder to produce the final product. The individual bits of these two numbers become
available at different times in view of the differing logic path depths from primary inputs.
Figure 7.14 shows a typical example for the input arrival times at various bit positions
of this final fast adder. This information can be used in optimizing the adder design
[Oklo96]. A number of details and additional perspective can be found in [Liu03] and
[Yeh00].

7.6 MODULAR TWO-OPERAND ADDERS

In some applications, with redundant number system arithmetic and cryptographic algo-
rithms being the most notable examples, the sum of input operands x and y must be
computed modulo a given constant m. In other words, we are interested in deriving
(x+ y) mod m, rather than x+ y. An obvious approach would be to perform the required
computation in two stages: (1) forming x + y, using any of the adder designs described
thus far, and (2) reducing x + y modulo m. Because the latency of the latter modular
reduction step can be significant for an arbitrary value of m, direct methods similar to
the carry-select approach have been used to combine the two steps.

146 Chapter 7 Variations in Fast Adders

Let us first focus on unsigned operands and certain special values of m that lead
to simple modular addition. Clearly, when m = 2k , the modulo-m sum is obtained by
simply ignoring the carry-out. We also know that for m = 2k − 1, using end-around
carry allows us to reduce the sum modulo m by means of a conventional binary adder. A
third special case pertains to m = 2k +1. Here, we need k+1 bits to represent the 2k +1
different residues modulo m. Because we can represent 2k+1 distinct values with k + 1
bits, different encodings of the 2k +1 residues are possible. An interesting encoding that
has been found to be quite efficient is the diminished-1 encoding. With this encoding, 0
is represented by asserting a special flag bit and setting the remaining k bits to 0, while
a nonzero value x is represented by deasserting the flag bit and appending it with the
representation of x − 1.

■ EXAMPLE 7.3 Design a modulo-17 adder for unsigned integer operands in the range
[0, 16], represented in the diminished-1 format.

Each of the input operands x and y consists of a 0-flag bit and a 4-bit binary magnitude
that is one less than its true value, if nonzero. The design described in the following is based
on the assumption that both operands are nonzero, as is their modulo-17 sum; that is, we
assume x �= 0, y �= 0, x + y �= 17. Augmenting the design to correctly handle these special
cases is left as an exercise. The output should be x+ y− 1, the diminished-1 representation
of x + y, if x + y ≤ 17, and it should be x + y − 18, the diminished-1 representation of
x+y−17, if x+y ≥ 18. The desired results above can be rewritten as (x−1)+(y−1)+1 if
(x−1)+(y−1) ≤ 15 and (x−1)+(y−1)−16 if (x−1)+(y−1) ≥ 16. These observations
suggest that adding x − 1 and y − 1 with an inverted end-around carry (carry-in set to the
complement of carry-out) will produce the desired result in either case. The inverted end-
around carry arrangement will add 1 to the sum of x − 1 and y − 1 when cout = 0, that is,
(x−1)+(y−1) ≤ 15, and will subtract 16 (by dropping the outgoing carry) when cout = 1,
corresponding to the condition (x − 1)+ (y − 1) ≥ 16.

Adder

x y

01

x + y

Mux

(x + y) mod m

Sign bit

 Adder

x + y –m

Carry-save adder

–m

Figure 7.15 Fast modular addition.

Problems 147

For a general modulus m, we need to compare the sum x + y to the modulus m,
subtracting m from the computed sum if it equals or exceeds m. Because both the com-
parison and the ensuing subtraction require full carry propagation in the worst case, this
approach would add a significant delay to the operation, which may be unacceptable. An
alternative is to compute x+y and x+y−m in parallel and then use the sign of the latter
value to decide whether x+ y ≥ m. If so, then x+ y−m is the correct result; otherwise,
x+ y should be selected as the output. The resulting design, shown in Fig. 7.15, is quite
fast, given that it only adds a full-adder level (the carry-save adder) and a multiplexer to
the critical path of a conventional adder.

PROBLEMS 7.1 Optimal single-level carry-skip adders

a. Derive the optimal block width in a fixed-block carry-skip adder using the
assumptions of Section 7.1, except that the carry production or assimilation
delay in a block of width b is b2/2 rather than b. Interpret the result.

b. Repeat part a with variable-width blocks. Hint: There will be several blocks
of width b before the block width increases to b+ 1.

7.2 Optimal two-level carry-skip adders

For the two-level carry-skip adder of Example 7.2, Section 7.2, verify the block
sizes given in Table 7.1 and draw a complete diagram for a 24-bit adder derived
by pruning the design of Fig. 7.7.

7.3 Optimal variable-block carry-skip adders

a. Build optimal single-level carry-skip adders for word widths k = 24 and
k = 80.

b. Repeat part a for two-level carry-skip adders.
c. Repeat part a for three-level carry-skip adders.

7.4 Carry-skip adders with given building blocks

a. Assume the availability of 4-bit and 8-bit adders with delays of 3 and 5 ns,
respectively, and of 0.5-ns logic gates. Each of our building block adders
provides a “propagate” signal in addition to the normal sum and carry-out
signals. Design an optimal single-level carry-skip adder for 64-bit unsigned
integers.

b. Repeat part a for a two-level carry-skip adder.
c. Would we gain any advantage by going to three levels of skip for the adder of

part a?
d. Outline a procedure for designing optimal single-level carry-skip adders from

adders of widths b1 < b2 < · · · < bh and delays d1 < d2 < · · · < dh, plus
logic gates of delay δ.

148 Chapter 7 Variations in Fast Adders

7.5 Fixed-block, two-level carry-skip adders

Using the assumptions in our analysis of single-level carry-skip adders in Section
7.1, present an analysis for a two-level carry-skip adder in which the block widths
b1 and b2 in levels 1 and 2, respectively, are fixed. Hence, assuming that b1 and b2
divide k, there are k/b2 second-level blocks and k/b1 first-level blocks, with each
second-level block encompassing b2/b1 first-level blocks. Determine the optimal
block widths b1 and b2. Note that because of the fixed block widths, skip logic
must be included even for the rightmost block at each level.

7.6 Optimized multilevel carry-select adders

Consider the hierarchical synthesis of a k-bit multilevel carry-select adder where
in each step of the process, an i-bit adder is subdivided into smaller j-bit and
(i − j)-bit adders, so as to reduce the overall latency.

a. At what value of i does it not make sense to further subdivide the block?
b. When the width i of a block is odd, the two blocks derived from it will have to

be of different widths. Is it better to make the right-hand or the left-hand block
wider?

c. Evaluate the suggestion that, just as in carry-skip adders, blocks of different
widths be used to optimize the design of carry-select adders.

7.7 Design of carry-select adders

Design 64-bit adders using ripple-carry blocks and 0, 1, 2, 3, or 4 levels of carry
select.

a. Draw schematic diagrams for the three- and four-level carry-select adders,
showing all components and selection signals.

b. Obtain the exact delay and cost for each design in terms of the number of
gates and gate levels using two-input NAND gates throughout. Construct the
ripple-carry blocks using the full-adder design derived from Figs. 5.2a and 5.1c.

c. Compare the five designs with regard to delay, cost, and the composite delay-
cost figure of merit and discuss.

7.8 The conditional-sum addition algorithm

a. Modify Table 7.2 to correspond to the same addition, but with cin = 1.
b. Using a tabular representation as in Table 7.2, show the steps of deriving the

sum of 24-bit numbers 0001 0110 1100 1011 0100 1111 and 0010 0111 0000
0111 1011 0111 by means of the conditional-sum method.

7.9 Design of conditional-sum adders

Obtain the exact delay and cost for a 64-bit conditional-sum adder in terms of the
number of gates and gate levels using two-input NAND gates throughout. For the
topmost level, use the design given in Fig. 7.11.

Problems 149

7.10 Hybrid carry-completion adder

Suppose we want to design a carry-completion adder to take advantage of its good
average-case delay but would like to improve on its O(k) worst-case delay. Discuss
the suitability for this purpose of each of the following hybrid designs.

a. Completion-sensing blocks used in a single-level carry-skip arrangement.
b. Completion-sensing blocks used in a single-level carry-select arrangement.
c. Ripple-carry blocks with completion-sensing skip logic (separate skip circuits

for 0 and 1 carries).

7.11 Hybrid ripple-carry/carry-lookahead adders

Consider the hybrid ripple-carry/carry-lookahead adder design depicted in
Fig. 7.13.

a. Present a design for the modified lookahead carry generator circuit that also
produces the block’s carry-out (e.g., c16 in Fig. 7.13).

b. Develop an expression for the total delay of such an adder. State your
assumptions.

c. Under what conditions, if any, is the resulting adder faster than an adder with
pure carry-lookahead design?

7.12 Hybrid carry-lookahead/ripple-carry adders

Consider a hybrid adder based on ripple-carry blocks connected together with
carry-lookahead logic (i.e., the reverse combination compared with the design in
Fig. 7.13). Present an analysis for the delay of such an adder and state under what
conditions, if any, the resulting design is preferable to a pure carry-lookahead
adder or to the hybrid design of Fig. 7.13.

7.13 Hybrid carry-select/carry-lookahead adders

Show how carry-lookahead adders can be combined by a carry-select scheme
to form a k-bit adder without duplicating the carry-lookahead logic in the upper
k/2 bits.

7.14 Building fast adders from 4-bit adders

Assume the availability of fast 4-bit adders with one (two) gate delay(s) to bit
(block) g and p signals and two gate delays to sum and carry-out once the bit g
and p and block carry-in signals are known. Derive the cost and delay of each of
the following 16-bit adders:

a. Four 4-bit adders cascaded through their carry-in and carry-out signals.
b. Single-level carry-skip design with 4-bit skip blocks.
c. Single-level carry-skip design with 8-bit skip blocks.
d. Single-level carry-select, with each of the 8-bit adders constructed by

cascading two 4-bit adders.

150 Chapter 7 Variations in Fast Adders

7.15 Carry-lookahead versus hybrid adders

We want to design a 32-bit fast adder from standard building blocks such as 4-bit
binary full adders, 4-bit lookahead carry circuits, and multiplexers. Compare the
following adders with respect to cost and delay:

a. Adder designed with two levels of lookahead.
b. Carry-select adder built of three 16-bit single-level carry-lookahead adders.

7.16 Comparing fast two-operand adders

Assume the availability of 1-bit full adders; 1-bit, two-input multiplexers, and
4-bit lookahead carry circuits as unit-delay building blocks. Draw diagrams for,
and compare the speeds and costs of, the following 16-bit adder designs.

a. Optimal variable-block carry-skip adder using a multiplexer for each skip
circuit.

b. Single-level carry-select adder with 8-bit ripple-carry blocks.
c. Two-level carry-select adder with 4-bit ripple-carry blocks.
d. Hybrid carry-lookahead/carry-select adder with duplicated 4-bit ripple-carry

blocks in which the carry-outs with cin = 0 and cin = 1 are used as the group
g and p signals.

7.17 Optimal adders with input timing information

For each fast-adder type studied in Chapters 6 and 7, discuss how the availability
of input bits at different times (Fig. 7.14) could be exploited to derive faster
designs.

7.18 Fractional precision addition

a. We would like to design an adder that either adds two 32-bit numbers in their
entirety or their lower and upper 16-bit halves independently. For each adder
design discussed in Chapters 5–7, indicate how the design can be modified to
allow such parallel half-precision arithmetic.

b. Propose a hybrid adder design that is particularly efficient for the design of
part a.

c. Repeat part b, this time assuming two fractional precision modes: 4× (8-bit)
or 2× (16-bit).

7.19 Design of fast adders

Assuming that 4-bit binary adders with full internal lookahead (3 gate delays
overall) are available and that everything else must be built from NOT and two-
input AND and OR gates, design complete 16-bit carry-skip and carry-lookahead
adders and compare them with respect to speed and cost. Assume that the 4-bit
adders supply cout and block g and p signals.

Problems 151

7.20 Design of fast adders

Discuss the trade-offs involved in implementing a 64-bit fast adder in the fol-
lowing ways, assuming that the adder blocks used supply the block g and
p signals.

a. Two-level carry-lookahead with 8-bit adder blocks and a second level 8-bit
lookahead carry circuit.

b. Three-level carry-lookahead with 4-bit adder blocks and 4-bit lookahead carry
circuits in two levels.

c. Two-level lookahead with 4-bit blocks and 8-bit lookahead carry circuit,
followed by carry-select.

d. Two-level lookahead with 8-bit blocks and 4-bit lookahead carry circuit,
followed by carry-select.

7.21 Carry-skip versus carry-select adders

Compare the costs and delays of 16-bit single-level carry-skip and carry-select
adders, each constructed from 4-bit adder blocks and additional logic as needed.
Which design would you consider more cost-effective and why? State all your
assumptions clearly.

7.22 Comparing various adder designs

Compare the following 16-bit adders with respect to cost (gate count) and delay
(gate levels on the critical path). Show your assumptions and reasoning and
summarize the results in a 2× 4 table.

a. Ripple-carry adder.
b. Completion sensing adder (use the average delay for comparisons).
c. Single-level carry-lookahead adder with 4-bit blocks.
d. Single-level carry-skip adder with 4-bit blocks.

7.23 Self-timed carry-skip adder

a. Apply the carry-skip idea to the self-timed adder of Fig. 5.9, illustrating the
result by drawing a block diagram similar to that in Fig. 7.1 for a 16-bit
carry-completion adder made of four 4-bit skip blocks.

b. Analyze the expected carry-completion time in the adder of part a, when blocks
of fixed width b are used to build a k-bit self-timed adder.

c. Based on the result of part b, discuss the practicality of self-timed carry-skip
adders.

7.24 Saturating adder

Study the problem of converting a carry-lookahead adder into a saturating adder,
so that the added latency as a result of the saturation property is as small as
possible.

152 Chapter 7 Variations in Fast Adders

7.25 Modulo-(2k − 1) fast adder

We know that any k-bit mod-2k adder can be converted to a mod-(2k − 1) adder
by connecting its carry-out to carry-in (end-around carry). This may slow down
the adder because, in general, the critical path could be elongated. Show that
a mod-(2k − 1) adder that is as fast as a mod-2k adder can be designed by
wrapping around the p (propagate) and g (generate) signals instead of carry-out
[Kala00].

7.26 Combined binary/decimal fast adder

Design a 64-bit carry-lookahead adder that can be used as a 2’s-complement binary
adder or as a 16-digit decimal adder with binary-coded decimal encoding of each
digit. Hint: Adding 6 to each digit of one operand allows you to share all the
circuitry for carries associated with 4-bit blocks and beyond. Use carry-select
within 4-bit blocks to complete the process.

7.27 Alternative formulation of carry-lookahead addition

Our discussion in Sections 6.4 and 6.5 was based on the c/ operator that combines
the carry signals for a pair of groups. In some implementation technologies, three
signal pairs can be combined in a more complex circuit that may not be noticeably
slower.

a. Define the three-input ¢3 operator in a way that it can be used in building carry
networks.

b. Draw a structure similar to the Brent–Kung design of Fig. 6.9 using the new
c/3 operator.

c. Repeat part b for the Kogge–Stone design of Fig. 6.10.
d. Repeat part b assuming that only the carries c3, c6, c9, . . . are needed

because carry-select is used to determine the sum outputs in groups of
3 bits.

e. Repeat part c assuming that only the carries c3, c6, c9, . . . are needed (as in
part d).

7.28 Carry-skip addition

Assuming the use of ripple-carry blocks (1-unit ripple delay per bit position) to
implement a 32-bit single-level carry-skip adder with 1-unit multiplexer delay for
skipping, compare the following two sets of block widths in terms of the overall
adder latency. Assume that forming the block propagate signal takes 1 unit of
time for block widths up to 4, and 2 units of time for block widths 5–8. State all
other assumptions. Block widths are listed from the most-significant end to the
least-significant end.

2 3 4 5 5 5 4 3 2
3 4 5 8 5 4 3

References and Further Readings 153

7.29 Alternate design of carry-skip logic

The following circuit optimization may be attempted for the skip logic in Fig. 7.1.
Take the multiplexer that produces c4 = p̄[0,3]d3 ∨ p[0,3]c0, where d3 is the carry-
out of position 3. Removing p̄[0,3] from this expression leaves d3 ∨ p[0,3]c0, which
is logically equivalent to the original expression (why?), but simplifies the three-
gate multiplexer to a two-gate circuit. Show that this simplification is ill-advised,
in the sense that after the simplification, it would be possible for an addition that
follows another one with all the internal carries equal to 1 to take as much time as
ripple-carry addition.

REFERENCES AND FURTHER READINGS

[Bedr62] Bedrij, O. J., “Carry-Select Adder,” IRE Trans. Electronic Computers, Vol. 11,
pp. 340–346, 1962.

[Chan90] Chan, P. K., and M. D. F. Schlag, “Analysis and Design of CMOS Manchester Adders
with Variable Carry Skip,” IEEE Trans. Computers, Vol. 39, pp. 983–992, 1990.

[Chan92] Chan, P. K., M. D. F. Schlag, C. D. Thomborson, and V. G. Oklobdzija, “Delay
Optimization of Carry-Skip Adders and Block Carry-Lookahead Adders Using
Multidimensional Dynamic Programming,” IEEE Trans. Computers, Vol. 41, No. 8,
pp. 920–930, 1992.

[Dobb92] Dobberpuhl, D., et al., “A 200 MHz 64-b Dual-Issue CMOS Microprocessor,” IEEE
J. Solid-State Circuits, Vol. 27, No. 11, 1992.

[Guyo87] Guyot, A., and J.-M. Muller, “A Way to Build Efficient Carry-Skip Adders,” IEEE
Trans. Computers, Vol. 36, No. 10, pp. 1144–1152, 1987.

[Jabe09] Jaberipur, G. and B. Parhami, “Unified Approach to the Design of Modulo-(2n ± 1)
Adders Based on Signed-LSB Representation of Residues,” Proc. 19th IEEE Int’l
Symp. Computer Arithmetic, June 2009, pp. 57–64.

[Kala00] Kalampoukas, L., D. Nikolos, C. Efstathiou, H. T. Vergos, and J. Kalamatianos,
“High-Speed Parallel-Prefix Modulo 2n − 1 Adders,” IEEE Trans. Computers, Vol.
49, No. 7, pp. 673–680, 2000.

[Kant93] Kantabutra, V., “Designing Optimum One-Level Carry-Skip Adders,” IEEE Trans.
Computers, Vol. 42, No. 6, pp. 759–764, 1993.

[Lehm61] Lehman, M., and N. Burla, “Skip Techniques for High-Speed Carry Propagation in
Binary Arithmetic Units,” IRE Trans. Electronic Computers, Vol. 10, pp. 691–698,
1961.

[Liu03] Liu, J., S. Zhou, H. Zhu, and C.-K. Cheng, “An Algorithmic Approach for Generic
Parallel Adders,” Proc. IEEE/ACM Int’l Conf. Computer-Aided Design, November
2003, pp. 734–740.

[Lync92] Lynch, T., and E. Swartzlander, “A Spanning Tree Carry Lookahead Adder,” IEEE
Trans. Computers, Vol. 41, No. 8, pp. 931–939, 1992.

[Maje67] Majerski, S., “On Determination of Optimal Distributions of Carry Skip in Adders,”
IEEE Trans. Electronic Computers, Vol. 16, pp. 45–58, 1967.

154 Chapter 7 Variations in Fast Adders

[Niga95] Nigaglioni, R. H., and E. E. Swartzlander, “Variable Spanning Tree Adder,” Proc.
Asilomar Conf. Signals, Systems, and Computers, 1995, pp. 586–590, 1995.

[Oklo96] Oklobdzija, V. G., D. Villeger, and S. S. Liu, “A Method for Speed Optimized Partial
Product Reduction and Generation of Fast Parallel Multipliers Using an Algorithmic
Approach,” IEEE Trans. Computers, Vol. 45, No. 3, pp. 294–306, 1996.

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture and
Implementation, Prentice-Hall, 1994.

[Skla60] Sklansky, J., “Conditional-Sum Addition Logic,” IRE Trans. Electronic Computers,
Vol. 9, No. 2, pp. 226–231, 1960.

[Turr89] Turrini, S., “Optimal Group Distribution in Carry-Skip Adders,” Proc. 9th Symp.
Computer Arithmetic, pp. 96–103, 1989.

[Yeh00] Yeh, W.-C., and C.-W. Jen, “High-Speed Booth-Encoded Parallel Multiplier Design,”
IEEE Trans. Computers, Vol. 49, No. 7, pp. 692–701, 2000.

8 Multioperand Addition

■ ■ ■

“If A equals success, then the formula is A = X + Y + Z. X is work.
Y is play. Z is keep your mouth shut.”

A L B E R T E I N S T E I N

■ ■ ■

I n Chapters 6 and 7, we covered several speedup methods for adding two operands.

Our primary motivation in dealing with multioperand addition in this chapter is

that both multiplication and inner-product computation reduce to adding a set of

numbers, namely, the partial products or the component products. The main idea

used is that of deferred carry assimilation made possible by redundant representation

of the intermediate results.

8.1 Using Two-Operand Adders

8.2 Carry-Save Adders

8.3 Wallace and Dadda Trees

8.4 Parallel Counters and Compressors

8.5 Adding Multiple Signed Numbers

8.6 Modular Multioperand Adders

8.1 USING TWO-OPERAND ADDERS

Multioperand addition is implicit in both multiplication and computation of vector inner
products (Fig. 8.1). In multiplying a multiplicand a by a k-digit multiplier x, the k
partial products xia must be formed and then added. For inner-product computation,
the component product terms p(j) = x(j)y(j) obtained by multiplying the corresponding
elements of the two operand vectors x and y, need to be added. Computing averages
(e.g., in the design of a mean filter) is another application that requires multioperand
addition.

We will assume that the n operands are unsigned integers of the same width k and
are aligned at the least-significant end, as in the right side of Fig. 8.1. Extension of the

155

156 Chapter 8 Multioperand Addition

Figure 8.1
Multioperand
addition problems
for multiplication or
inner-product
computation shown
in dot notation.

Figure 8.2 Serial
implementation of
multioperand
addition with a single
two-operand adder.

Adder

x
k Bits

k + log n bits
�
j =0

i –1

(i)

2 x

Partial sum
 register

(j)

methods to signed operands are discussed in Section 8.5. Application to multiplication
is the subject of Part III.

Figure 8.2 depicts a serial solution to the multioperand addition problem using a
single two-operand adder. The binary operands x(i), i = 0, 1, · · · , n−1, are applied, one
per clock cycle, to one input of the adder, with the other input fed back from a partial
sum register. Since the final sum can be as large as n(2k − 1), the partial sum register
must be log2(n2k − n+ 1) ≈ k + log2 n bits wide.

Assuming the use of a logarithmic-time fast adder, the total latency of the scheme of
Fig. 8.2 for adding n operands of width k is

Tserial−multi−add = O(n log(k + log n))

Since k + log n is no less than max(k, log n) and no greater than max(2k, 2 log n), we
have log(k + log n) = O(log k + log log n) and

Tserial−multi−add = O(n log k + n log log n)

Therefore, the addition time grows superlinearly with n when k is fixed and logarithmi-
cally with k for a given n.

One can pipeline this serial solution to get somewhat better performance. Figure 8.3
shows that if the adder is implemented as a four-stage pipeline, then three adders can
be used to achieve the maximum possible throughput of one operand per clock cycle.
Note that the presence of latches is assumed after each of the four adder stages and that a
delay block simply represents a null operation followed by latches. The operation of the
circuit in Fig. 8.3 is best understood if we trace the partially computed results from left
to right. At the clock cycle when the ith input value x(i) arrives from the left and the sum
of input values up to x(i−12) is output at the right, adder A is supplied with the two values
x(i) and x(i−1). The partial results stored at the end of adder A’s four stages correspond
to the computations x(i−1) + x(i−2), x(i−2) + x(i−3), x(i−3) + x(i−4), and x(i−4) + x(i−5),
with the latter final result used to label the output of adder A. Other labels attached to

Using Two-Operand Adders 157

x

(i–10)(i–9)

Delay

Delays

Adder A

Adder B

Adder C

i–12

j =0

x (j)

x(i–1)

x(i) x +(i–8) x + (i–11)x + x

(i–7)x +(i–6)

(i–5)x +(i–4) x

�

Figure 8.3 Serial multioperand addition when each adder is a four-stage pipeline.

Figure 8.4 Adding
seven numbers in a
binary tree of adders.

Adder Adder Adder

AdderAdder

Adder

k

k+1

k+3

k+2k+2

k+1 k+1

k kk kk k

the lines in Fig. 8.3 should allow the reader to continue this process, culminating in the
determination of partial/final results of adder C. Even though the clock cycle is now
shorter because of pipelining, the latency from the first input to the last output remains
asymptotically the same with h-stage pipelining for any fixed h.

Note that the schemes shown in Figs. 8.2 and 8.3 work for any prefix computation
involving a binary operator ⊗, provided the adder is replaced by a hardware unit corre-
sponding to the binary operator ⊗. For example, similar designs can be used to find the
product of n numbers or the largest value among them.

For higher speed, a tree of two-operand adders might be used, as in Fig. 8.4. Such
a binary tree of two-operand adders needs n − 1 adders and is thus quite costly if built
of fast adders. Strange as it may seem, the use of simple and slow ripple-carry (or even
bit-serial) adders may be the best choice in this design. If we use fast logarithmic-time
adders, the latency will be

Ttree−fast−multi−add = O(log k + log(k + 1)+ · · · + log(k + 	log2 n
 − 1))

= O(log n log k + log n log log n)

The preceding equality can be proven by considering the two cases of log2 n < k and
log2 n > k and bounding the right-hand side in each case. Supplying the needed details
of the proof is left as an exercise. If we use ripple-carry adders in the tree of Fig. 8.4,
the delay becomes

Ttree−ripple−multi−add = O(k + log n)

158 Chapter 8 Multioperand Addition

Figure 8.5
Ripple-carry adders
at levels i and i + 1 in
the tree of adders
used for
multioperand
addition.

. . .

 . . . Level i

Level i +1

HAFA

HAFA

t

t +1

tt +1t +1

t +1

t +1

t + 2

t + 2 t + 2

t + 2

t + 3
t + 2t + 3

which can be less than the delay with fast adders for large n. Comparing the costs of this
and the preceding schemes for different ranges of values for the parameters k and n is
left as an exercise.

Figure 8.5 shows why the delay with ripple-carry adders is O(k + log n). There are
	log2 n
 levels in the tree. An adder in the (i + 1)th level need not wait for full carry
propagation in level i to occur, but rather can start its addition one full-adder (FA) delay
after level i. In other words, carry propagation in each level lags 1 time unit behind the
preceding level. Thus, we need to allow constant time for all but the last adder level,
which needs O(k + log n) time.

Can we do better than the O(k+log n) delay offered by the tree of ripple-carry adders
of Fig. 8.5? The absolute minimum time is O(log(kn)) = O(log k + log n), where kn
is the total number of input bits to be processed by the multioperand adder, which is
ultimately composed of constant–fan-in logic gates. This minimum is achievable with
carry-save adders (CSAs).

8.2 CARRY-SAVE ADDERS

We can view a row of binary FAs as a mechanism to reduce three numbers to two
numbers rather than as one to reduce two numbers to their sum. Figure 8.6 shows the
relationship of a ripple-carry adder for the latter reduction and a CSA for the former (see
also Fig. 3.5).

Figure 8.7 presents, in dot notation, the relationship shown in Fig. 8.6. To specify
more precisely how the various dots are related or obtained, we agree to enclose any
three dots that form the inputs to a FA in a dashed box and to connect the sum and carry
outputs of an FA by a diagonal line (Fig. 8.8). Occasionally, only two dots are combined
to form a sum bit and a carry bit. Then the two dots are enclosed in a dashed box and
the use of a half-adder (HA) is signified by a cross line on the diagonal line connecting
its outputs (Fig. 8.8).

Dot notation suggests another way to view the function of a CSA: as converter of a
radix-2 number with the digit set [0, 3] (3 bits in one position) to one with the digit set
[0, 2] (2 bits in one position).

A CSA tree (Fig. 8.9) can reduce n binary numbers to two numbers having the same
sum in O(log n) levels. If a fast logarithmic-time carry-propagate adder (CPA) is then
used to add the two resulting numbers, we have the following results for the cost and

Carry-Save Adders 159

Figure 8.6 A
ripple-carry adder
turns into a
carry-save adder if
the carries are saved
(stored) rather than
propagated.

FA FAFA FA FAFA

FA FAFA FA FAFA

Cut

Figure 8.7 The CPA
and CSA functions in
dot notation. Carry-propagate adder

Carry-save adder
or
(3; 2)-counter
or
3-to-2 reduction circuit

cin

cout

Figure 8.8
Specifying FA and HA
blocks, with their
inputs and outputs,
in dot notation.

Half-adder
Full-adder

Figure 8.9 Tree of
CSAs reducing seven
numbers to two.

CSACSA

CSA

CSA

CSA

delay of n-operand addition:

Ccarry−save−multi−add = (n− 2)CCSA + CCPA

Tcarry−save−multi−add = O(tree height+ TCPA) = O(log n+ log k)

The needed CSAs are of various widths, but generally the widths are close to k bits; the
CPA is of width at most k + log2 n.

160 Chapter 8 Multioperand Addition

Figure 8.10
Addition of seven
6-bit numbers in dot
notation.

12 FAs

6 FAs

6 FAs

4 FAs + 1 HA

7-bit adder

Total cost = 7-bit adder + 28 FAs + 1 HA

 8 7 6 5 4 3 2 1 0 Bit position

 7 7 7 7 7 7 6 � 2 = 12 FAs
 2 5 5 5 5 5 3 6 FAs
 3 4 4 4 4 4 1 6 FAs
 1 2 3 3 3 3 2 1 4 FAs + 1 HA
 2 2 2 2 2 1 2 1 7-bit adder
 Carry-propagate adder
 1 1 1 1 1 1 1 1 1

Figure 8.11 Representing a seven-operand addition in tabular form.

An example for adding seven 6-bit numbers is shown in Fig. 8.10. A more compact
tabular representation of the same process is depicted in Fig. 8.11, where the entries
represent the number of dots remaining in the respective columns or bit positions. We
begin on the first row with seven dots in each of bit positions 0–5; these dots represent
the seven 6-bit inputs. Two FAs are used in each 7-dot column, with each FA converting
three dots in its column to one dot in that column and one dot in the next higher column.
This leads to the distribution of dots shown on the second row of Fig. 8.11. Next, one
FA is used in each of the bit positions 0–5 containing three dots or more, and so on, until
no column contains more than two dots (see below for details). At this point, a CPA is

Carry-Save Adders 161

used to reduce the resulting two numbers to the final 9-bit sum represented by a single
dot in each of the bit positions 0–8.

In deriving the entries of a row from those of the preceding one, we begin with
column 0 and proceed to the leftmost column. In each column, we cast out multiples of
3 and for each group of three that we cast out, we include 1 bit in the same column and
1 bit in the next column to the left. Columns at the right that have already been reduced
to 1 need no further reduction. The rightmost column with a 2 can be either reduced
using an HA or left intact, postponing its reduction to the final CPA. The former strategy
tends to make the width of the final CPA smaller, while the latter strategy minimizes
the number of FAs and HAs at the expense of a wider CPA. In the example of Fig.
8.10, and its tabular form in Fig. 8.11, we could have reduced the width of the final
CPA from 7 bits to 6 bits by applying an extra HA to the two dots remaining in bit
position 1.

Figure 8.12 depicts a block diagram for the carry-save addition of seven k-bit num-
bers. By tagging each line in the diagram with the bit positions it carries, we see that
even though the partial sums do grow in magnitude as more numbers are combined,
the widths of the CSAs stay pretty much constant throughout the tree. Note that the
lowermost CSA in Fig. 8.12 could have been made only k − 1 bits wide by letting
the two lines in bit position 1 pass through. The CPA would then have become k + 1
bits wide.

Carry-save addition can be implemented serially using a single CSA, as depicted in
Fig. 8.13. This is the preferred method when the operands arrive serially or must be read
out from memory one by one. Note, however, that in this case both the CSA and final
CPA will have to be wider.

Figure 8.12 Adding
seven k-bit numbers
and the CSA/CPA
widths required.

k-bit CPA

k-bit CSA k-bit CSA

k-bit CSA

k-bit CSA

0k+2

The index pair
[i, j] means that
bit positions
from i up to j
are involved.

k-bit CSA

[0, k–1]
[0, k–1]

[0, k–1]
[0, k–1]

[0, k – 1][0, k – 1]

[0, k–1]
[0, k–1]

[0, k–1]

[1, k] [1, k]

[1, k]

[1, k]

[0, k – 1]

[2, k +1] [2, k +1]

[2, k +1]

[2, k +1] [1, k – 1]

1

[1, k +1]

162 Chapter 8 Multioperand Addition

Figure 8.13 Serial
carry-save addition
by means of a single
CSA.

CSA

Input

Sum register
Carry register

Output

CPA

8.3 WALLACE AND DADDA TREES

The CSAtree of Fig. 8.12, which reduces seven k-bit operands to two (k+2)-bit operands
having the same sum, is known as a seven-input Wallace tree. More generally, an n-input
Wallace tree reduces its k-bit inputs to two (k+ log2 n− 1)-bit outputs. Since each CSA
reduces the number of operands by a factor of 1.5, the smallest height h(n) of an n-input
Wallace tree satisfies the following recurrence:

h(n) = 1+ h(2n/3
)

Applying this recurrence provides an exact value for the height of an n-input Wallace
tree. If we ignore the ceiling operator in the preceding equation and write it as h(n) =
1+h(2n/3), we obtain a lower bound for the height, h(n) ≥ log1.5(n/2), where equality
occurs only for n = 2, 3. Another way to look at the preceding relationship between the
number of inputs and the tree height is to find the maximum number of inputs n(h) that
can be reduced to two outputs by an h-level tree. The recurrence for n(h) is

n(h) = �3n(h− 1)/2�

Again ignoring the floor operator, we obtain the upper bound n(h) ≤ 2(3/2)h. The
lower bound n(h) > 2(3/2)h−1 is also easily established. The exact value of n(h) for
0 ≤ h ≤ 20 is given in Table 8.1.

In Wallace trees, we reduce the number of operands at the earliest opportunity (see
the example in Fig. 8.10). In other words, if there are m dots in a column, we immediately
apply �m/3� FAs to that column. This tends to minimize the overall delay by making
the final CPA as short as possible.

However, the delay of a fast adder is usually not a smoothly increasing function of
the word width. A carry-lookahead adder, for example, may have essentially the same
delay for word widths of 17–32 bits. In Dadda trees, we reduce the number of operands
to the next lower value of n(h) in Table 8.1 using the fewest FAs and HAs possible. The
justification is that seven, eight, or nine operands, say, require four CSA levels; thus
there is no point in reducing the number of operands below the next lower n(h) value in
the table, since this would not lead to a faster tree.

Let us redo the example of Fig. 8.10 by means of Dadda’s strategy. Figure 8.14 shows
the result. We start with seven rows of dots, so our first task is to reduce the number of

Wallace and Dadda Trees 163

Table 8.1 The maximum number n(h) of
inputs for an h-level CSA tree

h n(h) h n(h) h n(h)

0 2 7 28 14 474

1 3 8 42 15 711

2 4 9 63 16 1066

3 6 10 94 17 1599

4 9 11 141 18 2398

5 13 12 211 19 3597

6 19 13 316 20 5395

Figure 8.14 Using
Dadda’s strategy to
add seven 6-bit
numbers

6 FAs

11 FAs

7 FAs

4 FAs + 1 HA

7-bit adder

Total cost = 7-bit adder + 28 FAs + 1 HA

rows to the next lower n(h) value (i.e., 6). This can be done by using 6 FAs; next, we
aim for four rows, leading to the use of 11 FAs, and so on. In this particular example, the
Wallace and Dadda approaches result in the same number of FAs and HAs and the same
width for the CPA. Again, the CPA width could have been reduced to 6 bits by using an
extra HA in bit position 1.

Since a CPA has a carry-in signal that can be used to accommodate one of the dots,
it is sometimes possible to reduce the complexity of the CSA tree by leaving three dots

164 Chapter 8 Multioperand Addition

Figure 8.15 Adding
seven 6-bit numbers
by taking advantage
of the final adder’s
carry-in.

6 FAs

11 FAs

6 FAs + 1 HA

3 FAs + 2 HA

7-bit adder

Total cost = 7-bit adder + 26 FAs + 3 HA

in the least-significant position of the adder. Figure 8.15 shows the same example as in
Figs. 8.10 and 8.14, but with two FAs replaced with HAs, leaving an extra dot in each
of the bit positions 1 and 2.

8.4 PARALLEL COUNTERS AND COMPRESSORS

A 1-bit FA is sometimes referred to as a (3; 2)-counter, meaning that it counts the number
of 1s among its 3 input bits and represents the result as a 2-bit number. This can be easily
generalized: an (n; 	log2(n+ 1)
)-counter has n inputs and produces a 	log2(n+ 1)
-bit
binary output representing the number of 1s among its n inputs. Such a circuit is also
known as an n-input parallel counter.

A 10-input parallel counter, or a (10; 4)-counter, is depicted in Fig. 8.16 in terms of
both dot notation and circuit diagram with FAs and HAs. A row of such (10; 4)-counters,
one per bit position, can reduce a set of 10 binary numbers to 4 binary numbers. The dot
notation representation of this reduction is similar to that of (3; 2)-counters, except that
each diagonal line connecting the outputs of a (10; 4)-counter will go through four dots.
A (7; 3)-counter can be similarly designed.

Parallel Counters and Compressors 165

Figure 8.16 A
10-input parallel
counter also known
as a (10; 4)-counter.

0

1 0 1 0 1 0

2 1 0

1

0

2

13 2

3-bit
ripple-carry
adder

FA FA

HA

HA

FA

FAFAFA

1

Even though a circuit that counts the number of 1s among n inputs is known as a
parallel counter, we note that this does not constitute a true generalization of the notion of
a sequential counter. A sequential counter receives 1 bit (the count signal) and adds it to
a stored count. A parallel counter, then, could have been defined as a circuit that receives
n count signals and adds them to a stored count, thus in effect incrementing the count
by the sum of the input count signals. Such a circuit has been called an “accumulative
parallel counter” [Parh95]. An accumulative parallel counter can be built from a parallel
incrementer (a combinational circuit receiving a number and producing the sum of the
input number and n count signals at the output) along with a storage register.

Both parallel and accumulative parallel counters can be extended by considering
signed count signals. These would constitute generalizations of sequential up/down
counters [Parh89]. Accumulative and up/down parallel counters have been applied to
the design of efficient Hamming weight comparators, circuits that are used to decide
whether the number of 1s in a given bit-vector is greater than or equal to a threshold, or
to determine which of two bit-vectors contains more 1s [Parh09].

A parallel counter reduces a number of dots in the same bit position into dots in
different positions (one in each). This idea can be easily generalized to circuits that
receive “dot patterns” (not necessarily in a single column) and convert them to other dot
patterns (not necessarily one in each column). If the output dot pattern has fewer dots
than the input dot pattern, compression takes place; repeated use of such circuits can
eventually lead to the reduction of n numbers to a small set of numbers (ideally two).

A generalized parallel counter (parallel compressor) is characterized by the number
of dots in each input column and in each output column. We do not consider such
circuits in their full generality but limit ourselves to those that output a single dot in each
column. Thus, the output side of such parallel compressors is again characterized by
a single integer representing the number of columns spanned by the output. The input
side is characterized by a sequence of integers corresponding to the number of inputs in
various columns.

166 Chapter 8 Multioperand Addition

Figure 8.17 Dot
notation for a (5, 5; 4)-
counter and the use
of such counters for
reducing five
numbers to two
numbers.

. . .

. . .i – 3i – 2i – 1i

ψ1 ψ1

ψ2

ψ3

ψ2

ψ3

To i + 1

To i + 2

To i + 3

n inputs One circuit slice Slice index

Figure 8.18 Schematic diagram of an (n; 2)-counter built of identical circuit slices.

For example, a (4, 4; 4)-counter receives 4 bits in each of two adjacent columns
and produces a 4-bit number representing the sum of the four 2-bit numbers received.
Similarly, a (5, 5; 4)-counter, depicted in Fig. 8.17, reduces five 2-bit numbers to a 4-bit
number. The numbers of input dots in various columns do not have to be the same. For
example, a (4, 6; 4)-counter receives 6 bits of weight 1 and 4 bits of weight 2 and delivers
their weighted sum in the form of a 4-bit binary number. For a counter of this type to
be feasible, the sum of the output weights must equal or exceed the sum of its input
weights. In other words, if there are nj dots in each of h input columns, 0 ≤ j ≤ h− 1,
the associated generalized parallel counter, denoted as (nh−1, . . . , n1, n0; k)-counter, is
feasible only if �(nj2j) ≤ 2k − 1.

Generalized parallel counters are quite powerful. For example, a 4-bit binary FA is
really a (2, 2, 2, 3; 5)-counter.

Since our goal in multioperand carry-save addition is to reduce n numbers to two
numbers, we sometimes talk of (n; 2)-counters, even though, with our preceding defini-
tion, this does not make sense for n > 3. By an (n; 2)-counter, n > 3, we usually mean a
slice of a circuit that helps us reduce n numbers to two numbers when suitably replicated.
Slice i of the circuit receives n input bits in position i, plus transfer or “carry” bits from
one or more positions to the right (i− 1, i− 2, etc.), and produces output bits in the two
positions i and i+1 plus transfer bits into one or more higher positions (i+1, i+2, etc.).

Figure 8.18 shows the block diagram of an (n; 2)-counter, composed of k identical
circuit slices with horizontal interconnections among them. Each slice combines n input
bits with a number of carries coming from slices to its right, producing 2 output bits
along with carries that are sent to its left. If ψj denotes the number of transfer bits from

Adding Multiple Signed Numbers 167

slice i to slice i+ j, the fundamental inequality to be satisfied for this scheme to work is

n+ ψ1 + ψ2 + ψ3 + · · · ≤ 3+ 2ψ1 + 4ψ2 + 8ψ3 + · · ·
where 3 represents the maximum value of the 2 output bits. For example, a (7; 2)-counter
can be built by allowing ψ1 = 1 transfer bit from position i to position i+ 1 and ψ2 = 1
transfer bit into position i+2. For maximum speed, the circuit slice must be designed in
such a way that transfer signals are introduced as close to the circuit’s outputs as possible,
to prevent the transfers from rippling through many stages. Design of a (7; 2)-counter
using these principles is left as an exercise.

For n = 4, a (4; 2)-counter can be synthesized with ψ1 = 1, that is, with 1 carry
bit between adjacent slices. An efficient circuit realization for such a counter will be
presented in Section 11.2, in connection with reduction circuits for parallel multipliers
organized as binary trees (see Fig. 11.5).

8.5 ADDING MULTIPLE SIGNED NUMBERS

When the operands to be added are 2’s-complement numbers, they must be sign-extended
to the width of the final result if multiple-operand addition is to yield their correct sum.
The example in Fig. 8.19 shows extension of the sign bits xk−1, yk−1, and zk−1 across
five extra positions.

It appears, therefore, that sign extension may dramatically increase the complexity
of the CSA tree used for n-operand addition when n is large. However, since the sign
extension bits are identical, a single FA can do the job of several FAs that would be
receiving identical inputs if used. With this hardware-sharing scheme, the CSA widths
are only marginally increased. For the three operands in Fig. 8.19a, a single (3; 2)-
counter can be used in lieu of six that would be receiving the same input bits xk−1, yk−1,
and zk−1.

It is possible to avoid sign extension by taking advantage of the negative-weight
interpretation of the sign bit in 2’s-complement representation. Anegative sign bit−xk−1

Figure 8.19 Adding
three
2’s-complement
numbers via two
different methods.

Extended positions Sign Magnitude positions

xk− 1 xk− 1 xk− 1 xk− 1 xk− 1 xk− 1 xk− 2 xk− 3 xk− 4 · · ·

yk− 1 yk− 1 yk− 1 yk− 1 yk− 1 yk− 1 yk− 2 yk− 3 yk− 4 · · ·

zk− 1 zk− 1 zk− 1 zk− 1 zk− 1 zk− 1 zk− 2 zk− 3 zk− 4 · · ·

(a) Sign extension

Extended positions Sign Magnitude positions

1 1 1 1 0 xk− 1 xk− 2 xk− 3 xk− 4 · · ·

yk− 1 yk− 2 yk− 3 yk− 4 · · ·

zk− 1 zk− 2 zk− 3 zk− 4 · · ·
1

(b) Negatively weighted sign bits

168 Chapter 8 Multioperand Addition

can be replaced by 1− xk−1 = x̄k−1 (the complement of xk−1), with the extra 1 canceled
by inserting a −1 in that same column. Multiple −1s in a given column can be paired,
with each pair replaced by a −1 in the next higher column. Finally, a solitary −1 in
a given column is replaced by 1 in that column and −1 in the next higher column.
Eventually, all the −1s disappear off the left end and at most a single extra 1 is left in
some of the columns.

Figure 8.19b shows how this method is applied when adding three 2’s-complement
numbers. The three sign bits are complemented and three −1s are inserted in the sign
position. These three −1s are then replaced by a 1 in the sign position and two −1s
in the next higher position (k). These two −1s are then removed and, instead, a single
−1 is inserted in position k + 1. The latter −1 is in turn replaced by a 1 in position
k + 1 and a −1 in position k + 2, and so on. The −1 that moves out from the leftmost
position is immaterial in view of (k+5)-bit 2’s-complement arithmetic being performed
modulo 2k+5.

8.6 MODULAR MULTIOPERAND ADDERS

For the same reasons offered for modular two-operand addition in Section 7.6, on occa-
sion we need to add n numbers modulo a given constant m. An obvious approach would
be to perform the required computation in two stages: (1) Forming the proper sum of
the input operands, using any of the multioperand adder designs described thus far, and
(2) reducing the sum modulo m. In many cases, however, we can obtain more efficient
designs by merging (interlacing) the addition and modular reduction operations.

As in the case of two-operand addition, the three special moduli 2k , 2k − 1, and
2k + 1 are easier to deal with. For m = 2k , we simply drop any bit that is produced
in column k. This simplification is depicted in Fig. 8.20a. Thus, for example, no CSA
in Fig. 8.12 needs to extend past position k − 1 in this case. For m = 2k − 1, a bit
generated in position k is reinserted into position 0, as shown in Fig. 8.20b. Given the
empty slot available in position 0, this “end-around carry” does not lead to an increase
in latency. In the case of m = 2k + 1, assuming nonzero operands with diminished-1
encoding, the arguments presented in Example 7.3 suggest that an inverted end-around
carry (Fig. 8.20c) allows the conversion of three diminished-1 inputs to two diminished-1
outputs.

 Drop

(a) m = 2k (b) m = 2k – 1 (c) m = 2k + 1

Invert

Figure 8.20 Modular carry-save addition with special moduli.

Modular Multioperand Adders 169

Figure 8.21
Modulo-21 reduction
of 6 numbers taking
advantage of the fact
that 64 = 1 mod 21
and using 6-bit
pseudoresidues.

Six inputs
in the range

[0, 20]

Pseudoresidues
in the range

[0, 63]

Add with
end-around carry

Final pseudoresidue (to be reduced)

For a general modulus m, we need multioperand addition schemes that are more
elaborate than (inverted) end-around carry. Many techniques have been developed for
specific values of m. For example, if m is such that 2h = 1 mod m for a fairly small
value of h, one can perform tree reduction with h-bit pseudoresidues (see Section 4.5)
and end-around carry [Pies94]. To apply this method to mod-21 addition of a set of n
input integers in the range [0, 20], we can use any tree reduction scheme, while keeping
all intermediate values in the range [0, 63]. Bits generated in column 6 are then fed back
to column 0 in the same manner as the end-around carry used for modulo-63 reduction,
given that 64 = 1 mod 21. Once all operands have been combined into two 6-bit values,
the latter are added with end-around carry and the final 6-bit sum is reduced modulo 21.
Figure 8.21 depicts an example with n = 6.

PROBLEMS 8.1 Pipelined multioperand addition

a. Present a design similar to Fig. 8.3 for adding a set of n input numbers, with
a throughput of one input per clock cycle, if each adder block is a two-stage
pipeline.

b. Repeat part a for a pipelined adder with eight stages.
c. Discuss methods for using the pipelined multioperand addition scheme of

Fig. 8.3 when the number of pipeline stages in an adder block is not a power
of 2. Apply your method to the case of an adder with five pipeline stages.

170 Chapter 8 Multioperand Addition

8.2 Multioperand addition with two-operand adders

Consider all the methods discussed in Section 8.1 for adding n unsigned integers
of width k using two-operand adders.

a. Using reasonable assumptions, derive exact, as opposed to asymptotic,
expressions for the delay and cost of each method.

b. On a two-dimensional coordinate system, with the axes representing n and k,
identify the regions where each method is best in terms of speed.

c. Repeat part b, this time using delay × cost as the figure of merit for
comparison.

8.3 Comparing multioperand addition schemes

Consider the problem of adding n unsigned integers of width k.

a. Identify two methods whose delays are O(log k + n) and O(k + log n).
b. On a two-dimensional coordinate system, with logarithmic scales for both n

and k, identify the regions in which one design is faster than the other. Describe
your assumptions about implementations.

c. Repeat part b, this time comparing cost-effectiveness rather than just
speed.

8.4 Building blocks for multioperand addition

A CSA reduces three binary numbers to two binary numbers. It costs c units and
performs its function with a time delay d . An “alternative reduction adder” (ARA)
reduces five binary numbers to two binary numbers. It costs 3c units and has a
delay of 2d .

a. Which of the two elements, CSA or ARA, is more cost-effective for designing
a tree that reduces 32 operands to 2 operands if used as the only building
block? Ignore the widths of the CSA and ARA blocks and focus only on their
numbers.

b. Propose an efficient design for 32-to-2 reduction if both CSAandARAbuilding
blocks are allowed.

8.5 CSA trees

Consider the problem of adding eight 8-bit unsigned binary numbers.

a. Using tabular representation, show the design of a Wallace tree for reducing
the eight operands to two operands.

b. Repeat part a for a Dadda tree.
c. Compare the two designs with respect to speed and cost.

8.6 CSA trees

We have seen that the maximum number of operands that can be combined using
an h-level tree of CSAs is n(h) = �3n(h− 1)/2�.

Problems 171

a. Prove the inequality n(h) ≥ 2n(h− 2).
b. Prove the inequality n(h) ≥ 3n(h− 3).
c. Show that both bounds of parts a and b are tight by providing one example in

which equality holds.
d. Prove the inequality n(h) ≥ n(h − a)�n(a)/2� for a ≥ 0. Hint: Think of the

h-level tree as the top h− a levels followed by an a-level tree and consider the
lines connecting the two parts.

8.7 A three-operand addition problem

Effective 24-bit addresses in the IBM System 370 family of computers were com-
puted by adding three unsigned values: two 24-bit numbers and a 12-bit number.
Since address computation was needed for each instruction, speed was critical and
using two addition steps wouldn’t do, particularly for the faster computers in the
family.

a. Suggest a fast addition scheme for this address computation. Your design
should produce an “address invalid” signal when there is an overflow.

b. Extend your design so that it also indicates if the computed address is in the
range [0, u], where u is a given upper bound (an input to the circuit).

8.8 Parallel counters

Design a 255-input parallel counter using (7; 3)-counters and 4-bit binary adders
as the only building blocks.

8.9 Parallel counters

Consider the synthesis of an n-input parallel counter.

a. Prove that n− log2 n is a lower bound on the number of FAs needed.
b. Show that n FAs suffice for this task. Hint: Think in terms of how many FAs

might be used as HAs in the worst case.
c. Prove that log2 n + log3 n − 1 is a lower bound on the number of FA

levels required. Hint: First consider the problem of determining the least-
significant output bit, or actually, that of reducing the weight-20 column to
3 bits.

8.10 Generalized parallel counters

Consider a (1, 4, 3; 4) generalized parallel counter.

a. Design the generalized parallel counter using only FA blocks.
b. Show how this generalized parallel counter can be used as a 3-bit binary

adder.
c. Use three such parallel counters to reduce five 5-bit unsigned binary numbers

into three 6-bit numbers.
d. Show how such counters can be used for 4-to-2 reduction.

172 Chapter 8 Multioperand Addition

8.11 Generalized parallel counters

a. Is a (3, 1; 3)-counter useful? Why (not)?
b. Design a (3, 3; 4)-counter using (3; 2)-counters as the only building blocks.
c. Use the counters of part b, and a 12-bit adder, to build a 6 × 6 unsigned

multiplier.
d. Viewing a 4-bit binary adder as a (2, 2, 2, 3; 5)-counter and using dot notation,

design a circuit to add five 6-bit binary numbers using only 4-bit adders as
your building blocks.

8.12 Generalized parallel counters

We want to design a slice of a (7; 2)-counter as discussed in Section 8.4.

a. Present a design for slice i based on ψ1 = 1 transfer bit from position i − 1
along with ψ2 = 1 transfer bit from position i − 2.

b. Repeat part a with ψ1 = 4 transfer bits from position i − 1 and ψ2 = 0.
c. Compare the designs of parts a and b with respect to speed and cost.

8.13 Generalized parallel counters

We have seen that a set of k/2 (5, 5; 4)-counters can be used to reduce five k-
bit operands to two operands. Hint: This is possible because the 4-bit outputs of
adjacent counters overlap in 2 bits, making the height of the output dot matrix
equal to 2.

a. What kind of generalized parallel counter is needed to reduce seven operands
to two operands?

b. Repeat part a for reducing nine operands.
c. Repeat part a for the general case of n operands, obtaining the relevant counter

parameters as functions of n.

8.14 Accumulative parallel counters

Design a 12-bit, 50-input accumulative parallel counter. The counter has a 12-bit
register in which the accumulated count is kept. When the “count” signal goes
high, the input count (a number between 0 and 50) is added to the stored count.
Try to make your design as fast as possible. Ignore overflow (i.e., assume modulo-
212 operation). Hint: A 50-input parallel counter followed by a 12-bit adder isn’t
the best design.

8.15 Unsigned versus signed multioperand addition

We want to add four 4-bit binary numbers.

a. Construct the needed circuit, assuming unsigned operands.
b. Repeat part a, assuming sign-extended 2’s-complement operands.
c. Repeat part a, using the negative-weight interpretation of the sign bits.
d. Compare the three designs with respect to speed and cost.

Problems 173

8.16 Adding multiple signed numbers

a. Present the design of a multioperand adder for computing the 9-bit sum of
sixteen 6-bit, 2’s-complement numbers based on the use of negatively weighted
sign bits, as described at the end of Section 8.5.

b. Redo the design using straightforward sign extension.
c. Compare the designs of parts a and b with respect to speed and cost and

discuss.

8.17 Ternary parallel counters

In balanced ternary representation (viz., r = 3 and digit set [−1, 1]), (4; 2)-
counters can be designed [De94]. Choose a suitable encoding for the three digit
values and present the complete logic design of such a (4; 2)-counter.

8.18 Generalized parallel counters

a. Show an implementation of a (5, 5; 4)-counter using (3; 2)-counters.
b. One level of (5, 5; 4) counters can be used to reduce five operands to two.

What is the maximum number of operands that can be reduced to two when
two levels of (5, 5; 4) counters are used?

c. Generalize the result of part b to a counter that reduces x columns of n dots to
a 2x-bit result.

8.19 CSA trees

a. Show the widths of the four CSAs required to reduce six 32-bit unsigned binary
numbers to two.

b. Repeat part a, but assume that the six 32-bit unsigned numbers are the partial
products of a 32×6 multiplication (i.e., they are not aligned at least-significant
bits but shifted to the left by 0, 1, 2, 3, 4, and 5 bits).

8.20 Using (7; 3)- and (7; 2)-counters

a. Given a circuit corresponding to a slice of a (7; 2)-counter, with slice i receiving
carries from positions i− 2 and i− 1 and producing carries for positions i+ 1
and i + 2, show that it can be used as a (7; 3)-counter if desired.

b. Show how to use two copies of a (7; 2)-counter slice to synthesize a slice of
an (11; 2)-counter.

c. How can one synthesize a slice of a (15; 2)-counter using (7; 2)-counter
slices?

8.21 Parallel counters using sorting networks

An n-input parallel counter can be synthesized by first using an n-input bit-sorting
network that arranges the n bits in ascending order and then detecting the position
of the single transition from 0 to 1 in the output sequence. Study the suitability of
this method for synthesizing parallel counters. For a discussion of sorting networks
see [Parh99], Chapter 7. Note that for bit-sorting, the 2-sorter components needed

174 Chapter 8 Multioperand Addition

contain nothing but a 2-input AND gate and a 2-input OR gate. For other design
ideas see [Fior99].

8.22 Design of (4; 2)-counters

A (4; 2)-counter is in essence a (5; 2, 1)-compressor: it receives 4 bits plus a
carry-in and produces 2 bits of weight 2 (one of them is carry-out) and 1 bit of
weight 1.

a. Express a (7; 2)-counter in this form, using two columns of dots at the output.
b. Repeat part a with three columns of dots at the output.
c. Show that the following logic equations [Shim97] implement a (4; 2)-counter

with inputs cin, x0, x1, x2, x3, and outputs cout, y1, y0.

cout = (x0 ∨ x1)(x2 ∨ x3), s = x0 ⊕ x1 ⊕ x2 ⊕ x3,

y0 = cin ⊕ s, y1 = s cin ∨ s̄(x0x1 ∨ x2x3)

8.23 Saturating multioperand adder

In certain applications, when the result of an arithmetic operation exceeds the
maximum allowed value, it would be inappropriate to generate the result modulo
a power of 2. For example, in media processing, we do not want addition of 1 to
a black pixel coded as FF in hexadecimal to turn it into a white pixel 00. Discuss
how multioperand addition can be performed with saturation so that whenever the
final sum exceeds 2k − 1, the maximum value 2k − 1 is produced at output.

8.24 Height of n-input Wallace tree

a. Prove that the minimum height h(n) of an n-input Wallace tree, n ≥ 3, does
not in general satisfy h(n) = 	log1.5(n/2)
.

b. Does the relationship h(n) = 	log1.5[n/2 + (n mod 3)/4]
 hold? Prove or
disprove.

8.25 Tabular representation of multioperand addition

The following describes a multioperand addition process in tabular form.

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
1 2 3 4 6 6 6 6 6 6 5 4 3 2 1
1 2 4 4 4 4 4 4 4 4 4 4 3 2 1
1 3 3 3 3 3 3 3 3 3 3 3 3 2 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

a. Explain the process described by this table.
b. In the hardware implementation implied by the table, what types of components

are used and how many of each? Be as precise as possible in specifying the
components used.

Problems 175

8.26 Tabular representation of multioperand addition

The following describes a multioperand addition process in tabular form.

8 8 8 8 8 8 8 8
2 6 6 6 6 6 6 6 4
4 4 4 4 4 4 4 3 2

1 3 3 3 3 3 3 3 2 1
2 2 2 2 2 2 2 2 1 1

a. Explain the process described by this table.
b. In the hardware implementation implied by the table, what types of components

are used and how many of each? Be as precise as possible in specifying the
components used.

8.27 Fast modular addition

Using multioperand addition methods, redesign the mod-13 adder of Fig. 4.3 to
make it as fast as possible and estimate the latency of your design in gate levels.
Hint: Precompute x + y + 3.

8.28 Saturating parallel counters

Study the design of parallel counters that provide an exact count when the number
of 1 inputs is below a given threshold τ and saturate to τ otherwise.

8.29 Latency of a parallel counter

We can build a (2h − 1)-input parallel counter recursively from two (2h−1 − 1;
h − 1)-counters that feed an (h − 1)-bit ripple-carry adder. The smaller counters
accommodate 2h − 2 of the inputs, with the last input inserted as carry-in of the
final adder. The resulting structure will resemble Fig. 8.5, except that the HAs
are replaced with FAs to allow the use of a carry-in signal into each ripple-carry
adder.

a. Design a (31; 5)-counter based on this strategy.
b. Derive the latency of your design, in terms of FA levels, and compare the result

with the number of levels suggested by Table 8.1.
c. What do you think is the source of the discrepancy in part b?

8.30 Modular multioperand addition

For each of the following moduli, devise an efficient method for multioperand
addition using the pseudoresidue method discussed at the end of Section 8.6
[Pies94].

a. 11
b. 23
c. 35

176 Chapter 8 Multioperand Addition

REFERENCES AND FURTHER READINGS

[Dadd65] Dadda, L., “Some Schemes for Parallel Multipliers,” Alta Frequenza, Vol. 34,
pp. 349–356, 1965.

[Dadd76] Dadda, L., “On Parallel Digital Multipliers,” Alta Frequenza, Vol. 45, pp. 574–580,
1976.

[De94] De, M., and B. P. Sinha, “Fast Parallel Algorithm for Ternary Multiplication Using
Multivalued I2L Technology,” IEEE Trans. Computers, Vol. 43, No. 5, pp. 603–607,
1994.

[Didi04] Didier, L. S., and P.-Y. H. Rivaille, “A Comparative Study of Modular Adders,”
Advanced Signal Processing Algorithms, Architectures, and Implementations XIV
(Proc. SPIE Conf.), 2004, pp. 13–20.

[Fior99] Fiore, P. D., “Parallel Multiplication Using Fast Sorting Networks,” IEEE Trans.
Computers, Vol. 48, No. 6, pp. 640–645, 1999.

[Fost71] Foster, C. C., and F. D. Stockton, “Counting Responders in an Associative Memory,”
IEEE Trans. Computers, Vol. 20, pp. 1580–1583, 1971.

[Kore03] Koren, I., Y. Koren, and B. G. Oomman, “Saturating Counters: Application and Design
Alternatives,” Proc. 16th IEEE Symp. Computer Arithmetic, pp. 228–235, 2003.

[Parh89] Parhami, B., “Parallel Counters for Signed Binary Signals,” Proc. 23rd Asilomar
Conf. Signals, Systems, and Computers, pp. 513–516, 1989.

[Parh95] Parhami, B., and C.-H. Yeh, “Accumulative Parallel Counters,” Proc. 29th Asilomar
Conf. Signals, Systems, and Computers, pp. 966–970, 1995.

[Parh99] Parhami, B., Introduction to Parallel Processing: Algorithms and Architectures,
Plenum, 1999.

[Parh09] Parhami, B., “Efficient Hamming Weight Comparators for Binary Vectors Based on
Accumulative and Up/Down Parallel Counters,” IEEE Trans. Circuits and Systems II,
Vol. 56, No. 2, pp. 167–171, 2009.

[Pies94] Piestrak, S. J., “Design of Residue Generators and Multioperand Modular Adders
Using Carry-Save Adders,” IEEE Trans. Computers, Vol. 43, No. 1, pp. 68–77, 1994.

[Shim97] Shim, D., and W. Kim, “The Design of 16× 16 Wave Pipelined Multiplier Using
Fan-In Equalization Technique,” Proc. Midwest Symp. Circuits & Systems, Vol. 1, pp.
336–339, 1997.

[Swar73] Swartzlander, E. E., “Parallel Counters,” IEEE Trans. Computers, Vol. 22, No. 11,
pp. 1021–1024, 1973.

[Wall64] Wallace, C. S., “A Suggestion for a Fast Multiplier,” IEEE Trans. Electronic
Computers, Vol. 13, pp. 14–17, 1964.

[Wang96] Wang, Z., G. A. Jullien, and W. C. Carter, “An Efficient Tree Architecture for Modulo
2n + 1 Multiplication,” J. VLSI Signal Processing, Vol. 14, No. 3, pp. 241–248, 1996.

IIIMULTIPLICATION

■ ■ ■

“At least one good reason for studying multiplication and division is that there is an infinite number of ways of
performing these operations and hence there is an infinite number of PhDs (or expenses-paid visits to

conferences in the USA) to be won from inventing new forms of multiplier.”
A L A N C L E M E N T S , T H E P R I N C I P L E S O F C O M P U T E R H A R D WA R E , 1 9 8 6

“Civilization is a limitless multiplication of unnecessary necessaries.”
M A R K T WA I N

■ ■ ■

M ULTIPLICATION, OFTEN REALIZED BY k CYCLES OF SHIFTING AND ADDING, IS

a heavily used arithmetic operation that figures promi-

nently in signal processing and scientific applications. In this part,

after examining shift/add multiplication schemes and their var-

ious implementations, we note that there are but two ways to

speed up the underlying multioperand addition: reducing the

number of operands to be added leads to high-radix multipliers,

and devising hardware multioperand adders that minimize the

latency and/or maximize the throughput leads to tree and array

multipliers. Of course, speed is not the only criterion of interest.

Cost, chip area, and pin limitations favor bit-serial designs, while

the desire to use available building blocks leads to designs based

on additive multiply modules. Finally, the special case of squaring

is of interest as it leads to considerable simplification. This part

consists of the following four chapters:

C H A P T E R 9
Basic Multiplication Schemes

C H A P T E R 10
High-Radix Multipliers

C H A P T E R 11
Tree and Array Multipliers

C H A P T E R 12
Variations in Multipliers

177

9 Basic Multiplication
Schemes

■ ■ ■

“Science: That false secondary power by which we multiply distinctions.”
W I L L I A M W O R D S W O R T H

■ ■ ■

T he multioperand addition process needed for multiplying two k-bit operands can

be realized in k cycles of shifting and adding, with hardware, firmware, or software

control of the loop. In this chapter, we review such economical, but slow, bit-at-a-time

designs and set the stage for speedup methods and variations to be presented in

Chapters 10–12. We also consider the special case of multiplication by a constant.

Chapter topics include:

9.1 Shift/Add Multiplication Algorithms

9.2 Programmed Multiplication

9.3 Basic Hardware Multipliers

9.4 Multiplication of Signed Numbers

9.5 Multiplication by Constants

9.6 Preview of Fast Multipliers

9.1 SHIFT/ADD MULTIPLICATION ALGORITHMS

The following notation is used in our discussion of multiplication algorithms:

a Multiplicand ak−1ak−2 · · · a1a0
x Multiplier xk−1xk−2 · · · x1x0
p Product (a × x) p2k−1p2k−2 · · · p1p0

Figure 9.1 shows the multiplication of two 4-bit unsigned binary numbers in dot notation.
The two numbers a and x are shown at the top. Each of the following four rows of dots

179

180 Chapter 9 Basic Multiplication Schemes

Figure 9.1
Multiplication of two
4-bit unsigned binary
numbers in dot
notation.

Product

Partial
products
bit-matrix

a
x

p

x0 a 20

x1 a 21

x2 a 22

x3 a 23

Multiplicand
Multiplier×

corresponds to the product of the multiplicand a and 1 bit of the multiplier x, with each
dot representing the product (logical AND) of two bits. Since xj is in {0, 1}, each term
xja is either 0 or a. Thus, the problem of binary multiplication reduces to adding a set
of numbers, each of which is 0 or a shifted version of the multiplicand a.

Figure 9.1 also applies to nonbinary multiplication, except that with r > 2, computing
the terms xja becomes more difficult and the resulting numbers will be one digit wider
than a. The rest of the process (multioperand addition), however, remains substantially
the same.

Sequential or bit-at-a-time multiplication can be done by keeping a cumulative partial
product (initialized to 0) and successively adding to it the properly shifted terms xja.
Since each successive number to be added to the cumulative partial product is shifted
by 1 bit with respect to the preceding one, a simpler approach is to shift the cumulative
partial product by 1 bit in order to align its bits with those of the next partial product.
Two versions of this algorithm can be devised, depending on whether the partial product
terms xja in Fig. 9.1 are processed from top to bottom or from bottom to top.

In multiplication with right shifts, the partial product terms xja are accumulated from
top to bottom:

p(j+1) = (p(j) + xja 2k)2−1 with p(0) = 0 and p(k) = p

|—– add ——|
|—– shift right —–|

Because the right shifts will cause the first partial product to be multiplied by 2−k by
the time we are done, we premultiply a by 2k to offset the effect of the right shifts.
This premultiplication is done simply by aligning a with the upper half of the 2k-bit
cumulative partial product in the addition steps (i.e., storing a in the left half of a
double-width register).

After k iterations, the preceding recurrence leads to

p(k) = ax + p(0)2−k

Thus if instead of 0, p(0) is initialized to y2k , the expression ax + y will be evaluated.
This multiply-add operation is quite useful for many applications and is performed at
essentially no extra cost compared with plain shift/add multiplication.

Programmed Multiplication 181

 (a) Right-shift algorithm (b) Left-shift algorithm
 ======================= ======================
a 1 0 1 0 a 1 0 1 0
x 1 0 1 1 x 1 0 1 1
 ======================= ======================
p(0) 0 0 0 0 p(0) 0 0 0 0
 +x0a 1 0 1 0 2p(0) 0 0 0 0 0
 –––––––––––––––––––––––– +x3a 1 0 1 0
 2p(1) 0 1 0 1 0 –––––––––––––––––––––––
p(1) 0 1 0 1 0 p (1) 0 1 0 1 0
 +x1a 1 0 1 0 2p (1) 0 1 0 1 0 0
 –––––––––––––––––––––––– +x2a 0 0 0 0
 2p (2) 0 1 1 1 1 0 –––––––––––––––––––––––
p (2) 0 1 1 1 1 0 p (2) 0 1 0 1 0 0
 +x2a 0 0 0 0 2p (2) 0 1 0 1 0 0 0
 –––––––––––––––––––––––– +x1a 1 0 1 0
 2p (3) 0 0 1 1 1 1 0 –––––––––––––––––––––––
p (3) 0 0 1 1 1 1 0 p (3) 0 1 1 0 0 1 0
 +x3a 1 0 1 0 2p (3) 0 1 1 0 0 1 0 0
 –––––––––––––––––––––––– +x0a 1 0 1 0
 2p (4) 0 1 1 0 1 1 1 0 –––––––––––––––––––––––
p (4) 0 1 1 0 1 1 1 0 p (4) 0 1 1 0 1 1 1 0
 ======================= ======================

Figure 9.2 Examples of sequential multiplication with right and left shifts.

In multiplication with left shifts, the terms xja are added up from bottom to top:

p(j+1) = 2p(j) + xk−j−1a with p(0) = 0 and p(k) = p

|shift|| left |
|—— add ——|

After k iterations, the preceding recurrence leads to

p(k) = ax + p(0)2k

In this case, the expression ax + y will be evaluated if we initialize p(0) to y2−k .
Figure 9.2 shows the multiplication of a = (10)ten = (1010)two and x = (11)ten =

(1011)two, to obtain their product p = (110)ten = (0110 1110)two, using both the right-
and left-shift algorithms.

From the examples in Fig. 9.2, we see that the two algorithms are quite similar. Each
algorithm entails k additions and k shifts; however, additions in the left-shift algorithm
are 2k bits wide (the carry produced from the lower k bits may affect the upper k bits),
whereas the right-shift algorithm requires k-bit additions. For this reason, multiplication
with right shifts is preferable.

9.2 PROGRAMMED MULTIPLICATION

On a processor that does not have a multiply instruction, one can use shift and add
instructions to perform integer multiplication. Figure 9.3 shows the structure of the

182 Chapter 9 Basic Multiplication Schemes

 {Multiply, using right shifts, unsigned m_cand and m_ier,
 storing the resultant 2k-bit product in p_high and p_low.
 Registers: R0 holds 0 Rc for counter
 Ra for m_cand Rx for m_ier
 Rp for p_high Rq for p_low}

 {Load operands into registers Ra and Rx}

 mult: load Ra with m_cand
 load Rx with m_ier

 {Initialize partial product and counter}

 copy R0 into Rp
 copy R0 into Rq
 load k into Rc

 {Begin multiplication loop}

 m_loop: shift Rx right 1 {LSB moves to carry flag}
 branch no_add if carry = 0
 add Ra to Rp {carry flag is set to c }
 no_add: rotate Rp right 1 {carry to MSB, LSB to carry}
 rotate Rq right 1 {carry to MSB, LSB to carry}
 decr Rc {decrement counter by 1}
 branch m_loop if Rc ≠ 0

 {Store the product}

 store Rp into p_high
 store Rq into p_low
 m_done: ...

out

Figure 9.3 Programmed multiplication using the right-shift algorithm.

needed program for the right-shift algorithm. The instructions used in this program
fragment are typical of instructions available on many processors.

Ignoring operand load and result store instructions (which would be needed in any
case), the function of a multiply instruction is accomplished by executing between 6k+3
and 7k+3 machine instructions, depending on the multiplier. More precisely, if the binary
representation of the multiplier x is of weight w (i.e., its number of 1 bits equals w), then
6k + w + 3 instructions will be executed by the program of Fig. 9.3. The dependence
of program execution time on w arises from the fact that the add instruction is skipped
when the bit of x being processed in a particular iteration is 0. For 32-bit operands, this
means 200+ instructions for each multiplication on the average. The situation improves
somewhat if a special instruction that does some or all of the required functions within the
multiplication loop is available. However, even then, no fewer than 32 instructions are
executed in the multiplication loop. We thus see the importance of hardware multipliers
for applications that involve many numerical computations.

Processors with microprogrammed control and no hardware multiplier essentially
use a microroutine very similar to the program in Fig. 9.3 to effect multiplication. Since
microinstructions typically contain some parallelism and built-in conditional branching,

Basic Hardware Multipliers 183

the number of microinstructions in the main loop is likely to be smaller than 6. This
reduction, along with the savings in machine instruction fetching and decoding times,
makes multiplication microroutines significantly faster than their machine-language
counterparts, though still slower than the hardwired implementations we examine next.

9.3 BASIC HARDWARE MULTIPLIERS

Hardware realization of the multiplication algorithm with right shifts is depicted in
Fig. 9.4a. The multiplier x and the cumulative partial product p are stored in shift registers.
The next bit of the multiplier to be considered is always available at the right end of
the x register and is used to select 0 or a for the addition. Addition and shifting can be
performed in 2 separate cycles or in 2 subcycles within the same clock cycle. In either
case, temporary storage for the adder’s carry-out signal is needed. Alternatively, shifting
can be performed by connecting the ith sum output of the adder to the (k + i − 1)th
bit of the partial product register and the adder’s carry-out to bit 2k − 1, thus doing the
addition and shifting as a single operation.

The control portion of the multiplier, which is not shown in Fig. 9.4a, consists of a
counter to keep track of the number of iterations and a simple circuit to effect initialization
and detect termination. Note that the multiplier and the lower half of the cumulative
partial product can share the same register, since as p expands into this register, bits of x
are relaxed, keeping the total number of bits at 2k. This gradual expansion of p into the
lower half of the double-width partial product register (at the rate of 1 bit per cycle) is
readily observable in Fig. 9.2a.

Figure 9.5 shows the double-width register shared by the cumulative partial product
and the unused part of the multiplier, along with connections needed to effect simulta-
neous loading and shifting. Since the register is loaded at the very end of each cycle, the
change in its least-significant bit, which is controlling the current cycle, will not cause
any problem.

Figure 9.4 Hardware
realization of the
sequential
multiplication
algorithm.

Multiplier

k

k

Partial product

Multiplicand

Mux

(a) Right shift

0

k-bit adder

k

2k

2k

Partial product

Multiplier

Mux
0

Multiplicand

2k-bit adder

k

(b) Left shift

184 Chapter 9 Basic Multiplication Schemes

Figure 9.5
Combining the
loading and shifting
of the double-width
register holding the
partial product and
the partially used
multiplier.

Partial product

k k–1

 Adder's
carry-out

Adder's
 sum

 Unused part
of the multiplier

To mux control

k

To adder

k–1

Hardware realization of the algorithm with left shifts is depicted in Fig. 9.4b. Here
too the multiplier x and the cumulative partial product p are stored in shift registers,
but the registers shift to the left rather than to the right. The next bit of the multiplier
to be considered is always available at the left end of the x register and is used to
select 0 or a for the addition. Note that a 2k-bit adder (actually, a k-bit adder in the
lower part, augmented with a k-bit incrementer at the upper end) is needed in the hard-
ware realization of multiplication with left shifts. Because the hardware in Fig. 9.4b
is more complex than that in Fig. 9.4a, multiplication with right shifts is the preferred
method.

The control portion of the multiplier, which is not shown in Fig. 9.4b, is similar to that
for multiplication with right shifts. Here, register sharing is possible for the multiplier
and the upper half of the cumulative partial product, since with each 1-bit expansion in p,
1 bit of x is relaxed. This gradual expansion of p into the upper half of the double-width
partial product register (at the rate of 1 bit per cycle) is readily observable in Fig. 9.2b.
One difference with the right-shift scheme is that because the double-width register is
shifted at the beginning of each cycle, temporary storage is required for keeping the
multiplier bit that controls the rest of the cycle.

Note that for both Figs. 9.4a and 9.4b, the multiplexer (mux) can be replaced by
a set of k AND gates, with one input of each tied to xi. We will see later that, for
signed multiplication, one of three possible values must be fed to the left input of the
adder in Fig. 9.4: a, acompl, or 0. In the latter case, we can use a 2-way multiplexer
with its enable signal tied to xi. When xi = 0, the value 0 will be sent to the adder;
otherwise, a or acompl is sent, depending on the setting of a selection signal supplied by the
control unit.

9.4 MULTIPLICATION OF SIGNED NUMBERS

The preceding discussions of multiplication algorithms and hardware realizations assume
unsigned operands and result. Multiplication of signed-magnitude numbers needs little
more, since the product’s sign can be computed separately by XORing the operand signs.

One way to multiply signed values with complement representations is to comple-
ment the negative operand(s), multiply unsigned values, and then complement the result
if only one operand was complemented at the outset. Such an indirect multiplication

Multiplication of Signed Numbers 185

Figure 9.6
Sequential
multiplication of
2’s-complement
numbers with
right-shifts (positive
multiplier)

============================
a 1 0 1 1 0
x 0 1 0 1 1
============================
p(0) 0 0 0 0 0
+x0a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(1) 1 1 0 1 1 0
p(1) 1 1 0 1 1 0
+x1a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(2) 1 1 0 0 0 1 0
p(2) 1 1 0 0 0 1 0
+x2a 0 0 0 0 0
–––––––––––––––––––––––––––––
2p(3) 1 1 1 0 0 0 1 0
p(3) 1 1 1 0 0 0 1 0
+x3a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(4) 1 1 0 0 1 0 0 1 0
p(4) 1 1 0 0 1 0 0 1 0
+x4a 0 0 0 0 0
–––––––––––––––––––––––––––––
2p(5) 1 1 1 0 0 1 0 0 1 0
p(5) 1 1 1 0 0 1 0 0 1 0
============================

scheme is quite efficient for 1’s-complement numbers but involves too much overhead
for 2’s-complement representation. It is preferable to use a direct multiplication algorithm
for such numbers, as discussed in the remainder of this section.

We first note that the preceding bit-at-a-time algorithms can work directly with a
negative 2’s-complement multiplicand and a positive multiplier. In this case, each xja
term will be a 2’s-complement number and the sum will be correctly accumulated if we
use sign-extended values during the addition process. Figure 9.6 shows the multiplication
of a negative multiplicand a = (−10)ten = (10110)2′s−compl by a positive multiplier
x = (11)ten = (01011)2′s−compl using the right-shift algorithm. Note that the leftmost
digit of the sum p(i) + xia is obtained assuming sign-extended operands.

In view of the negative-weight interpretation of the sign bit in 2’s-complement
numbers, a negative 2’s-complement multiplier can be handled correctly if xk−1a is
subtracted, rather than added, in the last cycle. In practice, the required subtraction is
performed by adding the 2’s-complement of the multiplicand or, actually, adding the
1’s-complement of the multiplicand and inserting a carry-in of 1 into the adder (see
Fig. 2.7). The required control logic becomes only slightly more complex. Figure 9.7
shows the multiplication of negative values a = (−10)ten = (10110)2′s−compl and
x = (−11)ten = (10101)two by means of the right-shift algorithm.

Figure 9.8 shows a hardware 2’s-complement multiplier whose structure is substan-
tially the same as that of Fig. 9.4a. The control unit, not shown in Fig. 9.8, causes the
multiplicand to be added to the partial product in all but the final cycle, when a sub-
traction is performed by choosing the complement of the multiplicand and inserting a
carry-in of 1.

Multiplication with left shifts becomes even less competitive when we are deal-
ing with 2’s-complement numbers directly. Referring to Fig. 9.4b, we note that the

186 Chapter 9 Basic Multiplication Schemes

Figure 9.7
Sequential
multiplication of
2’s-complement
numbers with
right-shifts (negative
multiplier).

============================
a 1 0 1 1 0
x 1 0 1 0 1
============================
p(0) 0 0 0 0 0
+x0a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(1) 1 1 0 1 1 0
p(1) 1 1 0 1 1 0
+x1a 0 0 0 0 0
–––––––––––––––––––––––––––––
2p(2) 1 1 1 0 1 1 0
p(2) 1 1 1 0 1 1 0
+x2a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(3) 1 1 0 0 1 1 1 0
p(3) 1 1 0 0 1 1 1 0
+x3a 0 0 0 0 0
–––––––––––––––––––––––––––––
2p(4) 1 1 1 0 0 1 1 1 0
p(4) 1 1 1 0 0 1 1 1 0
+(–x 4a) 0 1 0 1 0
–––––––––––––––––––––––––––––
2p(5) 0 0 0 1 1 0 1 1 1 0
p(5) 0 0 0 1 1 0 1 1 1 0
============================

Figure 9.8 The
2’s-complement
sequential hardware
multiplier.

Adder

k + 1

01

Mux

Enable

Select

Multiplier

Multiplicand

Partial product

k + 1

k + 1

cout cin

0, except in
last cycle

multiplicand must be sign-extended by k bits. We thus have a more complex adder as
well as slower additions. With right shifts, on the other hand, sign extension occurs
incrementally; thus the adder needs to be only 1 bit wider. Alternatively, a k-bit adder
can be augmented with special logic to handle the extra bit at the left.

Multiplication of Signed Numbers 187

An alternate way of dealing with 2’s-complement numbers is to use Booth’s recoding
to represent the multiplier x in signed-digit format.

Booth’s recoding (also known as Booth’s encoding) was first proposed for speeding
up radix-2 multiplication in early digital computers. Recall that radix-2 multiplication
consists of a sequence of shifts and adds. When 0 is added to the cumulative partial
product in a step, the addition operation can be skipped altogether. This does not make
sense in the designs of Fig. 9.4, since the data paths go through the adder. But in an
asynchronous implementation, or in developing a (micro)program for multiplication,
shifting alone is faster than addition followed by shifting, and one may take advantage
of this fact to reduce the multiplication time on the average. The resulting algorithm
or its associated hardware implementation will have variable delay depending on the
multiplier value: the more 1s there are in the binary representation of x, the slower the
multiplication. Booth observed that whenever there are a large number of consecutive
1s in x, multiplication can be speeded up by replacing the corresponding sequence of
additions with a subtraction at the least-significant end and an addition in the position
immediately to the left of its most-significant end. In other words

2j + 2j−1 + · · · + 2i+1 + 2i = 2j+1 − 2i

The longer the sequence of 1s, the larger the savings achieved. The effect of this
transformation is to change the binary number x with digit set [0, 1] to the binary signed-
digit number y using the digit set [−1, 1]. Hence, Booth’s recoding can be viewed as a
kind of digit-set conversion. Table 9.1 shows how the digit yi of the recoded number y
can be obtained from the two digits xi and xi−1 of x. Thus, as x is scanned from right
to left, the digits yi can be determined on the fly and used to choose add, subtract, or
no-operation in each cycle.

For example, consider the following 16-bit binary number and its recoded version:

1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 Operand x
(1) -1 0 1 0 0 -1 1 0 -1 1 -1 1 0 0 -1 0 Recoded version y

In this particular example, the recoding does not reduce the number of additions. How-
ever, the example serves to illustrate two points. First, the recoded number may have to
be extended by 1 bit if the value of x as an unsigned number is to be preserved. Second,
if x is a 2’s-complement number, then not extending the width (ignoring the leftmost 1
in the recoded version above) leads to the proper handling of negative numbers. Note
how in the example, the sign bit of the 2’s-complement number has assumed a negative

Table 9.1 Radix-2 Booth’s recoding.

xi xi−1 yi Explanation

0 0 0 No string of 1s in sight

0 1 1 End of string of 1s in x

1 0 -1 Beginning of string of 1s in x

1 1 0 Continuation of string of 1s in x

188 Chapter 9 Basic Multiplication Schemes

Figure 9.9
Sequential
multiplication of
2’s-complement
numbers with right
shifts by means of
Booth’s recoding.

============================
a 1 0 1 1 0

y
 1 0 1 0 1 Multiplier

============================
p (0) 0 0 0 0 0
+y0a 0 1 0 1 0
–––––––––––––––––––––––––––––
2p(1) 0 0 1 0 1 0
p(1) 0 0 1 0 1 0
+y1a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(2) 1 1 1 0 1 1 0
p(2) 1 1 1 0 1 1 0
+y2a 0 1 0 1 0
–––––––––––––––––––––––––––––
2p(3) 0 0 0 1 1 1 1 0
p(3) 0 0 0 1 1 1 1 0
+y3a 1 0 1 1 0
–––––––––––––––––––––––––––––
2p(4) 1 1 1 0 0 1 1 1 0
p(4) 1 1 1 0 0 1 1 1 0
+y4a 0 1 0 1 0
–––––––––––––––––––––––––––––
2p(5) 0 0 0 1 1 0 1 1 1 0
p(5) 0 0 0 1 1 0 1 1 1 0
============================

 1 1 1 1 1 Booth-recoded
x

–– –

weight in the recoded version, as it should. A complete multiplication example is given
in Fig. 9.9.

The multiplier of Fig. 9.8 can be easily converted to a Booth multiplier. All that
is required is to provide a flip-flop on the right side of the multiplier register to hold
xi−1 as it is shifted out, and a two-input, two-output combinational circuit to derive a
representation of yi based on xi and xi−1 (see Table 9.1). A convenient representation of
yi consists of the 2 bits “nonzero” (tied to the multiplexer’s enable input) and “negative”
(feeding the multiplexer’s select input and the adder’s carry-in).

Radix-2 Booth recoding is not directly applied in modern arithmetic circuits, but it
serves as a tool in understanding the radix-4 version of this recoding, to be discussed in
Section 10.2.

9.5 MULTIPLICATION BY CONSTANTS

When a hardware multiplier, or a corresponding firmware routine, is unavailable, mul-
tiplication must be performed by a software routine similar to that in Fig. 9.3. In
applications that are not arithmetic-intensive, loss of speed due to the use of such rou-
tines is tolerable. However, many applications involve frequent use of multiplication; in
these applications, indiscriminate use of such slow routines may be unacceptable.

Even for applications involving many multiplications, it is true that in a large fraction
of cases, one of the operands is a constant that is known at circuit-design or program-
compilation time. We know that multiplication and division by powers of 2 can be done
through shifting. It is less obvious that multiplication by many other constants can be

Multiplication By Constants 189

performed by short sequences of simple operations without a need to use a hardware
multiplier or to invoke a complicated general multiplication routine or instruction.

Besides explicit multiplications appearing in arithmetic expressions within programs,
there are many implicit multiplications to compute offsets into arrays. For example, if
an m × n array A is stored in row-major order, the offset of the element Ai,j (assuming
0-origin indexing) is obtained from the expression ni+j. In such implicit multiplications,
as well as in a significant fraction of explicit ones, one of the operands is a constant. A
multiply instruction takes much longer to execute than a shift or an add instruction even
if a hardware multiplier is available. Thus, one might want to avoid the use of a multiply
instruction even when it is supported by the hardware.

In the remainder of this section, we describe algorithms for multiplication by integer
constants in terms of shift and add/subtract operations performed on register contents.
The algorithms can thus be readily translated to sequences of instructions for any specific
processor. The algorithms described can also be viewed as hardware structures to be built
into application-specific designs. For example, a digital filter may be characterized by
the equation y[t] = ax[t]+bx[t−1]+ cx[t−2]+dy[t−1]+ ey[t−2], in which a-e are
constants, x[i] is the input at time step i, and y[j] is the output at time step j. Depending on
the constants involved, the circuit computing y[t]may not need multipliers at all. In fact,
the circuit could be less complex, faster, and lower-powered if implemented by means
of adders only. With the latter interpretation, the registers would represent intermediate
bundles of wire that interconnect adder modules. Multiple additions can be performed
via conventional two-operand adders or by means of carry-save adder trees, followed
by a final carry-propagate adder. In both the hardware and software interpretations, the
goal is to produce an optimal arrangement that requires a minimal number of operations
and intermediate values. In the case of compiler-initiated optimizations, the complexity
of the algorithm used for deriving the optimal sequence of operations is also of interest,
as it affects the compiler’s running time.

In the examples that follow, R1 denotes the register holding the multiplicand and Ri

will denote an intermediate result that is i times the multiplicand (e.g., R65 denotes the
result of multiplying the multiplicand a by 65). Note that a new value Rj can be saved
in the same physical register that holds Ri, provided the old value in Ri is not needed for
subsequent computation steps.

A simple way to multiply the contents of a register by an integer constant multiplier
is to write the multiplier in binary format and to use shifts and adds according to the 1s
in the binary representation. For example to multiply R1 by 113 = (1110001)two, one
might use

R2 ← R1 shift-left 1
R3 ← R2 + R1
R6 ← R3 shift-left 1
R7 ← R6 + R1
R112 ← R7 shift-left 4
R113 ← R112 + R1

Only two registers are required; one to store the multiplicand a and one to hold the latest
partial result.

190 Chapter 9 Basic Multiplication Schemes

If a shift-and-add instruction is available, the sequence above becomes

R3 ← R1 shift-left 1+ R1
R7 ← R3 shift-left 1+ R1
R113 ← R7 shift-left 4+ R1

If only 1-bit shifts are allowed, the last instruction in the preceding sequence must be
replaced by three shifts followed by a shift-and-add. Note that the pattern of shift-and-
adds and shifts (s&a, s&a, shift, shift, shift, s&a) in this latter version matches the bit
pattern of the multiplier if its most-significant bit is ignored (110001).

Many other instruction sequences are possible. For example, one could proceed
by computing R16, R32, R64, R65, R97(R65 + R32), and R113(R97 + R16). However, this
would use up more registers. If subtraction is allowed in the sequence, the number of
instructions can be reduced in some cases. For example, by taking advantage of the
equality 113 = 128− 16+ 1 = 16(8− 1)+ 1, one can derive the following sequence
of instructions for multiplication by 113:

R8 ← R1 shift-left 3
R7 ← R8 − R1
R112 ← R7 shift-left 4
R113 ← R112 + R1

In general, the use of subtraction helps if the binary representation of the integer has
several consecutive 1s, since a sequence of j consecutive 1s can be replaced by 1 0 0 0
· · · 0 0 -1, where there are j − 1 zeros (Booth’s recoding).

Factoring a number sometimes helps in obtaining efficient code. For example, to
multiply R1 by 119, one can use the fact that 119 = 7 × 17 = (8 − 1) × (16 + 1) to
obtain the sequence

R8 ← R1 shift-left 3
R7 ← R8 − R1
R112 ← R7 shift-left 4
R119 ← R112 + R7

With shift-and-add/subtract instructions, the preceding sequence reduces to only two
instructions:

R7 ← R1 shift-left 3− R1
R119 ← R7 shift-left 4+ R7

In general, factors of the form 2b ± 1 translate directly into a shift followed by an add
or subtract and lead to a simplification of the computation sequence.

In a compiler that removes common subexpressions, moves invariant code out of
loops, and performs a reduction of strength on multiplications inside loops (in particular
changes multiplications to additions where possible), the effect of multiplication by
constants is quite noticeable. It is not uncommon to obtain a 20% improvement in the
resulting code, and some programs exhibit 60% improved performance [Bern86].

Problems 191

For many small constants of practical interest, one can obtain reasonably efficient
sequences of shift and add/subtract operations by trial and error, although the optimal
synthesis problem for constant multiplication is known to be NP-complete in general
[Capp84]. Optimal implementations have been derived by means of exhaustive search
for constants of up to 19 bits [Gust02]. Additionally, automated design tools can assist us
with finding suitable designs under various implementation technologies and constraints
[Xili99].

9.6 PREVIEW OF FAST MULTIPLIERS

If one views multiplication as a multioperand addition problem, there are but two ways
to speed it up:

Reducing the number of operands to be added.

Adding the operands faster.

Reducing the number of operands to be added leads to high-radix multipliers in which
several bits of the multiplier are multiplied by the multiplicand in 1 cycle. Speedup
is achieved for radix 2j as long as multiplying j bits of the multiplier by the multipli-
cand and adding the result to the cumulative partial product takes less than j times as
long as multiplying 1 bit and adding the result. High-radix multipliers are covered in
Chapter 10.

To add the partial products faster, one can design hardware multioperand adders
that minimize the latency and/or maximize the throughput by using some of the ideas
discussed in Chapter 8. These multioperand addition techniques lead to tree and array
multipliers, which form the subjects of Chapter 11.

PROBLEMS 9.1 Multiplication in dot notation

In Section 9.1, it was stated that for r > 2, Fig. 9.1 must be modified (since the
partial product terms xia will be wider than a). Is there an exception to this general
statement?

9.2 Unsigned sequential multiplication

Multiply the following 4-bit binary numbers using both the right-shift and left-shift
multiplication algorithms. Present your work in the form of Fig. 9.2.

a. a = 1001 and x = 0101
b. a = .1101 and x = .1001

9.3 Unsigned sequential multiplication

Multiply the following 4-digit decimal numbers using both the right-shift and
left-shift multiplication algorithms. Present your work in the form of Fig. 9.2.

a. a = 8765 and x = 4321
b. a = .8765 and x = .4321

192 Chapter 9 Basic Multiplication Schemes

9.4 2’s-complement sequential multiplication

Represent the following signed-magnitude binary numbers in 5-bit, 2’s-
complement format and multiply them using the right-shift algorithm. Present
your work in the form of Fig. 9.6. Then, redo each multiplication using Booth’s
recoding, presenting your work in the form of Fig. 9.9.

a. a = +.1001 and x = +.0101
b. a = +.1001 and x = −.0101
c. a = −.1001 and x = +.0101
d. a = −.1001 and x = −.0101

9.5 Programmed multiplication

a. Write the multiplication routine of Fig. 9.3 for a real processor of your choice.
b. Modify the routine of part a to correspond to multiplication with left shifts.
c. Compare the routines of parts a and b with respect to average speed.
d. Modify the routines of parts a and b so that they compute ax+ y. Compare the

resulting routines with respect to average speed.

9.6 Basic hardware multipliers

a. In a hardware multiplier with right shifts (Fig. 9.4a), the adder’s input multi-
plexer can be moved to its output side. Show the resulting multiplier design
and compare it with respect to cost and speed to that in Fig. 9.4a.

b. Repeat part a for the left-shift multiplier depicted in Fig. 9.4b.

9.7 Multiplication with left shifts

Consider a hardware multiplier with left shifts as in Fig. 9.4b, except that multiplier
and the upper half of the cumulative partial product share the same register.

a. Draw a diagram similar to Fig. 9.5 for multiplication with left shifts.
b. Explain why carries from adding the multiplicand to the cumulative partial

product do not move into, and change, the unused part of the multiplier.

9.8 Basic multiply-add units

a. Show how the multiplier with right shifts, depicted in Fig. 9.4a, can be modified
to perform a multiply-add step with unsigned operands (compute ax+y), where
the additive operand y is stored in a special register.

b. Repeat part a for the left-shift multiplier depicted in Fig. 9.4b.
c. Extend the design of part a to deal with signed operands.
d. Repeat part b for signed operands and compare the result to part c.

9.9 Direct 2’s-complement multiplication

a. Show how the example multiplication depicted in Fig. 9.6 would be done with
the left-shift multiplication algorithm.

Problems 193

b. Repeat part a for Fig. 9.7.
c. Repeat part a for Fig. 9.9.

9.10 Booth’s recoding

Using the fact that we have yi = xi−1 − xi in Table 9.1, prove the correctness of
Booth’s recoding algorithm for 2’s-complement numbers.

9.11 Direct 1’s-complement multiplication

Describe and justify a direct multiplication algorithm for 1’s-complement num-
bers. Hint: Use initialization of the cumulative partial product and a modified last
iteration.

9.12 Multiplication of binary signed-digit numbers

a. Multiply the binary signed-digit numbers (1 0 -1 0 1)BSD and (0 -1 1 0 -1)BSD
using the right-shift algorithm.

b. Repeat part a using the left-shift algorithm.
c. Design the circuit required for obtaining the partial product xja for a sequential

binary signed-digit hardware multiplier.

9.13 Fully serial multipliers

a. A fully serial multiplier with right shifts is obtained if the adder of Fig. 9.4a
is replaced with a bit-serial adder. Show the block diagram of the fully serial
multiplier based on the right-shift multiplication algorithm.

b. Design the required control circuit for the fully serial multiplier of part a.
c. Does a fully serial multiplier using the left-shift algorithm make sense?

9.14 Multiplication by constants

Using shift and add/subtract operations only, devise efficient routines for multi-
plication by the following decimal constants. Assume 32-bit unsigned operands.
Make sure that intermediate results do not lead to overflow.

a. 43
b. 129
c. 135
d. 189
e. 211
f. 867
g. 8.75 (the result is to be rounded down to an integer)

9.15 Multiplication by constants

a. Devise a general method for multiplying an integer a by constant multipliers
of the form 2j + 2i, where 0 ≤ i < j (e.g., 36 = 25 + 22, 66 = 26 + 21).

b. Repeat part a for constants of the form 2j − 2i. Watch for possible overflow.

194 Chapter 9 Basic Multiplication Schemes

c. Repeat part a for constants of the form 1 + 2−i + 2−j + 2−i−j, rounding the
result down to an integer.

9.16 Multiplication by constants

a. Devise an efficient algorithm for multiplying an unsigned binary integer by
the decimal constant 99. The complexity of your algorithm should be less than
those obtained from the binary expansion of 99, with and without Booth’s
recoding.

b. What is the smallest integer whose binary or Booth-recoded representation does
not yield the most efficient multiplication routine with additions and shifts?

9.17 Multiplication by constants

Show how a number a can be multiplied by an integer of the form x = 2b+2b−1+
· · · + 2a (i.e., an integer, such as 60, that is the sum of several consecutive powers
of 2).

9.18 Multiplication by constants

For integer constants x up to 64, plot three curves representing the number
of instructions needed to multiply a by x by means of the binary expansion,
binary expansion with Booth’s recoding, and the optimal solution. Each shift
and add/subtract operation counts as one instruction regardless of the amount of
the shift.

9.19 Sequential 2’s-complement multiplication

Assuming 2’s-complement operands, perform a× x = 0.110× 1.011 using direct
signed multiplication.

9.20 Sequential 2’s-complement multiplication

a. Represent x = 3, y = −3, and z = 5 as 4-bit, 2’s-complement numbers.
b. Compute x × z to get the 8-bit product p using the sequential algorithm with

right shifts.
c. Compute y × z to get the 8-bit product p′ using the sequential algorithm with

left shifts.

9.21 Multiplication by multiple constants

When multiplying a value by multiple constants is required, the total computation
time or hardware components can be reduced by sharing of the intermediate results.

a. Find an efficient scheme for multiplying a number by 23.
b. Repeat part a for multiplication by the constant 81.
c. Show that simultaneous computation of 23x and 81x requires fewer operations

than the operations for parts a and b combined. Hint: Compute 9x first.

References and Further Readings 195

9.22 Multiplication by multiple constants

Find efficient procedures for multiplying a given integer by each of the following
sets of constants and compare the number of operations needed by your procedure
with that required if separate optimal algorithms, one for each constant, are used.

a. 9, 13, 18, 21
b. 11, 13, 19, 29, 35
c. 27, 36, 41, 67

9.23 Extended multiply-add operation

Consider unsigned values a, x, y, and z. We know that ax + y can be computed
with no extra latency compared with an ordinary multiplication if we initialize
the upper half of the partial product register in Fig. 9.4a to y. Show how one can
compute ax+ y+ z with the same latency. Hint: Look for unused resources in Fig.
9.4a that can be tapped for this purpose.

9.24 Booth multiplier design

Complete the design of a radix-2 Booth multiplier, as described at the end of
Section 9.4. In particular, provide a complete design for the circuit that supplies
the control signals to the multiplexer.

9.25 Multiplication by constants

Devise efficient procedures for multiplying a number by each of the following
constants.

a. 106 (Hint: Three shift-add operations are sufficient)
b. 1950
c. 2014

REFERENCES AND FURTHER READINGS

[Bern86] Bernstein, R., “Multiplication by Integer Constants,” Software—Practice and
Experience, Vol. 16, No. 7, pp. 641–652, 1986.

[Boot51] Booth, A. D., “A Signed Binary Multiplication Technique,” Quarterly J. Mechanics
and Applied Mathematics, Vol. 4, Pt. 2, pp. 236–240, 1951.

[Boul03] Boullis, N., and A. Tisserand, “Some Optimizations of Hardware Multiplication by
Constant Matrices,” Proc. 16th IEEE Symp. Computer Arithmetic, June 2003, pp.
20–27.

[Bris08] Brisebarre, N., and J.-M. Muller, “Correctly Rounded Multiplication by Arbitrary
Precision Constants,” IEEE Trans. Computers, Vol. 57, No. 2, pp. 165–174, 2008.

[Capp84] Cappelo, P. R., and K. Steiglitz, “Some Complexity Issues in Digital Signal
Processing,” IEEE Trans. Acoustics, Speech and Signal Processing, Vol. 32, No. 5,
pp. 1037–1041, 1984.

196 Chapter 9 Basic Multiplication Schemes

[Gust02] Gustafsson, O., A. G. Dempster, and L. Wanhammar, “Extended Results for
Minimum-Adder Constant Integer Multipliers,” Proc. IEEE Int’l Symp. Circuits and
Systems, Vol. 1, pp. 73–76, 2002.

[Kore93] Koren, I., Computer Arithmetic Algorithms, Prentice-Hall, 1993.

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture and
Implementations, Prentice-Hall, 1994.

[Robe55] Robertson, J. E., “Two’s Complement Multiplication in Binary Parallel Computers,”
IRE Trans. Electronic Computers, Vol. 4, No. 3, pp. 118–119, 1955.

[Shaw50] Shaw, R. F., “Arithmetic Operations in a Binary Computer,” Rev. Scientific
Instruments, Vol. 21, pp. 687–693, 1950.

[Voro07] Voroneko, Y., and M. Puschel, “Multiplierless Multiple Constant Multiplication,”
ACM Trans. Algorithms, Vol. 3, No. 2, Article 11, 38 pp., 2007.

[Xili99] Xilinx Corporation, “Constant (K) Coefficient Multiplier Generator for Virtex,”
Application note, March 1999.

10 High-Radix Multipliers

■ ■ ■

“We go on multiplying our conveniences only to multiply our cares. We increase our
possessions only to the enlargement of our anxieties.”

A N N A C . B R A C K E T T

■ ■ ■

I n this chapter, we review multiplication schemes that handle more than 1 bit

of the multiplier in each cycle (2 bits per cycle in radix 4, 3 bits in radix 8, etc.). The

reduction in the number of cycles, along with the use of recoding and carry-save

addition to simplify the required computations in each cycle, leads to significant

gains in speed over the basic multipliers of Chapter 9. Chapter topics include:

10.1 Radix-4 Multiplication

10.2 Modified Booth’s Recoding

10.3 Using Carry-Save Adders

10.4 Radix-8 and Radix-16 Multipliers

10.5 Multibeat Multipliers

10.6 VLSI Complexity Issues

10.1 RADIX-4 MULTIPLICATION

For a given range of numbers to be represented, a higher representation radix leads to
fewer digits. Thus, a digit-at-a-time multiplication algorithm requires fewer cycles as we
move to higher radices. This motivates us to study high-radix multiplication algorithms
and associated hardware implementations. Since a k-bit binary number can be interpreted
as a 	k/2
-digit radix-4 number, a 	k/3
-digit radix-8 number, and so on, the use of
high-radix multiplication essentially entails dealing with more than 1 bit of the multiplier
in each cycle.

197

198 Chapter 10 High-Radix Multipliers

Figure 10.1 Radix-4,
or 2-bits-at-a-time,
multiplication in dot
notation. • • • • • • (x x) a 4

• • • • a
• • • • x

• • • • • • (x x) a 4

• • • • • • • • p

×

0
2

1
3

0
1

two

two

We begin by presenting the general radix-r versions of the multiplication recurrences
given in Section 9.1:

p(j+1) = (p(j) + xja rk)r−1 with p(0) = 0 and p(k) = p

|—– add ——|
|—– shift right —–|

p(j+1) = rp(j) + xk−j−1a with p(0) = 0 and p(k) = p

|shift|| left |
|—— add ——|

Since multiplication by r−1 or r still entails right or left shifting by one digit, the only
difference between high-radix and radix-2 multiplication is in forming the terms xia,
which now require more computation.

For example, if multiplication is done in radix 4, in each step, the partial product
term (xi+1xi)two a needs to be formed and added to the cumulative partial product.
Figure 10.1 shows the multiplication process in dot notation. Straightforward application
of this method leads to the following problem. Whereas in radix-2 multiplication, each
row of dots in the partial products matrix represents 0 or a shifted version of a, here we
need the multiples 0a, 1a, 2a, and 3a. The first three of these present no problem (2a is
simply the shifted version of a). But computing 3a needs at least an addition operation
(3a = 2a + a).

In the remainder of this section, and in Section 10.2, we review several solutions for
the preceding problem in radix-4 multiplication.

The first option is to compute 3a once at the outset and store it in a register for future
use. Then, the rest of the multiplier hardware will be very similar to that depicted in Fig.
9.4a, except that the two-way multiplexer (mux) is replaced by a four-way multiplexer
as shown in Fig. 10.2. An example multiplication is given in Fig. 10.3.

Another possible solution exists when 3a needs to be added: we add −a and send a
carry of 1 into the next radix-4 digit of the multiplier (Fig. 10.4). Including the incoming
carry, the needed multiple in each cycle is in [0, 4]. The multiples 0, 1, and 2 are handled
directly, while the multiples 3 and 4 are converted to −1 and 0, respectively, plus an
outgoing carry of 1, which is stored in a flip-flop (FF) for addition to the next radix-4
multiplier digit. An extra cycle may be needed at the end because of the carry.

Radix-4 Multiplication 199

Figure 10.2 The
multiple generation
part of a radix-4
multiplier with
precomputation
of 3a.

0 a 2a

3a

Multiplier

To the adder

2-bit shifts

00 01 10 11
Mux

x i+1 x i

Figure 10.3
Example of radix-4
multiplication using
the 3a multiple.

================================
a 0 1 1 0
3a 0 1 0 0 1 0
x 1 1 1 0
================================
p(0) 0 0 0 0
+(x1x0) a 0 0 1 1 0 0
–––––––––––––––––––––––––––––––––-
4p(1) 0 0 1 1 0 0
p(1) 0 0 1 1 0 0
+(x3x2) a 0 1 0 0 1 0
–––––––––––––––––––––––––––––––––-
4p(2) 0 1 0 1 0 1 0 0
p(2) 0 1 0 1 0 1 0 0
================================

two

two

0 a 2a –a

Multiplier

To the adder

+c
FF

Set if = = 1
 or if = c = 1c

00 01 10 11
Mux

2-bit shifts

mod 4

Carry
x i+1 x i

xi+1
xi+1

xi

Figure 10.4 The multiple generation part of a radix-4 multiplier based on replacing 3a with
4a (carry into the next higher radix-4 multiplier digit) and−a.

The multiplication schemes depicted in Figs. 10.2 and 10.4 can be extended to
radices 8, 16, etc., but the multiple generation hardware becomes more complex for
higher radices, nullifying most, if not all, of the gain in speed due to fewer cycles. For
example, in radix 8, one needs to precompute the multiples 3a, 5a, and 7a, or else
precompute only 3a and use a carry scheme similar to that in Fig. 10.4 to convert the
multiples 5a, 6a, and 7a to−3a,−2a, and−a, respectively, plus a carry of 1. Supplying
the details is left as an exercise.

We will see later in this chapter that with certain other hardware implementations,
even higher radices become practical.

200 Chapter 10 High-Radix Multipliers

10.2 MODIFIED BOOTH’S RECODING

As stated near the end of Section 9.4, radix-2 Booth recoding is not directly applied
in modern arithmetic circuits; however, it does serve as a tool in understanding the
higher-radix versions of Booth’s recoding. It is easy to see that when a binary number is
recoded using Table 9.1, the result will not have consecutive 1s or -1s. Thus, if radix-4
multiplication is performed with the recoded multiplier, only the multiples ±a and±2a
of the multiplicand will be required, all of which are easily obtained by shifting and/or
complementation.

Now since yi+1 depends on xi+1 and xi, and yi depends on xi and xi−1, the radix-4
digit zi/2 = (yi+1yi)two, i even, can be obtained directly from xi+1, xi, and xi−1 without
a need for first forming the radix-2 recoded number y (Table 10.1).

Like the radix-2 version, radix-4 Booth’s recoding can be viewed as digit-set conver-
sion: the recoding takes a radix-4 number with digits in [0, 3] and converts it to the digit
set [−2, 2]. As an example, Table 10.1 can be used to perform the following conversion
of an unsigned number into a signed-digit number:

(21 31 22 32)four = (10 01 11 01 10 10 11 10)two
(1 -2 2 -1 2 -1 -1 0 -2)four=

Note that the 16-bit unsigned number turns into a 9-digit radix-4 number. Generally,
the radix-4 signed-digit representation of a k-bit unsigned binary number will need
�k/2� + 1 = 	(k + 1)/2
 digits when its most-significant bit is 1. Note also that x−1 =
xk = xk+1 = 0 is assumed.

If the binary number in the preceding example is interpreted as being in 2’s-
complement format, then simply ignoring the extra radix-4 digit produced leads to correct
encoding of the represented value:

(10 01 11 01 10 10 11 10)2’s-compl = (-2 2 -1 2 -1 -1 0 -2)four

Thus, for k-bit binary numbers in 2’s-complement format, the Booth-encoded radix-4
version will have 	k/2
 digits. When k is odd, xk = xk−1 is assumed for proper recoding.
In any case, x−1 = 0.

Table 10.1 Radix-4 Booth’s recoding yielding (zk/2 · · · z1z0)four.

xi+1 xi xi−1 yi+1 yi zi/2 Explanation

0 0 0 0 0 0 No string of 1s in sight

0 0 1 0 1 1 End of a string of 1s in x

0 1 0 1 −1 1 Isolated 1 in x

0 1 1 1 0 2 End of a string of 1s in x

1 0 0 −1 0 −2 Beginning of a String of 1s in x

1 0 1 −1 1 −1 End one string, begin new string

1 1 0 0 −1 −1 Beginning of a string of 1s in x

1 1 1 0 0 0 Continuation of string of 1s in x

Modified Booth’s Recoding 201

Figure 10.5
Example of radix-4
multiplication with
modified Booth’s
recoding of the
2’s-complement
multiplier.

================================
a 0 1 1 0
x 1 0 1 0
z -1 -2 Radix-4 recoded version of x
================================
p(0) 0 0 0 0 0 0
+z0a 1 1 0 1 0 0
–––––––––––––––––––––––––––––––––
4p(1) 1 1 0 1 0 0
p (1) 1 1 1 1 0 1 0 0
+z1a 1 1 1 0 1 0
–––––––––––––––––––––––––––––––––
4p(2) 1 1 0 1 1 1 0 0
p(2) 1 1 0 1 1 1 0 0
================================

Figure 10.6 The
multiple generation
part of a radix-4
multiplier based on
Booth’s recoding.

z a

two non0

sign
of a

a 2a

Select

neg

ii+1 i–1

i /2

0 1
Mux

k + 1
0, a, or 2a

To adder input
Add/Subtract
 control

x

Multiplier

xx

Recoding logic

Multiplicand

0

k

2-Bit shift

Init. 0

Enable

The digit-set conversion process defined by radix-4 Booth’s recoding entails no carry
propagation. Each radix-4 digit in [−2, 2] is obtained, independently from all others,
by examining 3 bits of the multiplier, with consecutive 3-bit segments overlapping in
1 bit. For this reason, radix-4 Booth’s recoding is said to be based on overlapped 3-bit
scanning of the multiplier. This can be extended to overlapped multiple-bit scanning
schemes for higher radices (see Section 10.4).

An example radix-4 multiplication using Booth’s recoding is shown in Fig. 10.5. The
4-bit 2’s-complement multiplier x = (1010)two is recoded as a 2-digit radix-4 number
z = (-1-2)four, which then dictates the multiples z0a = −2a and z1a = −a to be
added to the cumulative partial product in the 2 cycles. Note that in all intermediate
steps, the upper half of the cumulative partial product is extended from 4 bits to 6 bits
to accommodate the sign extension needed for proper handling of the negative values.
Also, note the sign extension during the right shift to obtain p(1) from 4p(1).

Figure 10.6 depicts a possible circuit implementation for multiple generation based
on radix-4 Booth’s recoding. Since five possible multiples of a or digits (0,±1,±2) are

202 Chapter 10 High-Radix Multipliers

involved, we need at least 3 bits to encode a desired multiple. A simple and efficient
encoding is to devote 1 bit to distinguish 0 from nonzero digits, 1 bit to the sign of a
nonzero digit, and 1 bit to the magnitude of a nonzero digit (2 encoded as 1 and 1 as
0). The recoding circuit thus has three inputs (xi+1, xi, xi−1) and produces three outputs:
“neg” indicates whether the multiple should be added (0) or subtracted (1), “non0”
indicates if the multiple is nonzero, and “two” indicates that a nonzero multiple is 2.

It is instructive to compare the recoding scheme implicit in the design of Fig. 10.4
with Booth’s recoding of Fig. 10.6 in terms of cost and delay. This is left as an exercise.
Note, in particular, that while the recoding produced in Fig. 10.4 is serial and must thus
be done from right to left, Booth’s recoding is fully parallel and carry-free. This latter
property is of no avail in designing digit-at-a-time multipliers, since the recoded digits
are used serially anyway. But we will see later that Booth’s recoding can be applied to
the design of tree and array multipliers, where all the multiples are needed at once.

10.3 USING CARRY-SAVE ADDERS

Carry-save adders (CSAs) can be used to reduce the number of addition cycles as well as
to make each cycle faster. For example, radix-4 multiplication without Booth’s recoding
can be implemented by using a CSA to handle the 3a multiple, as shown in Fig. 10.7.
Here, the CSAhelps us in doing radix-4 multiplication (generating the required multiples)
without reducing the add time. In fact, one can say that the add time is slightly increased,
since the CSA overhead is paid in every cycle, regardless of whether we actually
need 3a.

The CSA and multiplexers in the radix-4 multiplier of Fig. 10.7 can be put to better
use for reducing the addition time in radix-2 multiplication by keeping the cumulative
partial product in stored-carry form. In fact, only the upper half of the cumulative
partial product needs to be kept in redundant form, since as we add the three values
that form the next cumulative partial product, 1 bit of the final product is obtained in
standard binary form and is shifted into the lower half of the double-width partial product

Figure 10.7 Radix-4
multiplication with a
CSA used to combine
the cumulative
partial product, xi a,
and 2xi+1a into two
numbers.

Mux

0 2a

0 a

Multiplier

New cumulative partial product

Old cumulative
 partial product

CSA

Mux
x i+1 x i

Adder

Using Carry-Save Adders 203

0

Multiplier

k

k

k-bit CSA

k

Partial product

k

Mux

k-bit adder

Mux

Multiplicand

Carry

Sum

(a) Multiplier block diagram (b) Operation in a typical cycle

Upper half of PP Lower half of PP

Right

shift

Sum

Carry

Sum

Carry

Figure 10.8 Radix-2 multiplication with the upper half of the cumulative partial product
kept in stored-carry form.

register (Fig. 10.8b). This eliminates the need for carry propagation in all but the final
addition.

Each of the first k−1 cycles can now be made much shorter, since in these cycles, sig-
nals pass through only a few gate levels corresponding to the multiplexers and the CSA.
In particular, the delay in these cycles is independent of the word width k. Compared with
a simple sequential multiplier (Fig. 9.4a), the additional components needed to imple-
ment the CSA-based binary multiplier of Fig. 10.8a are a k-bit register, a k-bit CSA, and
a k-bit multiplexer; only the extra k-bit register is missing in the design of Fig. 10.7.

The CSA-based design of Fig. 10.8 can be combined with radix-4 Booth’s recoding
to reduce the number of cycles by 50%, while also making each cycle considerably
shorter. The changes needed in the design of Fig. 10.8 to accomplish this are depicted in
Fig. 10.9, where the small 2-bit adder is needed to combine 2 bits of the sum, 1 bit of the
carry, and a carry from a preceding cycle into 2 bits that are shifted into the lower half of
the cumulative partial product (PP) register and a carry that is kept for the next cycle. In
other words, whereas a 1-bit right shift of the stored-carry partial product at the bottom
of Fig. 10.8b moves 1 bit from the upper half to the lower half of the double-width partial
product, as indicated by the dashed arrow, a 2-bit right shift in radix-4 multiplication
would move 3 bits: one from column k and two from column k + 1. The 2-bit adder
converts these bits from redundant to nonredundant format, which is the format used in
the lower half of the partial product register. The use of the carry-in input of the 2-bit
adder is explained shortly.

The Booth recoding and multiple selection logic of Fig. 10.9 is different from the
arrangement in Fig. 10.6, since the sign of each multiple must be incorporated in the
multiple itself, rather than as a signal that controls addition/subtraction. Figure 10.10
depicts Booth recoding and multiple selection circuits that can be used for stored-carry
and parallel multipliers.

204 Chapter 10 High-Radix Multipliers

Figure 10.9 Radix-4
multiplication with a
CSA used to combine
the stored-carry
cumulative partial
product and zi/2a
into two numbers.

Multiplier

New cumulative
 partial product

CSA

x i+1 x i

Adder

a

 Booth
 recoder
 & selector

x i–1

z ai /2
Old cumulative
 partial product

FF

To the lower half
 of partial product

2-bit
adder

Extra "dot"

Figure 10.10 Booth
recoding and
multiple selection
logic for carry-save or
parallel
multiplication.

x x x x

Recoding logic

two non0

Enable
Select

 z a

neg a 2a

ii+1 i–1

i /2

i–2

0 1
Mux

k + 1
0, a, or 2a

k + 2

Selective complement

0, a, acompl, 2a, or (2a)compl

 Extra "dot"
for column i

x i+2

Note that in the circuit of Fig. 10.10, the negative multiples−a and−2a are produced
in 2’s-complement format. As usual, this is done by bitwise complementation of a or 2a
and the addition of 1 in the least-significant bit position. The multiple a or 2a produced
from xi and xi+1 is aligned at the right with bit position i and thus must be padded with i
zeros at its right end when viewed as a 2k-bit number. Bitwise complementation of these
0s, followed by the addition of 1 in the least-significant bit position, converts them back
to 0s and causes a carry to enter bit position i. For this reason, we can continue to ignore
positions 0 through i − 1 in the negative multiples and insert the extra “dot” directly in
bit position i (Fig. 10.9).

Alternatively, one can do away with Booth’s recoding and use the scheme depicted
in Fig. 10.7 to accommodate the required 3a multiple. Now, four numbers (the sum

Radix-8 and Radix-16 Multipliers 205

Figure 10.11
Radix-4
multiplication, with
the cumulative
partial product, xi a,
and 2xi+1a
combined into two
numbers by two
CSAs.

Mux

0 2a

0 a

Multiplier

CSA

Mux
x i+1 x i

Adder

CSA
New cumulative
 partial product

Old cumulative
 partial product

FF
2-bit
adder

To the lower half
 of partial product

and carry components of the cumulative partial product, xia, and 2xi+1a) need to be
combined, thus necessitating a two-level CSA tree (Fig. 10.11).

10.4 RADIX-8 AND RADIX-16 MULTIPLIERS

From the radix-4 multiplier in Fig. 10.11, it is an easy step to visualize higher-radix
multipliers. A radix-8 multiplier, for example, might have a three-level CSA tree to
combine the carry-save cumulative partial product with the three multiples xia, 2xi+1a,
and 4xi+2a into a new cumulative partial product in carry-save form. However, once we
have gone to three levels of CSA, we might as well invest in one more CSA to implement
a radix-16, or 4-bits-at-a-time, multiplier. The resulting design is depicted in Fig. 10.12.

An alternative radix-16 multiplier can be derived from Fig. 10.11 if we replace each
of the multiplexers with Booth recoding and multiple selection circuits. Supplying the
details of the multiplier design, including proper alignment and sign extension for the
inputs to the CSA tree, is left as an exercise.

Which of the preceding radix-16 multipliers (Fig. 10.12 or Fig. 10.11 modified
to include Booth’s recoding) is faster or more cost-effective depends on the detailed
circuit-level designs as well as technological parameters.

Note that in radix-2b multiplication with Booth’s recoding, we have to reduce b/2
multiples to 2 using a (b/2+ 2)-input CSA tree whose other two inputs are taken by the
carry-save partial product. Without Booth’s recoding, a (b + 2)-input CSA tree would
be needed. Whether to use Booth’s recoding is a fairly close call, since Booth recoding
circuit and multiple selection logic is somewhat slower than a CSA but also has a larger
reduction factor in the number of operands (2 vs. 1.5).

Varied as the preceding choices are, they do not exhaust the design space. Other alter-
natives include radix-8 and radix-16 Booth’s recoding, which represent the multiplier

206 Chapter 10 High-Radix Multipliers

Figure 10.12
Radix-16
multiplication with
the upper half of the
cumulative partial
product in carry-save
form.

Multiplier

CSA CSA

CSA

CSA

Partial product
 (upper half)

Mux

0 8a

Mux
0 4a

Mux
0 2a

Mux
0 a

x i+3

x i+2

x i+1

x i

Carry

Sum

4-bit
shift

FF

To the lower half
 of partial product

3 4-bit
adder

4

4

Figure 10.13
High-radix
multipliers as
intermediate
between sequential
radix-2 and full-tree
multipliers.

Basic
binary

Adder

Adder

One
multiple

Partial product

...

 Several
multiples

Adder

. . .

All multiples

Small CSA
 tree Large CSA

tree

High-radix
 or
partial-tree

Full
treeSpeed up Economize

Partial product

using the digit sets [−4, 4] and [−8, 8], respectively. We will explore the recoding pro-
cess and the associated multiplier design options in the end-of-chapter problems. Note,
for example, that with radix-8 recoding, we have the ±3a multiples to deal with. As
before, we can precompute 3a or represent it as the pair of numbers 2a and a, leading
to the requirement for an extra input into the CSA tree.

There is, no compelling reason to stop at radix 16. A design similar to that in Fig.
10.12 can be used for radix-256 (8-bits-at-a-time) multiplication if Booth’s recoding is
applied first. This would require that the four multiplexers in Fig. 10.12 be replaced by

Multibeat Multipliers 207

the Booth recoding and selection logic. Again, whether this new arrangement will lead to
a cost-effective design (compared, for example, with taking 7 bits of the multiplier and
adding nine numbers in a four-level CSA tree) depends on the technology and cannot be
discerned in general.

Designs such as the ones depicted in Figs. 10.11 and 10.12 can be viewed as inter-
mediate between basic sequential (1-bit-at-a-time) multiplication and fully parallel tree
multipliers to be discussed in Chapter 11. Thus, high-radix or partial-tree multipliers can
be viewed as designs that offer speedup over sequential multiplication or economy over
fully parallel tree multipliers (Fig. 10.13).

10.5 MULTIBEAT MULTIPLIERS

In the CSA-based binary multiplier shown in Fig. 10.8a, CSA outputs are loaded into
the same registers that supply its inputs. A common implementation method is to use
master-slave flip-flops for the registers. In this method, each register has two sides: the
master side accepts new data being written into the register while the slave side, which
supplies the register’s outputs, keeps the old data for the entire half-cycle when the clock
is high. When the clock goes low, the new data in the master side is transferred to the
slave side in preparation for the next cycle. In this case, one might be able to insert an
extra CSA between the master and slave registers, with little or no effect on the clock’s
cycle time. This virtually doubles the speed of partial-product accumulation.

Figure 10.14 shows a schematic representation of a 3-bit-at-a-time twin-beat multi-
plier that effectively retires 6 bits of the multiplier in each clock cycle. This multiplier,
which uses radix-8 Booth’s recoding, is similar to the twin-beat design used in
Manchester University’s MU5 computer [Gosl71].

Each clock cycle is divided into two phases or beats. In the first beat, the left multiplier
register is used to determine the next multiple to be added, while in the second beat, the
right multiplier register is used. After each cycle (two beats), the small adder at the lower
right of Fig. 10.14 determines 6 bits of the product, which are shifted into the lower half
of the cumulative partial product register. This adder is in all likelihood slower than the
CSAs; hence, to make each cycle as short as possible, the adder must be pipelined. Since
the product bits, once produced, do not change, the latency in deriving these bits has no
effect on the rest of the computation in the carry-save portion of the circuit.

Figure 10.15 helps us understand the workings of the twin-beat multiplier and allows
us to extend the application of this method to other designs. Consider an arbitrary sequen-
tial circuit realized as in Fig. 10.15a and running at a clock frequency f . We can convert
this design to the one depicted in Fig. 10.15b, where PH1 and PH2 are nonoverlapping
clocks with the same frequency f . When the PH1 clock is low and PH2 is high, the
upper latches provide stable outputs, which lead to stable inputs for the lower latches.
The situation reverses when PH1 is high and PH2 is low. Essentially, the circuit performs
useful computation during both clock half-cycles, rather than only during one of them.

The twin-beat concept can be easily extended to obtain a three-beat multiplier. Such
a design can be visualized by putting the three CSAs and associated latches into a
ring (Fig. 10.16), whose nodes are driven by a three-phase clock [deAn95]. Each node

208 Chapter 10 High-Radix Multipliers

Figure 10.14
Twin-beat multiplier
with radix-8 Booth’s
recoding.

Adder

CSA

Sum

Carry

CSA

Sum

Carry

FF

To the lower half
 of partial product

6-bit
adder

6

65

 Pipelined
 radix-8
 Booth
 recoder
& selector

3a a 3a a
4 4

Twin multiplier
 registers

 Pipelined
 radix-8
 Booth
 recoder
& selector

Next-state
logic

State
flip-flops

Inputs Next-state
excitation

Present
state

State
latches

Inputs

Inputs
State

latches

PH1

CLK

(a) Sequential machine with FFs (b) Sequential machine with latches and 2-phase clock

Next-state
logic

PH2

Next-state
logic

Figure 10.15 Two-phase clocking for sequential logic.

Figure 10.16
Conceptual view of a
three-beat multiplier.

CSA & latches

Beat-1
 input

Beat-3
 input

Beat-2
 input

Node 2

CSA & latches

C
S

A
 &

 latches

Node 3

Node 1

VLSI Complexity Issues 209

requires two beats before making its results available to the next node, thus leading to
separate accumulation of odd- and even-indexed partial products. At the end, the four
operands are reduced to two operands, which are then added to obtain the final product.

10.6 VLSI COMPLEXITY ISSUES

Implementation of sequential radix-2 and high-radix multipliers described thus far in
Chapters 9 and 10 is straightforward. The components used are CSAs, registers, multi-
plexers, and a final fast carry-propagate adder, for which numerous designs are available.
A small amount of random control logic is also required. Note that each 2-to-1 multi-
plexer with one of the inputs tied to 0 can be simplified to a set of AND gates. Similarly,
a multiplexer with complementary inputs, a and acompl, may be replaceable with a set
of XOR gates, with one input of every gate tied to the original multiplexer selection
signal.

For the CSA tree of a radix-2b multiplier, typically a bit slice is designed and then
replicated. Since without Booth’s recoding, the CSA tree receives b + 2 inputs, the
required slice is a (b + 2; 2)-counter; see Section 8.5. For example, a set of (7; 2)-
counter slices can be used to implement the CSA tree of a radix-32 multiplier without
Booth’s recoding. When radix-2h Booth’s recoding is applied first, then the number of
multiples per cycle is reduced by a factor of h and a (b/h + 2; 2)-counter slice will be
needed.

In performing radix-2b multiplication, bk two-input AND gates are required to form
the b multiples for each cycle in parallel. The area complexity of the CSA tree that
reduces these b multiples to 2 is O(bk). Since these complexities dominate that of the
final fast adder, the overall area requirement is seen to be

A = O(bk)

In view of the logarithmic height of the CSA tree, as discussed in Section 8.3, multipli-
cation is performed in k/b cycles of duration O(log b), plus a final addition requiring
O(log k) time. The overall time complexity thus becomes

T = O((k/b) log b+ log k)

It is well known that any circuit computing the product of two k-bit integers must
satisfy the following constraints involving its on-chip layout area A and computational
latency T : AT is at least proportional to k

√
k and AT 2 grows at least as fast as k2 [Bren81].

For the preceding implementations, we have

AT = O(k2 log b+ bk log k)

AT 2 = O((k3/b) log2 b)

At the lower end of the complexity scale, where b is a constant, the AT and AT 2 mea-
sures for our multipliers become O(k2) and O(k3), respectively. At the other extreme
corresponding to b = k, where all the multiplier bits are considered at once, we have

210 Chapter 10 High-Radix Multipliers

AT = O(k2 log k) and AT 2 = O(k2 log2 k). Intermediate designs do not yield better
values for AT and AT 2; thus, the multipliers remain asymptotically suboptimal for the
entire range of the parameter b.

By the AT measure, which is often taken as an indicator of cost-effectiveness, the
slower radix-2 multipliers are better than high-radix or tree multipliers. Therefore, in
applications calling for a large number of independent multiplications, it may be appro-
priate to use the available chip area for a large number of slow multipliers as opposed
to a small number of faster units.

We will see, in Chapter 11, that the time complexity of high-radix multipliers can
actually be reduced from O((k/b) log b + log k) to O(k/b + log k) through a more
effective pipelining scheme. Even though the resulting designs lead to somewhat better
AT and AT 2 measures, the preceding conclusions do not change.

Despite these negative results pointing to the asymptotic suboptimality of high-radix
and tree multipliers, such designs are quite practical for a wide range of the parameter
b, given that the word width k is quite modest in practice. Multiplication with very wide
words (large values of k) does find applications, such as in cryptography. However, in
nearly all such applications, multiprecision arithmetic, using multipliers with short-to-
moderate word widths, is the preferred method, [Scot07].

PROBLEMS 10.1 Radix-4 Booth’s recoding

Prove that radix-4 Booth’s recoding defined in Table 10.1 preserves the value of
an unsigned or 2’s-complement number. Hint: First show that the recoded radix-4
digit zi/2 can be obtained from the arithmetic expression −2xi+1 + xi + xi−1.

10.2 Sequential radix-4 multipliers

a. Consider the radix-4 multiplier depicted in Fig. 10.2. What provisions are
needed if 2’s-complement multipliers are to be handled appropriately?

b. Repeat part a for the multiplier depicted in Fig. 10.4.

10.3 Alternate radix-4 multiplication algorithms

Consider the example unsigned multiplication (0 1 1 0)two× (1 1 1 0)two depicted
in Fig. 10.3.

a. Redo the example multiplication using the scheme shown in Fig. 10.4.
b. Redo the example multiplication using radix-4 Booth’s recoding.
c. Redo the example multiplication using the scheme shown in Fig. 10.7. Show

the intermediate sum and carry values in each step.

10.4 Sequential unsigned radix-4 multipliers

a. Design the recoding logic needed for the multiplier of Fig. 10.4.
b. Give a complete design for the Booth recoding logic circuit shown in

Fig. 10.6.
c. Compare the circuits of parts a and b with respect to cost and delay. Which

scheme is more cost-effective for sequential unsigned radix-4 multiplication?

Problems 211

d. Compare the radix-4 multiplier shown in Fig. 10.2 against those in part c
with respect to cost and delay. Summarize your conclusions.

10.5 Alternate radix-4 recoding scheme

a. The design of the Booth recoder and multiple selection circuits in Fig. 10.6
assumes the use of a multiplexer with an enable control signal. How will the
design change if such a multiplexer is not available?

b. Repeat part a for the circuit of Fig. 10.10.

10.6 Recoding for radix-8 multiplication

a. Construct a recoding table (like Table 10.1) to obtain radix-8 digits in [−4,
4] based on overlapped 4-bit groups of binary digits in the multiplier.

b. Show that your recoding scheme preserves the value of a number. Hint:
Express the recoded radix-8 digit zi/3 as a linear function of xi+2, xi+1, xi,
and xi−1.

c. Design the required recoding logic block.
d. Draw a block diagram for the radix-8 multiplier and compare it with the

radix-4 design.

10.7 Recoding for radix-16 multiplication

a. Construct a recoding table (like Table 10.1) to obtain radix-16 digits in [−8,
8] based on overlapped 5-bit groups of binary digits in the multiplier.

b. Show that your recoding scheme preserves the value of a number.
Hint: Express the recoded radix-16 digit zi/4 as a linear function of
xi+3, xi+2, xi+1, xi, and xi−1.

c. Design the required recoding logic block.
d. Draw a block diagram for the radix-16 multiplier and compare it with the

radix-4 design.

10.8 Alternate radix-4 recoding scheme

The radix-4 Booth recoding scheme of Table 10.1 replaces the 2 bits xi+1 and
xi of the multiplier with a radix-4 digit 0, ±1, or ±2 by examining xi−1 as the
recoding context. An alternative recoding scheme is to replace xi+1 and xi with
a radix-4 digit 0, ±2, or ±4 by using xi+2 as the context.

a. Construct the required radix-4 recoding table.
b. Design the needed recoding logic block.
c. Compare the resulting multiplier with that obtained from radix-4 Booth

recoding with respect to possible advantages and drawbacks.

10.9 Comparing radix-4 multipliers

Compare the multipliers in Figs. 10.9 and 10.11 with regard to speed and hardware
implementation cost. State and justify all your assumptions.

212 Chapter 10 High-Radix Multipliers

10.10 Very-high-radix multipliers

The 4-bit adder shown at the lower right of Fig. 10.12 may be slower than the
CSAtree, thus lengthening the cycle time. The problem becomes worse for higher
radices. Discuss how this problem can be mediated.

10.11 Multibeat multipliers

Study the design of the three-beat multiplier in [deAn95]. Based on your under-
standing of the design, discuss if anything can be gained by going to a four-beat
multiplier.

10.12 VLSI complexity of multipliers

a. A proposed VLSI design for k × k multiplication requires chip area pro-
portional to k log k. What can you say about the asymptotic speed of this
multiplier based on AT and AT 2 bounds?

b. What can you say about the VLSI area requirement of a multiplier that
operates in optimal O(log k) time?

10.13 VLSI multiplier realizations

Design a slice of the (6; 2)-counter that is needed to implement the multiplier of
Fig. 10.12.

10.14 Multiply-add operation

a. Show that the high-radix multipliers of this chapter can be easily adapted to
compute p = ax + y instead of p = ax.

b. Extend the result of part a to computing p = ax + y + z, where all input
operands are k-bit unsigned integers. Hint: This is particularly easy with
carry-save designs.

10.15 Balanced ternary multiplication

Discuss the design of a radix-9 multiplier for balanced ternary operands that use
the digit set [−1, 1] in radix 3. Consider all the options presented in this chapter,
including the possibility of recoding.

10.16 Decimal multiplier

Consider the design of a decimal multiplier using a digit-at-a-time scheme.
Assume binary-coded decimal encoding for the digits.

a. Using a design similar to that in Fig. 10.12, supply the hardware details and
discuss how each part of the design differs from the radix-16 version. Hint:
One approach is to design a special decimal divide-by-2 circuit for deriving
the multiple 5a from 10a, forming the required multiples by combining 10a,
5a, a, and −a.

Problems 213

b. Using a suitable recoding scheme, convert the decimal number to digit set
[−5, 5]. Does this recoding help make multiplication less complex than in
part a?

10.17 Signed-digit multiplier

Consider the multiplication of radix-3 integers using the redundant digit
set [−2, 2].

a. Draw a block diagram for the requisite radix-3 multiplier using the encoding
given in connection with radix-4 Booth’s recoding (Fig. 10.6) to represent
the digits.

b. Show the detailed design of the circuit that provides the multiple 2a.
c. Present the design of a radix-9 multiplier that relaxes two multiplier digits

per cycle.

10.18 Radix-4 Booth’s recoding

Show that radix-4 Booth’s recoding is equivalent to the following scheme:

1. Begin with a radix-4 operand employing the conventional digit set [0, 3].
2. Rewrite each 2 (3) digit as −2 (−1) with a radix-4 transfer of 1 to the next

higher position. This results in an interim digit set [−2, 1].
3. Add the transfers to interim digits to obtain the recoded number with the digit

set [−2, 2]. At the most-significant end, ignore the outgoing transfer for a
2’s-complement operand.

10.19 Radix-2h Booth’s recoding

In modified Booth’s recoding, the radix-4 digits obtained are in [−2, 2]. Problems
10.6 and 10.7 indicate that recoding leads to the digit set [−4, 4] in radix 8 and
[−8, 8] in radix 16. Indicate whether the following statement is true or false in
general: Booth’s recoding yields the minimally redundant digit set [−2h−1, 2h−1]
in radix 2h.

10.20 Multiplication with secondary radix recoding

The following are due to Seidel, McFearin, and Matula [Seid05].

a. Consider radix-32 multiplication. Use of Booth’s recoding leads to the digit
set [−16, 16], requiring precomputation of the odd multiples 3a, 5a, 7a, 9a,
11a, 13a, and 15a. Show how by representing the digit set [−16, 16] as a
two-digit radix-7 number, all the required multiples of the multiplicand a can
be formed from a and 7a using shifts and complementation only.

b. Use the method outlined in part a for radix-256 multiplication using the sec-
ondary radix 11. Show that in this case, precomputation of the two multiples
11a and 121a is sufficient.

c. Discuss how the methods of parts a and b lead to faster multipliers

214 Chapter 10 High-Radix Multipliers

REFERENCES AND FURTHER READINGS

[Boot51] Booth, A. D., “A Signed Binary Multiplication Technique,” Quarterly J. Mechanics
and Applied Mathematics, Vol. 4, Pt. 2, pp. 236–240, June 1951.

[Bren81] Brent, R. P., and H. T. Kung, “The Area-Time Complexity of Binary Multiplication,”
J. ACM, Vol. 28, No. 3, pp. 521-534, 1981.

[deAn95] de Angel, E., A. Chowdhury, and E. E. Swartzlander, “The Star Multiplier,” Proc.
29th Asilomar Conf. Signals, Systems, and Computers, pp. 604–607, 1995.

[Gosl71] Gosling, J. B., “Design of Large High-Speed Binary Multiplier Units,” Proc. IEE,
Vol. 118, Nos. 3/4, pp. 499–505, 1971.

[MacS61] MacSorley, O. L., “High-Speed Arithmetic in Binary Computers,” Proc. IRE, Vol. 49,
pp. 67–91, 1961.

[Rubi75] Rubinfield, L. P., “A Proof of the Modified Booth’s Algorithm for Multiplication,”
IEEE Trans. Computers, Vol. 25, No. 10, pp. 1014–1015, 1975.

[Sam90] Sam, H., and A. Gupta, “A Generalized Multibit Recoding of the Two’s Complement
Binary Numbers and Its Proof with Application in Multiplier Implementations,” IEEE
Trans. Computers, Vol. 39, No. 8, pp. 1006–1015, 1990.

[Scot07] Scott, M., and P. Szczechowiak, “Optimizing Multiprecision Multiplication for Public
Key Cryptography,” Cryptology ePrint Archive: http://eprint.iacr.org/2007/299.pdf.

[Seid05] Seidel, P.-M., L. D. McFearin, and D. W. Matula, “Secondary Radix Recodings for
Higher Radix Multipliers,” IEEE Trans. Computers, Vol. 54, No. 2, pp. 111–123,
2005.

[Vass89] Vassiliadis, S., E. M. Schwartz, and D. J. Hanrahan, “A General Proof for Overlapped
Multiple-Bit Scanning Multiplications,” IEEE Trans. Computers, Vol. 38, No. 2,
pp. 172–183, 1989.

[Wase82] Waser, S., and M. J. Flynn, Introduction to Arithmetic for Digital Systems Designers,
Holt, Rinehart, & Winston, 1982.

[Zura87] Zurawski, J. H. P., and J. B. Gosling, “Design of a High-Speed Square-Root,
Multiply, and Divide Unit,” IEEE Trans. Computers, Vol. 36, No. 1, pp. 13–23, 1987.

11 Tree and Array
Multipliers

■ ■ ■

“All my discoveries were simply improvements in notation”
G O T T F R I E D W I L H E L M V O N L E I B N I Z

■ ■ ■

T ree, or fully parallel, multipliers constitute limiting cases of high-radix multipliers

(radix-2k).With a high-performance carry-save adder (CSA) tree followed by a fast

adder, logarithmic time multiplication becomes possible. The resulting multipliers

are expensive but justifiable for applications in which multiplication speed is critical.

One-sided CSA trees lead to much slower, but highly regular, structures known as

array multipliers that offer higher pipelined throughput than tree multipliers and

significantly lower chip area at the same time. Chapter topics include:

11.1 Full-Tree Multipliers

11.2 Alternative Reduction Trees

11.3 Tree Multipliers for Signed Numbers

11.4 Partial-Tree and Truncated Multipliers

11.5 Array Multipliers

11.6 Pipelined Tree and Array Multipliers

11.1 FULL-TREE MULTIPLIERS

In their simplest forms, parallel or full-tree multipliers can be viewed as extreme cases
of the design in Fig. 10.12, where all the k multiples of the multiplicand are produced at
once and a k-input carry-save adder (CSA) tree is used to reduce them to two operands
for the final addition. Because all the multiples are combined in one pass, the tree does
not require feedback links, making pipelining quite feasible.

215

216 Chapter 11 Tree and Array Multipliers

Figure 11.1 General
structure of a full-tree
multiplier.

Higher-order
 product bits

Multiplier
a

a

a

a. . .

. . .

Some lower-order
product bits are
generated directly

Redundant result

Redundant-to-binary
 converter

Multiple-
forming
circuits

(Multioperand
 addition tree)

Partial products
 reduction tree

Figure 11.1 shows the general structure of a full-tree multiplier. Various multiples
of the multiplicand a, corresponding to binary or high-radix digits of the multiplier x
or its recoded version, are formed at the top. The multiple-forming circuits may be a
collection ofAND gates (binary multiplier), radix-4 Booth’s multiple generators (recoded
multiplier), and so on. These multiples are added in a combinational partial products
reduction tree, which produces their sum in redundant form. Finally, the redundant
result is converted to standard binary output at the bottom.

Many types of tree multipliers have been built or proposed. These are distinguished
by the designs of the following three elements in Fig. 11.1:

Multiple-forming circuits

Partial-products reduction tree

Redundant-to-binary converter

In the remainder of this section, we focus on tree multiplier variations involving unsigned
binary multiples and CSA reduction trees. With the redundant result in carry-save form,
the final converter is simply a fast adder. Deviations from the foregoing multiple gener-
ation and reduction schemes are discussed in Section 11.2. Signed tree multipliers are
covered in Section 11.3.

From our discussion of sequential multiplication in Chapters 9 and 10, we know
how the partial-products can be formed and how, through the use of high-radix methods,
the number of partial products can be reduced. The trade-offs mentioned for high-radix

Full-Tree Multipliers 217

1 2 3 4 3 2 1
FA FA FA HA

--------- - - - - - - - - - - - - - - - - - - -
1 3 2 3 2 1 1

FA HA FA HA
--------- -

2 2 2 2 1 1 1
4-bit adder

-------- -
1 1 1 1 1 1 1 1

Wallace tree
(5 FAs + 3 HAs + 4-bit adder)

1 2 3 4 3 2 1
FA FA

--------- - - - - - - - - - - - - - - - - - - -
1 3 2 2 3 2 1

FA HA HA FA
--------- -

2 2 2 2 1 2 1
6-bit adder

-------- -
1 1 1 1 1 1 1 1

Dadda tree
(4 FAs + 2 HAs + 6-bit adder)

Figure 11.2 Two different binary 4 × 4 tree multipliers.

multipliers exist here as well: more complex multiple-forming circuits can lead to sim-
plification in the reduction tree. Again, we cannot say in general which combination will
lead to greater cost-effectiveness because the exact nature of the trade-off is design- and
technology-dependent.

Recall Wallace’s and Dadda’s strategies for constructing CSA trees discussed in
Section 8.3. These give rise to Wallace and Dadda tree multipliers, respectively. Essen-
tially, Wallace’s strategy for building CSA trees is to combine the partial-product bits at
the earliest opportunity. With Dadda’s method, combining takes place as late as possible,
while keeping the critical path length of the CSA tree at a minimum. Wallace’s method
leads to the fastest possible design, and Dadda’s strategy usually leads to a simpler CSA
tree and a wider carry-propagate adder (CPA).

As a simple example, we derive Wallace and Dadda tree multipliers for 4× 4 mul-
tiplication. Figure 11.2 shows the design process and results in tabular form, where the
integers indicate the number of dots remaining in the various columns. Each design
begins with 16 AND gates forming the xiaj terms or dots, 0 ≤ i, j ≤ 3. The resulting
16 dots are spread across seven columns in the pattern 1, 2, 3, 4, 3, 2, 1. The Wallace
tree design requires 3 full adders (FAs) and 1 half-adder (HA) in the first level, then 2
FAs and 2 HAs in the second level, and a 4-bit CPA at the end. With the Dadda tree
design, our first goal is to reduce the height of the partial products dot matrix from 4 to
3, thus necessitating 2 FAs in the first level. These are followed by 2 FAs and 2 HAs in
the second level (reducing the height from 3 to 2) and a 6-bit CPA at the end.

Intermediate approaches between those of Wallace and Dadda yield various designs
that offer speed-cost trade-offs. For example, it may be that neither the Wallace tree nor
the Dadda tree leads to a convenient width for the fast adder. In such cases, a hybrid
approach may yield the best results.

Note that the results introduced for carry-save multioperand addition in Chapter 8
apply to the design of partial products reduction trees with virtually no change. The
only modifications required stem from the relative shifting of the operands to be added.
For example, in Fig. 8.12, we see that in adding seven right-aligned k-bit operands, the
CSAs are all k bits wide. In a seven-operand CSA tree of a 7×7 tree multiplier, the input
operands appear with shifts of 0 to 6 bits, leading to the input configuration shown at
the top of Fig. 11.3. We see that the shifted inputs necessitate somewhat wider blocks at

218 Chapter 11 Tree and Array Multipliers

Figure 11.3 Possible
CSA tree for a 7× 7
tree multiplier.

10-bit CPA

7-bit CSA 7-bit CSA

7-bit CSA

10-bit CSA

2Ignore

The index pair
[i, j] means that
bit positions
from i up to j
are involved.

7-bit CSA

[0, 6]
[1, 7]

[2, 8]
[6, 12]

[3, 11][1,8]

[3, 9]
[4, 10]

[5, 11]

[2, 8] [5, 11]

[6, 12]

[2,12]

[3, 12]

[4,13] [4,12]

[4, 13]

[3,9]

3

[3,12]

[2, 8]

[3,12]

[1, 6]

01

the bottom of the tree. It is instructive for the reader to compare Fig. 11.3 and Fig. 8.12,
noting all the differences.

There is no compelling reason to keep all the bits of the input or intermediate operands
together and feed them to multibit CSAs, thus necessitating the use of many HAs that
simply rearrange the dots without contributing to their reduction. Doing the reduction
with 1-bit FAs and HAs, as in Fig. 11.2, leads to lower complexity and perhaps even
greater speed. Deriving the Wallace and Dadda tree multipliers to perform the same
function as the circuit of Fig. 11.3 is left as an exercise.

One point is quite clear from Fig. 11.3 or its Wallace tree and Dadda tree equiva-
lents: a logarithmic depth reduction tree based on CSAs has an irregular structure that
makes its design and layout quite difficult. Additionally, connections and signal paths
of varying lengths lead to logic hazards and signal skew that have implications for both
performance and power consumption. In very large-scale integration (VLSI) design, we
strive to build circuits from iterated or recursive structures that lend themselves to effi-
cient automatic synthesis and layout. Alternative reduction trees that are more suitable
for VLSI implementation are discussed next.

11.2 ALTERNATIVE REDUCTION TREES

Recall from our discussion in Section 8.4 that a (7; 2)-counter slice can be designed that
takes 7 bits in the same column i as inputs and produces 1 bit in each of the columns i
and i+ 1 as outputs. Such a slice, when suitably replicated, can perform the function of

Alternative Reduction Trees 219

Figure 11.4 A slice
of a balanced-delay
tree for 11 inputs. FA FA FA

FA FA

FA FA

FA

FA

Inputs

Level-1
carries

Level-2
carries

Level-3
carries

Level-4
carry

Outputs

the reduction tree part of Fig. 11.3. Of course, not all columns in Fig. 11.3 have seven
inputs. The preceding iterative circuit can then be left intact and supplied with dummy 0
inputs in the interest of regularity, or it can be pruned by removing the redundant parts in
each slice. Such optimizations are well within the capabilities of automated design tools.

Based on Table 8.1, an (11; 2)-counter has at least five FA levels. Figure 11.4 shows
a particular five-level arrangement of FAs for performing 11-to-2 reduction with the
property that all outputs are produced after the same number of FA delays. Observe how
all carries produced in level i enter FAs in level i + 1. The FAs of Fig. 11.4 can be laid
out to occupy a narrow vertical slice that can then be replicated to form an 11-input
reduction tree of desired width. Such balanced-delay trees are quite suitable for VLSI
implementation of parallel multipliers.

The circuit of Fig. 11.4 is composed of three columns containing one, three, and
five FAs, going from left to right. It is now easy to see that the number of inputs can
be expanded from 11 to 18 by simply appending to the right of the circuit an additional
column of seven FAs. The top FA in the added column will accommodate three new
inputs, while each of the others, except for the lowermost two, can accept one new input;
these latter FAs must also accommodate a sum coming from above and a carry coming
from the right. Note that the FAs in the various columns are more or less independent
in that adjacent columns are linked by just one wire. This property makes it possible
to lay out the circuit in a narrow slice without having to devote a lot of space to the
interconnections.

Instead of building partial products reduction trees from CSAs, or (3; 2)-counters,
one can use a module that reduces four numbers to two as the basic building block. Then,

220 Chapter 11 Tree and Array Multipliers

c s c s

0

0

 1

4-to-2 4-to-2 4-to-2 4-to-2

4-to-2 4-to-2

4-to-2

(a) Binary tree of (4; 2)-counters

FA

FA

(b) Realization with FAs (c) A faster realization

0 1

Figure 11.5 Tree multiplier with a more regular structure based on 4-to-2 reduction modules.

M u l t i p l i c a n d

M
 u

 l
t i

 p
 l

e

s
e

l e
 c

 t
i o

 n

 s
 i

g
n

a
l s

Multiple generation circuits

Redundant-to-binary converter

. . .

Figure 11.6 Layout of a partial products reduction tree composed of 4-to-2 reduction
modules. Each solid arrow represents two numbers.

partial products reduction trees can be structured as binary trees that possess a recursive
structure making them more regular and easier to lay out (Fig. 11.5a). Figure 11.6 shows
a possible way of laying out the seven-module tree of Fig. 11.5a. Note that adding a
level to the tree of Fig. 11.6 involves duplicating the tree and inserting a 4-to-2 reduction
module between them.

In Fig. 11.6, the first, third, fifth, and seventh rectangular boxes correspond to top-
level blocks of Fig. 11.5a. These blocks receive four multiples of the multiplicand (two

Tree Multipliers for Signed Numbers 221

from above and two from below) and reduce them to a pair of numbers for the second
and sixth blocks. Each of the latter blocks in turn supplies two numbers to the fourth
block, which feeds the redundant-to-binary converter.

If the 4-to-2 reduction modules are internally composed of two CSA levels, as sug-
gested in Fig. 11.5b, then there may be more CSA levels in the binary tree structure than
in Wallace or Dadda trees. However, regularity of interconnections, and the resulting
efficient layout, can more than compensate for the added logic delays due to the greater
circuit depth. Direct realization of 4-to-2 reduction modules from their input/output
specifications can lead to more compact and/or faster circuits. The realization depicted
in Fig. 11.5c, for example, has a latency of three XOR gate levels, compared with four
XOR gate levels that would result from the design of Fig. 11.5b.

Note that a 4-to-2 reduction circuit for binary operands can be viewed as a generalized
signed-digit adder for radix-2 numbers with the digit set [0, 2], where the digits are
encoded in the following 2-bit code:

Zero: (0, 0) One: (0, 1) or (1, 0) Two: (1, 1)

A variant of this binary tree reduction scheme is based on binary signed-digit (BSD),
rather than carry-save, representation of the partial products [Taka85]. These partial
products are combined by a tree of BSD adders to obtain the final product in BSD form.
The standard binary result is then obtained via a BSD-to-binary converter, which is
essentially a fast subtractor for subtracting the negative component of the BSD number
from its positive part. One benefit of BSD partial products is that negative multiples
resulting from the sign bit in 2’s-complement numbers can be easily accommodated (see
Section 11.3). Some inefficiency results from the extra bit used to accommodate the digit
signs going to waste for most of the multiples that are positive.

Carry-save and BSD numbers are not the only ones that allow fast reduction via
limited-carry addition. Several other digit sets are possible that offer certain advan-
tages depending on technological capabilities and constraints [Parh96]. For example,
radix-2 partial products using the digit set [0, 3] lend themselves to an efficient parallel-
carries addition process (Fig. 3.11c), while also accommodating three, rather than one
or two, multiples of a binary multiplicand. Interestingly, the final conversion from
the redundant digit set [0, 3] to [0, 1] is not any harder than conversion from [0, 2]
to [0, 1].

Clearly, any method used for building the CSA tree can be combined with radix-2b

Booth’s recoding to reduce the tree size. However, for modern VLSI technology, the
use of Booth recoding in tree multipliers has been questioned [Vill93]; it seems that the
additional CSAs needed for reducing k, rather than k/b, numbers could be less complex
than the Booth recoding logic when wiring and the overhead due to irregularity and
nonuniformity are taken into account.

11.3 TREE MULTIPLIERS FOR SIGNED NUMBERS

When one is multiplying 2’s-complement numbers directly, each of the partial products to
be added is a signed number. Thus, for the CSA tree to yield the correct sum of its inputs,
each partial product must be sign-extended to the width of the final product. Recall our

222 Chapter 11 Tree and Array Multipliers

Figure 11.7 Sharing
of FAs to reduce the
CSA width in a signed
tree multiplier.

FA

α β γ
5 redundant copies removed

α α α α α α α α x x x x x x x

β β β β β β β x x x x x x x x

γ γ γ γ γ γ x x x x x x x x x

SignsSign extensions

discussion of signed multioperand addition in Section 8.5, where the 2’s-complement
operands were assumed to be aligned at their least-significant bits. In particular, refer to
Fig. 8.19 for two possible methods based on sign extension (with hardware sharing) and
transforming negative bits into positive bits.

Considerations for adding 2’s-complement partial products are similar, the only
difference being the shifts. Figure 11.7 depicts an example with three sign-extended
partial products. We see that here too a single FA can produce the results needed in
several different columns. If this procedure is applied to all rows in the partial products
bit matrix, the resulting structure will be somewhat more complex than the one assuming
unsigned operands. Note that because of the shifts, there are fewer repetitions in Fig.
11.7 than in Fig. 8.19, thus making the expansion in width to accommodate the signs
slightly larger.

Another approach, due to Baugh and Wooley [Baug73], is even more efficient and is
thus often preferred, in its original or modified form, for 2’s-complement multiplication.
To understand this method, we begin with unsigned multiplication in Fig. 11.8a and note
that the negative weight of the sign bit in 2’s-complement representation must be taken
into account to obtain the correct product (Fig. 11.8b). To avoid having to deal with
negatively weighted bits in the partial products matrix, Baugh and Wooley suggest that
we modify the bits in the way shown in Fig. 11.8c, adding five entries to the bit matrix
in the process.

Baugh and Wooley’s strategy increases the maximum column height by 2, thus
potentially leading to greater delay through the CSA tree. For example, in the 5 × 5
multiplication depicted in Fig. 11.8c, maximum column height is increased from 5 to
7, leading to an extra CSA level. In this particular example, however, the extra delay
can be avoided by removing the x4 entry from column 4 and placing two x4 entries in
column 3, which has only four entries. This reduces the maximum height to 6, which
can still be handled by a three-level CSA tree.

To prove the correctness of the Baugh–Wooley scheme, let us focus on the entry a4x0
in Fig. 11.8c. Given that the sign bit in 2’s-complement numbers has a negative weight,
this entry should have been −a4x0. We note that

−a4x0 = a4(1− x0)− a4 = a4x0 − a4

Tree Multipliers for Signed Numbers 223

Figure 11.8
Baugh–Wooley
2’s-complement
multiplication. a0x0a1x0a2x0a3x0a4x0

a0x1a1x1a2x1a3x1a4x1

a0x2a1x2a2x2a3x2a4x2

a0x3a1x3a2x3a3x3a4x3

a0x4a1x4a2x4a3x4a4x4

x0x1x2x3x4

a0a1a2a3a4

(a) Unsigned multiplication

a0x0a1x0a2x0a3x0

a0x1a1x1a2x1a3x1

a0x2a1x2a2x2a3x2

a0x3a1x3a2x3a3x3

a4x4

(b) 2’s-complement bit-matrix

–a4x0

–a4x1

–a4x2

–a4x3

–a3x4 –a2x4 –a1x4 –a0x4

a0x0a1x0a2x0a3x0a4x0

a0x1a1x1a2x1a3x1a4x1

a0x2a1x2a2x2a3x2a4x2

a0x3a1x3a2x3a3x3a4x3

a0x4a1x4a2x4a3x4a4x4

–

–

–

–

– – – –

p0p1p2p3p4p5p6p7p8p9

p0p1p2p3p4p5p6p7p8p9

p0p1p2p3p4p5p6p7p8p9

p0p1p2p3p4p5p6p7p8p9

a
4

x4

a4

x4

–

–
1

a0x1a1x1a2x1a3x1a4x1

a0x2a1x1a2x2a3x2a4x2

a0x3a1x3a2x3a3x3a4x3

a0x4a1x4a2x4a3x4a4x4

11

––

––

––

––

–– –– –– ––

(c) Baugh–Wooley method’s bit-matrix

a4x0 a3x0 a2x0 a1x0 a0x0

(d) Modified Baugh–Wooley method

224 Chapter 11 Tree and Array Multipliers

Hence, we can replace −a4x0 with the two entries a4x0 and −a4. If instead of −a4 we
use an entry a4, the column sum increases by 2a4. To compensate for this, we must insert
−a4 in the next higher column. The same argument can be repeated for a4x1, a4x2, and
a4x3. Each column, other than the first, gets an a4 and a −a4, which cancel each other
out. The p8 column gets a −a4 entry, which can be replaced with a4 − 1. The same
argument can be repeated for the aix4 entries, leading to the insertion of x4 in the p4
column and x4 − 1 in the p8 column. The two −1s thus produced in the eighth column
are equivalent to a −1 entry in the p9 column, which can in turn be replaced with a 1
and a borrow into the nonexistent (and inconsequential) tenth column.

Another way to justify the Baugh–Wooley method is to transfer all negatively
weighted a4xi terms, 0 ≤ i ≤ 3, to the bottom row, thus leading to two negative
numbers (the preceding number and the one formed by the aix4 bits, 0 ≤ i ≤ 3) in the
last two rows. Now, the two numbers x4a and a4x must be subtracted from the sum of all
the positive elements. Instead of subtracting x4×a, we add x4 times the 2’s complement
of a, which consists of 1’s complement of a plus x4 (similarly for a4x). The reader should
be able to supply the other details.

A modified form of the Baugh–Wooley method, (Fig. 11.8d) is preferable because
it does not lead to an increase in the maximum column height. Justifying this modified
form is left as an exercise.

11.4 PARTIAL-TREE AND TRUNCATED MULTIPLIERS

If the cost of a full-tree multiplier is unacceptably high for a particular application, then
a variety of mixed serial-parallel designs can be considered. Let h be a number smaller
than k. One idea is to perform the k-operand addition needed for k × k multiplication
via 	k/h
 passes through a smaller CSA tree. Figure 11.9 shows the resulting design
that includes an (h + 2)-input CSA tree for adding the cumulative partial product (in
stored-carry form) and h new operands, feeding back the resulting sum and carry to be
combined with the next batch of h operands.

Since the next batch of h operands will be shifted by h bits with respect to the current
batch, h bits of the derived sum and h − 1 bits of the carry can be relaxed after each
pass. These are combined using an h-bit adder to yield h bits of the final product, with
the carry-out kept in a flip-flop to be combined with the next inputs. Alternatively, these
relaxed bits can be kept in carry-save form by simply shifting them to the right in their
respective registers and postponing the conversion to standard binary format to the very
end. This is why parts of Fig. 11.9 are rendered in light gray. The latter approach might
be followed if a fast double-width adder is already available in the arithmetic/logic unit
for other reasons.

Note that the design depicted in Fig. 11.9 corresponds to radix-2h multiplication.
Thus, our discussions in Sections 10.3 and 10.4 are relevant here as well. In fact, the
difference between high-radix and partial-tree multipliers is quantitative rather than
qualitative (see Fig. 10.13). When h is relatively small, say up to 8 bits, we tend to
view the multiplier of Fig. 11.9 as a high-radix multiplier. On the other hand, when h
is a significant fraction of k, say k/2 or k/4, then we view the design as a partial-tree

Partial-Tree and Truncated Multipliers 225

Figure 11.9 General
structure of a
partial-tree multiplier.

. . .

CSA tree

h Inputs

Adder

Lower part of
the cumulative
partial product

FF

h-bit
adder

Sum

Carry

Upper part of
the cumulative
partial product
(stored-carry)

multiplier. In Section 11.6, we will see that a pipelined variant of the design in Fig. 11.9
can be considerably faster when h is large.

Figure 11.9 has been drawn with the assumption of radix-2 multiplication. If radix-2b

Booth’s recoding is applied first to produce one multiple for every b bits of the multiplier,
then b times fewer passes are needed and bh bits can be relaxed after each pass. In this
case, the small adder in Fig. 11.9 will be bh bits wide.

Thus far, our multipliers were all designed to produce double-width, or full-precision,
products. In many applications, a single-width product might be sufficient. Consider,
for example, k-bit fractional operands a and x, whose exact product has 2k bits. A k-bit
fractional result can be obtained by truncating or rounding the double-width result to k
bits. However, this might be viewed as wasteful, given that all the bits on the right half
of the partial products bit-matrix of Fig. 11.10, to the right of the vertical dashed line,
have only a slight impact on the final result. Why not simply drop all those bits to save
on the AND gates that produce them and the CSAs that combine and reduce them? Let
us see what would happen if we do decide to drop the said bits in the 8×8 multiplication
depicted in Fig. 11.10. In the worst case, when all the dropped bits are 1s, we would lose
a value equal to 8/2+ 7/4+ 6/8+ 5/16+ 4/32+ 3/64+ 2/128+ 1/256 ≈ 7.004 ulp,
where ulp is the weight or worth of the least-significant bit of each operand. If this
maximum error of −7 ulp is tolerable, then the multiplier can be greatly simplified.
However, we can do substantially better, will little additional cost.

One way to reduce the error of our truncated multiplier is to keep the first column of
dots to the right of the vertical dashed line in Fig. 11.10, dropping only the dots in columns
indexed−10 to−16. This modification will improve the error bound computed above by
8/2 = 4 ulp in the partial products accumulation phase, but introduces a possible error
of ulp/2 when the extra product bit p−9 is dropped to form a k-bit final product. Thus,
the maximum error is reduced from 7 ulp to 3.5 ulp, at the expense of more circuitry to
generate and process the eight previously ignored dots. Another possibility is to drop
columns −9 and beyond as before, but introduce a compensating 1 term in column −6.
The error now ranges from about−3 ulp, when all the dropped bits are 1s, to 4 ulp, when

226 Chapter 11 Tree and Array Multipliers

–1 –2 –3 –4 –5 –6 –7

ulp

–8 –9 –10 –11 –12 –13 –14 –15 –16

Operand a

Operand x

Figure 11.10 The idea of a truncated multiplier with 8-bit fractional operands.

all the dropped bits are 0s. The latter error is comparable in magnitude to that of the
preceding method, but it is achieved at a much lower cost. This constant compensation
method can be further refined to produce better results. Finally, we can resort to variable
compensation, exemplified by the insertion of two dots with values a−1 and x−1 (leading
bits of the two operands) in column−7. The idea here is to provide greater compensation
for the value of the dropped bits when they are more likely to be 1s. Error analysis for
this approach is left as an exercise.

11.5 ARRAY MULTIPLIERS

Consider a full-tree multiplier (Fig. 11.1) in which the reduction tree is one-sided and
the final adder has a ripple-carry design, as depicted in Fig. 11.11. Such a tree multiplier,
which is composed of the slowest possible CSA tree and the slowest possible CPA, is
known as an array multiplier.

But why would anyone be interested in such a slow multiplier? The answer is that
an array multiplier is very regular in its structure and uses only short wires that go from
one FA to horizontally, vertically, or diagonally adjacent FAs. Thus, it has a very simple
and efficient layout in VLSI. Furthermore, it can be easily and efficiently pipelined by
inserting latches after every CSAor after every few rows (the last row must be handled dif-
ferently, as discussed in Section 11.6, because its latency is much larger than the others).

The free input of the topmost CSA in the array multiplier of Fig. 11.11 can be
used to realize a multiply-add module yielding p = ax + y. This is useful in a variety
of applications involving convolution or inner-product computation. When only the

Array Multipliers 227

Figure 11.11 A basic
array multiplier uses
a one-sided CSA tree
and a ripple-carry
adder.

0x ax ax a

x a

x a

CSA

CSA

CSA

CSA

Ripple-carry adder

012

3

4

ax

Figure 11.12
Detailed design of a
5× 5 array multiplier
using FA blocks.

a x0 1

a x0 2

a x0 3

a x0 4

a x1 1

a x1 2

a x1 3

a x1 4

a x2 1

a x2 2

a x2 3

a x2 4

a x3 1

a x4 1

a x4 2

a x4 3

a x4 4

a x3 2

a x3 3

a x3 4

a x4 0 a x1 0a x2 0a x3 0 a x0 00 0 0 0

p6p7p8p9

p0

p1

p2

p3

p4

p
5

0

computation of ax is desired, the topmost CSA in the array multiplier of Fig. 11.11 can
be removed, with x0a and x1a input to the second CSA directly.

Figure 11.12 shows the design of a 5 × 5 array multiplier in terms of FA cells and
two-input AND gates. The sum outputs are connected diagonally, while the carry outputs
are linked vertically, except in the last row, where they are chained from right to left.
The design in Fig. 11.12 assumes unsigned numbers, but it can be easily converted
to a 2’s-complement array multiplier using the Baugh–Wooley method. This involves
adding a FA at the right end of the ripple-carry adder, to take in the a4 and x4 terms, and
a couple of FAs at the lower left edge to accommodate the a4, x4, and 1 terms of Fig.
11.8C (see Fig. 11.13). Most of the connections between FA blocks in Fig. 11.13 have
been removed to avoid clutter. The modified diagonal connections in Fig. 11.13 will be
described shortly.

228 Chapter 11 Tree and Array Multipliers

a x0 4a x1 4a x2 4

a x1 3a x2 3

a x0 2a x2 2

a x a x0 1a x1 12 1

00 0 0

a x4 4

a x1 2

a x0 3

1

a4
x4

a x4 1

a x4 2

a x4 3

a x3 2

a x3 3

a x3 1

a x0 0a x1 0a x2 0a x3 0a x4 0

a x3 4

p0

p1

p2

p3

p4p6p7p8p9 p5

x4

a4

Figure 11.13 Modifications in a 5× 5 array multiplier to deal with 2’s-complement inputs
using the Baugh–Wooley method (inclusion of the three shaded FA blocks) or to shorten the
critical path (the curved links).

In view of the simplicity of an array multiplier for 2’s-complement numbers based on
the Baugh–Wooley method, we no longer use techniques proposed by Pezaris [Peza71]
and others that required in some of the array positions variants of an FA cell capable of
accommodating some negatively weighted input bits and producing one or both outputs
with negative weight(s).

If we build a cell containing an FA and an AND gate to internally form the term
ajxi, the unsigned array multiplier of Fig. 11.12 turns into Fig. 11.14. Here, the xi and aj

bits are broadcast to rows and columns of cells, with the row-i, column-j cell, forming
the term ajxi and using it as an input to its FA. If desired, one can make the design less
complex by replacing the cells in the first row, or the first two rows, by AND gates.

The critical path through a k × k array multiplier, when the sum generation logic
of an FA block has a longer delay than the carry-generation circuit, goes through the
main (top left to bottom right) diagonal in Fig. 11.13 and proceeds horizontally in the
last row to the p9 output. The overall delay of the array multiplier can thus be reduced
by rearranging the FA inputs such that some of the sum signals skip rows (they go from
row i to row i + h for some h > 1). Figure 11.13 shows the modified connections on
the main diagonal for h = 2. The lower right cell now has one too many inputs, but we
can redirect one of them to the second cell on the main diagonal, which now has one
free input. Note, however, that such skipping of levels makes for a less regular layout,
which also requires longer wires, and hence may not be a worthwhile modification in
practice.

Since almost half the latency of an array multiplier is due to the cells in the last row,
it is interesting to speculate about whether we can do the final addition faster. Obviously,
it is possible to replace the last row of cells with a fast adder, but this would adversely

Array Multipliers 229

Figure 11.14 Design
of a 5× 5 array
multiplier with two
additive inputs and
FA blocks that
include AND gates.

p6p7p8p9 p5

p0

p1

p2

p3

p4

x0

x1

x2

x3

x4

4a 0a1a2a3a

affect the regularity of the design. Besides, even a fast adder is still much slower than
the other rows, making pipelining more difficult.

To see how the ripple-carry portion of an array multiplier can be eliminated, let us
arrange the k2 terms ajxi in a triangle, with bits distributed in 2k − 1 columns according
to the pattern

1 2 3 · · · k − 1 k k − 1 · · · 3 2 1

The least-significant bit of the product is output directly, and the other bits are reduced
gradually by rows of FAs and HAs (rectangular boxes in Fig. 11.15). Let us focus on the
ith level and assume that the first i − 1 levels have already yielded two versions of the
final product bits past the Bi boundary, one assuming that the next carry-save addition
will produce a carry across Bi and another assuming no carry (Fig. 11.16).

At the ith level, the shaded block in Fig. 11.15 produces two versions of its sum and
carry, conditional upon a future carry or no carry across Bi+1. The conditional sum bits
from the shaded block are simply appended to the i bits coming from above. So, two
versions of the upper i + 1 bits of the product are obtained, conditional upon the future
carry across the Bi+1 boundary. The process is then repeated in the lower levels, with
each level extending the length of the conditional portion by 1 bit and the lowermost
multiplexer (mux) providing the last k bits of the end product in nonredundant form.

The conceptual design of Fig. 11.15 can be translated to an actual multiplier circuit
after certain optimizations to remove redundant elements [Cimi96], [Erce90].

230 Chapter 11 Tree and Array Multipliers

i+1

i
i+1

i

i i

Mux

Mux

Mux
k

[k, 2k–1] 1i–1ii+1k–1

Level i

k k

0

Mux

..
.

..
.

B i+1

B i

Figure 11.15 Conceptual view of a modified array multiplier that does not need a final CPA.

Figure 11.16
Carry-save addition,
performed in level i,
extends the
conditionally
computed bits of the
final product. Dots in row i + 1

Bi

Bi+1

Dots in row i

i Conditional bits

 i + 1 Conditional bits
of the final product

11.6 PIPELINED TREE AND ARRAY MULTIPLIERS

A full-tree multiplier can be easily pipelined. The partial products reduction tree of a
full-tree multiplier is a combinational circuit that can be sliced into pipeline stages. A
new set of inputs cannot be applied to the partial-tree multiplier of Fig. 11.9, however,
until the sum and carry for the preceding set have been latched. Given that for large h,
the depth of the tree can be significant, the rate of the application of inputs to the tree,
and thus the speed of the multiplier, is limited.

Now, if instead of feeding back the tree outputs to its inputs, we feed them back into
the middle of the (h + 2)-input tree, as shown in Fig. 11.17, the pipeline rate will be
dictated by the delay through only two CSA levels rather than by the depth of the entire
tree. This leads to much faster multiplication.

Pipelined Tree and Array Multipliers 231

Figure 11.17
Efficiently pipelined
partial-tree multiplier.

. . .

CSA tree

h Inputs

Latch

Adder

Pipelined
Latches

Latches

Latches

Latches
Lower part of
the cumulative
partial product

FF

h-bit
adder

CSA

CSA

(h + 2)-Input
CSA tree

p p0p1p3p6p7p8p9 5 p4

x0 x1 x2 x3 x44a 0a1a2a3a

p2

FA with
AND gate

FA

Latch

Figure 11.18 Pipelined 5× 5 array multiplier using latched FA blocks.The small shaded
rectangles are latches.

232 Chapter 11 Tree and Array Multipliers

Figure 11.18 shows one way to pipeline an array multiplier. Inputs are applied from
above and the product emerges from below after 9 clock cycles (2k − 1 in general). All
FA blocks used are assumed to have output latches for both sum and carry. Note how
the xi inputs needed for the various rows of the array multiplier are delayed through the
insertion of latches in their paths and how the 4-bit ripple-carry adder at the bottom row
of Fig. 11.14 has been pipelined in Fig. 11.18.

PROBLEMS 11.1 Unsigned full-tree multipliers

Consider the design of a 7 × 7 unsigned full-tree multiplier as depicted
in Fig. 11.3.

a. Compare Figs. 11.3 and 8.12, discussing all the differences.
b. Design the required partial products reduction tree using Wallace’s method.
c. Design the required partial products reduction tree using Dadda’s method.
d. Compare the designs of parts a, b, and c with respect to speed and cost.

11.2 Unsigned full-tree multipliers

Consider the design of an 8× 8 unsigned full-tree multiplier.

a. Draw a diagram similar to Fig. 11.3 to determine the number and widths of
the carry-save adders required.

b. Repeat part a, this time using 4-to-2 reduction circuits built of two CSAs.
c. Design the required partial products reduction tree using Wallace’s method.
d. Design the required partial products reduction tree using Dadda’s method.
e. Produce one design with its final adder width between those in parts c and d.
f. Compare the designs of parts a–e with respect to speed and cost.

11.3 Balanced-delay trees

Find the relationship between the number n of inputs and circuit depth d of a
balanced-delay tree (Fig. 11.4) and show that the depth grows as

√
n.

11.4 Variations in full-tree multipliers

Tabulate the number of full-adder levels in a tree that reduces k multiples of the
multiplicand to 2, for 4 ≤ k ≤ 1024, using:

a. Carry-save adders as the basic elements.
b. Elements, internally built from two CSA levels, that reduce four operands

to two.
c. Same elements as in part b, except that in the first level of the tree only, the

use of CSAs is allowed (this is helpful, e.g., for k = 24).
d. Discuss the implications of the results of parts a–c in the design of full-tree

multipliers.

Problems 233

11.5 Tree multiplier with Booth’s recoding

We need a 12 × 12 signed-magnitude binary multiplier. Design the required
11 × 11 unsigned multiplication circuit by first generating a recoded version
of the multiplier having six radix-4 digits in [−2, 2] and then adding the six
partial products represented in 2’s-complement form by a minimal network of
FAs. Hint: 81 FAs should do.

11.6 Modified Baugh–Wooley method

Prove that the modified Baugh–Wooley method for multiplying 2’s-complement
numbers, shown in Fig. 11.8d, is correct.

11.7 Signed full-tree multipliers

Consider the design of an 8× 8 full-tree multiplier for 2’s-complement inputs.

a. Draw a diagram similar to Fig. 11.3 to determine the number and widths of
the carry-save adders required if the operands are to be sign-extended (Fig.
11.7).

b. Design the 8× 8 multiplier using the Baugh–Wooley method.
c. Design the 8× 8 multiplier using the modified Baugh–Wooley method.
d. Compare the designs of parts a–c with respect to speed and cost.

11.8 Partial-tree multipliers

In Fig. 11.9, the tree has been drawn with no intermediate output corresponding
to the lower-order bits of the sum of its h+2 inputs. If h is large, a few low-order
bits of the sum will likely become available before the final sum and carry results.
How does this affect the h-bit adder delineated by gray lines?

11.9 Pezaris array multiplier

Consider a 5 × 5 array multiplier, similar to that in Fig. 11.12 but with 2’s-
complement inputs, and view the AND terms a4xi and ajx4 as being negatively
weighted. Consider also two modified forms of a FA cell: FA′ has one negatively
weighted input, producing a negatively weighted sum and a positively weighted
carry, while FA′′ has two negatively weighted inputs, producing a negative carry
and a positive sum. Design a 5 × 5 Pezaris array multiplier using FA, FA′,
and FA′′ cells as needed, making sure that any negatively weighted output is
properly connected to a negatively weighted input (use small “bubbles” to mark
negatively weighted inputs and outputs on the various blocks). Note that FA′′′,
with all three inputs and two outputs carrying negative weights, is the same as
FA. Note also that the output must have only 1 negatively weighted bit at the sign
position.

234 Chapter 11 Tree and Array Multipliers

11.10 2’s-complement array multipliers

Consider the design of a 5× 5 2’s-complement array multiplier. Assume that an
FAblock has latencies of Tc and Ts (Tc < Ts < 2Tc) for its carry and sum outputs.

a. Find the overall latency for the 5×5 array multiplier with the Baugh–Wooley
method (Fig. 11.13, regular design without row skipping).

b. Repeat part a with the modified Baugh–Wooley method.
c. Compare the designs in parts a and b and discuss.
d. Generalize the preceding results and comparison to the case of k × k array

multipliers.

11.11 Array multipliers

Design array multipliers for the following number representations.

a. Binary signed-digit numbers using the digit set [−1, 1] in radix 2.
b. 1’s-complement numbers.

11.12 Multiply-add modules

Consider the design of a module that performs the computation p = ax+ y+ z,
where a and y are k-bit unsigned integers and x and z are l-bit unsigned integers.

a. Show that p is representable with k + l bits.
b. Design a tree multiplier to compute p for k = 8 and l = 4 based on a Wallace

tree and a CPA.
c. Repeat part b using a Dadda tree.
d. Show that an 8× 4 array multiplier can be readily modified to compute p.

11.13 Pipelined array multipliers

Consider the 5× 5 pipelined array multiplier in Fig. 11.18.

a. Show how the four lowermost FAs and the latches immediately above them
can be replaced by a number of latched HAs. Hint: Some HAs will have to be
added in the leftmost column, corresponding to p9, which currently contains
no element.

b. Compare the design in part a with the original design in Fig. 11.18.
c. Redesign the pipelined multiplier in Fig. 11.18 so that the combinational

delay in each pipeline stage is equal to two FA delays (ignore the difference
in delays between the sum and carry outputs).

d. Repeat part c for the array multiplier derived in part a.
e. Compare the array multiplier designs of parts c and d with respect to

throughput and throughput/cost. State your assumptions clearly.

11.14 Effectiveness of Booth’s recoding

As mentioned at the end of Section 11.2, the effectiveness of Booth recoding
in tree multipliers has been questioned [Vill93]. Booth’s recoding essentially
reduces the number of partial products by a factor of 2. A (4, 2) reduction circuit

Problems 235

built, for example, from two CSAs offers the same reduction. Show through a
simple approximate analysis of the delay and cost of a k × k unsigned multiplier
based on Booth’s recoding and (4, 2) initial reduction that Booth’s recoding has
the edge in terms of gate count but that it may lose on other grounds. Assume,
for simplicity, that k is even.

11.15 VLSI implementation of tree multipliers

Wallace and Dadda trees tend to be quite irregular and thus ill-suited to com-
pact VLSI implementation. Study the bit-slice implementation method for tree
multipliers suggested in [Mou92] and apply it to the design of a 12×12 multiplier.

11.16 Faster array multipliers

Present the complete design of an 8×8 array multiplier built without a final CPA
(Fig. 11.15). Compare the resulting design with a simple 8× 8 array multiplier
with respect to speed, cost, and cost-effectiveness.

11.17 Pipelined partial-tree multipliers

a. Would it be cost-effective to implement an 8 × 8 unsigned multiplier using
the pipelined design of Fig. 11.17 with h = 4?

b. With reference to the VLSI complexity discussions in Section 10.6, show that
the multiplication time in a pipelined partial-tree multiplier is O(k/h+log k).

11.18 Pipelined tree multipliers

Stating all your assumptions clearly and taking k/h to be an integer, compare the
times needed to add k operands by means of the circuits in Figs. 11.9 and 11.17.
Provide concrete numbers for the special case of k = 24, with h = 4 and h = 6.

11.19 Signed tree multipliers

a. Prove that the three terms ak−1xk−1, ak−1, and xk−1 in the next to leftmost
column of Fig. 11.8c can be replaced by the two terms 1 and ak−1xk−1 in the
same column [Blan74].

b. Prove that the four entries in the leftmost two columns of Fig. 11.8c can be
replaced by a single term ak−1 ∨ xk−1 in each of the two columns [Blan74].

c. Show how the (modified) Baugh–Wooley method works for a k × m multi-
plication, k > m. As an example, construct the equivalent of Fig. 11.8 in the
case of 5× 3 multiplication.

d. Formulate the modifications of parts a and b for the more general case given
in part c.

11.20 Mystery diagram

a. Explain what the following diagram signifies.
b. In the hardware unit described by the diagram of part a, what types of

components are used and how many of each?

236 Chapter 11 Tree and Array Multipliers

Level 0

Level 1

Level 2

Level 3

Level 4

11.21 Wallace-tree multipliers

a. Design a (4; 3)-counter with latency comparable to a (3; 2)-counter built of
two HAs and an OR gate.

b. Show that a single (4; 3)-counter of the type designed in part a can be used,
along with conventional (3; 2)-counters, to build a 5 × 5 multiplier that is
faster than one using a pure Wallace tree.

c. Repeat part b for a 14× 14 multiplier. Hint: Handle the last five rows in the
triangular partial products bit-matrix as in part b.

d. Derive general synthesis guidelines for optimized Wallace trees that include
a single (4; 3)-counter of the type designed in part a [Robi98].

11.22 Unsigned/2’s-complement tree multiplier

Most processors allow both unsigned and signed numbers as operands in their
integer arithmetic units. Discuss the design of a k × k tree multiplier that can act
as an unsigned multiplier (for t = 0) or 2’s-complement multiplier (for t = 1),
where t is a control signal.

11.23 Overflow detection in multipliers

Our discussion of truncated multipliers in Section 11.4 assumed the generation
of a single-width product with fractional input operands. If a single-width prod-
uct is desired with integer inputs, the possibility of overflow must be taken into

References and Further Readings 237

account. Study the problem of overflow detection in such integer multipliers and
prepare a two-page report outlining the design techniques and the performance
penalty, if any [Gok06].

11.24 Alternate design for array multipliers

In the one-sided tree of Fig. 11.11, we can replace each CSA with a ripple-carry
adder that forwards a single value (the sum of its two inputs) to the next row.

a. Draw a diagram, similar to Fig. 11.12, to show the new design for 5 × 5
multiplication.

b. Compare the design of part a with that shown in Fig. 11.12 with respect to
cost, delay, and cost-effectiveness.

c. Generalize the discussion of part b to k × k array multipliers of the two
designs.

REFERENCES AND FURTHER READINGS

[Baug73] Baugh, C. R., and B. A. Wooley, “A Two’s Complement Parallel Array Multiplication
Algorithm,” IEEE Trans. Computers, Vol. 22, pp. 1045–1047, 1973.

[Bewi94] Bewick, G. W., “Fast Multiplication: Algorithms and Implementation,” PhD
dissertation, Stanford University, 1994.

[Blan74] Blankenship, P. E., “Comments on ‘A Two’s Complement Parallel Array
Multiplication Algorithm,’” IEEE Trans. Computers, Vol. 23, p. 1327, 1974.

[Cimi96] Ciminiera, L., and P. Montuschi, “Carry-Save Multiplication Schemes Without Final
Addition,” IEEE Trans. Computers, Vol. 45, No. 9, pp. 1050–1055, 1996.

[Dadd65] Dadda, L., “Some Schemes for Parallel Multipliers,” Alta Frequenza, Vol. 34,
pp. 349–356, 1965.

[Erce90] Ercegovac, M. D., and T. Lang, “Fast Multiplication Without Carry-Propagate
Addition,” IEEE Trans. Computers, Vol. 39, No. 11, pp. 1385–1390, 1990.

[Gok06] Gok, M., M. J. Schulte, and M. G. Arnold, “Integer Multipliers with Overflow
Detection,” IEEE Trans. Computers, Vol. 55, No. 8, pp. 1062–1066, 2006.

[Mou92] Mou, Z.-J., and F. Jutand, “ ‘Overturned-Stairs’Adder Trees and Multiplier Design,”
IEEE Trans. Computers, Vol. 41, No. 8, pp. 940–948, 1992.

[Parh96] Parhami, B., “Comments on ‘High-Speed Area-Efficient Multiplier Design Using
Multiple-Valued Current Mode Circuits,’” IEEE Trans. Computers, Vol. 45, No. 5,
pp. 637–638, 1996.

[Peza71] Pezaris, S. D., “A 40-ns 17-Bit by 17-Bit Array Multiplier,” IEEE Trans. Computers,
Vol. 20, pp. 442–447, 1971.

[Robi98] Robinson, M. E., and E. Swartzlander Jr., “A Reduction Scheme to Optimize the
Wallace Multiplier,” Proc. Int’l Conf. Computer Design, pp. 122–127, 1998.

[Schu93] Schulte, M. J., and E. E. Swartzlander, Jr., “Truncated Multiplication with Correction
Constant,” in VLSI Signal Processing VI, pp. 388–396, 1993.

238 Chapter 11 Tree and Array Multipliers

[Swar99] Swartzlander, E. E., “Truncated Multiplication with Approximate Rounding,” Proc.
33rd Asilomar Conf. Signals Systems and Computers, pp. 1480–1483, 1999.

[Taka85] Takagi, N., H. Yasuura, and S. Yajima, “High-Speed VLSI Multiplication Algorithm
with a Redundant Binary Addition Tree,” IEEE Trans. Computers, Vol. 34, No. 9,
pp. 789–796, 1985.

[Town03] Townsend, W. J., E. E. Swartzlander, and J. A. Abraham, “A Comparison of Dadda
and Wallace Multiplier Delays,” Proc. SPIE Conf. Advanced Signal Processing:
Algorithms, Architectures, and Implementations, pp. 552–560, 2003.

[Vill93] Villager, D., and V. G. Oklobdzija, “Analysis of Booth Encoding Efficiency in Parallel
Multipliers Using Compressors for Reduction of Partial Products,” Proc. Asilomar
Conf. Signals, Systems, and Computers, pp. 781–784, 1993.

[Vuil83] Vuillemin, J., “A Very Fast Multiplication Algorithm for VLSI Implementation,”
Integration: The VLSI Journal, Vol. 1, pp. 39–52, 1983.

[Wall64] Wallace, C. S., “A Suggestion for a Fast Multiplier,” IEEE Trans. Electronic
Computers, Vol. 13, pp. 14–17, 1964.

[Zura86] Zuras, D., and W. H. McAllister, “Balanced Delay Trees and Combinatorial Division
in VLSI,” IEEE J. Solid-State Circuits, Vol. 21, pp. 814–819, 1986.

12 Variations in
Multipliers

■ ■ ■

“If it’s zero degrees outside today and it’s supposed to be twice as cold tomorrow,
how cold is it going to be?”

S T E P H E N W R I G H T

■ ■ ■

W e do not always synthesize our multipliers from scratch but may desire, or be

required, to use building blocks such as adders, small multipliers, or lookup

tables. Furthermore, limited chip area and/or pin availability may dictate the use

of bit-serial designs. In this chapter, we discuss such variations and also deal with

modular multipliers, the special case of squaring, and multiply-accumulators. Chapter

topics include:

12.1 Divide-and-Conquer Designs

12.2 Additive Multiply Modules

12.3 Bit-Serial Multipliers

12.4 Modular Multipliers

12.5 The Special Case of Squaring

12.6 Combined Multiply-Add Units

12.1 DIVIDE-AND-CONQUER DESIGNS

Suppose you have b× b multipliers and would like to use them to synthesize a 2b× 2b
multiplier. Denoting the high and low halves of the multiplicand (multiplier) by aH and
aL(xH and xL), we can use four b × b multipliers to compute the four partial products
aLxL, aLxH, aHxL, and aHxH as shown in Fig. 12.1a. These four values must then be
added to obtain the final product. Actually, as shown in Fig. 12.1b, only three values
need to be added, since the nonoverlapping partial products aHxH and aLxL can be
viewed as a single 4b-bit number.

239

240 Chapter 12 Variations in Multipliers

 in 2b 2b multiplication
a

×
×

p

Rearranged partial products

2b bits

(a) (b)

3b bits

H aL

x H x L

aL x H

aL x L

aH x L
x HaH

aH x L

aL x H

aL x Lx HaH

b bits

Figure 12.1 Divide-and-conquer strategy for synthesizing a 2b × 2b multiplier from b × b
multipliers.

2b × 2b
3b × 3b

4b × 4b

b × b

Figure 12.2 Using b × b multipliers to synthesize 2b × 2b, 3b × 3b, and 4b × 4b multipliers.

We see that our original 2b × 2b multiplication problem has been reduced to four
b × b multiplications and a three-operand addition problem. The b × b multiplications
can be performed by smaller hardware multipliers or via table lookup. Then, we can
compute the 4b-bit product by means of a single level of carry-save addition, followed
by a 3b-bit carry-propagate addition. Note that b bits of the product are directly available
following the b× b multiplications.

Larger multipliers, such as 3b × 3b or 4b × 4b, can be similarly synthesized from
b × b multiplier building blocks. Figure 12.2 shows that 3b × 3b multiplication leads
to five numbers, while 4b× 4b multiplication produces seven numbers. Hence, we can
complete the multiplication process in these two cases by using a row of (5; 2)- or (7;
2)-counters, followed by a 5b- or 7b-bit fast adder, respectively. Note that b bits of the
product are obtained directly from a small multiplier in each case.

For example, given 4×4 multipliers as building blocks, we can synthesize a 16×16
multiplier using 16 of the small multipliers, along with 24 (7; 2)-counters and a 28-bit
fast adder. The structure of a 32× 32 multiplier built of 8× 8-multiplier building blocks
is identical to the one just discussed.

One can view the preceding divide-and-conquer scheme, depicted in Figs. 12.1 and
12.2, as radix-2b multiplication, except that each radix-2b digit of the multiplier produces
several partial products, one for each radix-2b digit of the multiplicand, instead just one.

For 2b × 2b multiplication, one can use b-bit adders exclusively to accumulate the
partial products, as shown in Fig. 12.3 for b = 4. The pair [i, j] of numbers shown next

Divide-and-Conquer Designs 241

Figure 12.3 Using
4 × 4 multipliers and
4-bit adders to
synthesize an 8× 8
multiplier.

a x a x a x a x

Add

Add

Add

Add Add

pp p p

000

8

8

12

12

H LH H H LLL

[4, 7] [4, 7] [0, 3] [4, 7] [4, 7] [0, 3] [0, 3] [0, 3]

[12,15] [8,11] [8,11] [4, 7] [8,11] [4, 7] [4, 7] [0, 3]

[4, 7]

[4, 7]

[8,11]

[8,11]

[12,15]

[12,15] [8,11] [0, 3][4, 7]

Multiply MultiplyMultiplyMultiply

to a solid line in Fig. 12.3 indicates that the 4-bit bundle of wires represented by that
line spans bit positions i through j. A gray line represents 1 bit, with its positions given
by a single integer. We need five b-bit adder blocks, arranged in a circuit of depth 4, to
perform the accumulation. This is attractive if b-bit adders are available as economical,
off-the-shelf components. The resulting design is not much slower than the design based
on carry-save adder (CSA) reduction if the latter design uses a cascade of three b-bit
adders for the final 3b-bit addition.

Instead of b× b multipliers, one can use b× c multipliers. For example, with 8× 4
multipliers as building blocks, a 16× 16 multiplier can be synthesized from eight such
units, followed by a 5-to-2 reduction circuit and a 28-bit adder.

Note that we can perform a double-width multiplication using only three single-width
multiplications, as indicated by the following identity attributed to Karatsuba [Mont05]:

(2baH + aL)(2bxH + xL)

= 22baHxH + 2b[(aH + aL)(xH + xL)− aHxH − aLxL] + aLxL

By contrast, our four-multiplication scheme was based on the identity:

(2baH + aL)(2bxH + xL) = 22baHxH + 2b(aHxL + aLxH)+ aLxL

The three single-width multiplications in Karatsuba’s algorithm compute aHxH, aLxL,
and (aH + aL)(xH + xL). So, Karatsuba’s modified multiplication method removes one
multiplication and introduces three extra additions/subtractions. This constitutes a good
tradeoff in the case of extremely wide numbers, when the method is applied recursively.

242 Chapter 12 Variations in Multipliers

12.2 ADDITIVE MULTIPLY MODULES

We note from the discussion in Section 12.1, and Fig. 12.3 in particular, that synthesizing
large multipliers from smaller ones requires both multiplier and adder units. If we can
combine the multiplication and addition functions into one unit, then perhaps a single
module type will suffice for implementing such multipliers. This is the idea behind
additive multiply modules (AMMs).

The AMM in Fig. 12.4a, performs the computation p = ax + y + z, where a and y
are 4-bit numbers and x and z are 2-bit numbers. The maximum value of the result p is
(15 × 3) + 15 + 3 = 63, which can be represented with 6 bits. Figure 12.4b shows an
implementation of this AMM using four full adders (FAs), depicted as boxes enclosing
three dots, and a 4-bit adder.

Figure 12.5 shows how the 8× 8 multiplier example of Fig. 12.3 can be built from
eight AMMs of the type depicted in Fig. 12.4. Note that eight 4 × 2 multipliers would
have been needed for this design; so the number of modules is kept to a minimum. Each
AMM is slower than a 4 × 2 multiplier by at most one FA level. So, the delay in Fig.
12.5 that is attributable to the addition function is no more than six FA delays (the critical
path goes through six AMMs). Thus, given that the cost of a 4× 2 AMM is less than the
combined costs of a 4× 2 multiplier and a 4-bit adder, the design shown in Fig. 12.5 is
very cost-effective.

Figure 12.6 depicts an alternate design for an 8×8 multiplier using the same number
and type of 4 × 2 AMMs as in Fig. 12.5 (as well as the same notational conventions).
This latter design is slower than the design of Fig. 12.5 because its critical path goes
through all eight modules. However, it is more regular and, thus, readily generalizable
to any 4h2 × 2h1 multiplier with compact layout.

In general, a b × c AMM will have a pair of b-bit and c-bit multiplicative inputs,
two b-bit and c-bit additive inputs, and a (b + c)-bit output. The number of bits in the
output is just adequate to represent the largest possible output value, as is evident from
the following identity:

(2b − 1)(2c − 1)+ (2b − 1)+ (2c − 1) = 2b+c − 1

y

z

ax

p

4-bit adder

y z

x
a

p = ax + y + z

(a) Block diagram (b) Dot notation

cin

Figure 12.4 Additive multiply module with 4 × 2 multiplier (ax) plus 4-bit and 2-bit additive
inputs (y and z).

Additive Multiply Modules 243

Figure 12.5 An 8× 8
multiplier built of
4 × 2 AMMs. Inputs
marked with an
asterisk carry 0s.

 [0, 1]

 [2, 3]

 [4, 5]

 [6, 7]

[8, 9][10,11][12,15]

[0, 1]

[2, 3]

[4,5]
[6, 7]

x

x

x

x
 [0, 3]a

[0, 3]a

[0, 3]a

[0, 3]a

p

p
p

p
ppp

 [0, 1]x

 [2, 3]

 [4, 5]

 [6, 7]x

x

x

[10,11]

[8, 9]

[4, 7]a

[4, 7]a

[4, 7]a

[4, 7]a

[8, 9]

[0, 1]

[2, 3][4, 5]

[6, 7]
[4,5]

[6, 7]

[8, 11]

[10,13]

[2, 5]

[4,7]

[6, 9]
[8, 11]

[6, 9]

*

*

* *

**

Legend:
2 bits
4 bits

Figure 12.6
Alternate 8× 8
multiplier design
based on 4 × 2
AMMs. Inputs marked
with an asterisk
carry 0s.

[8, 9]p

* *

*

*

*

*

 [0, 1]

 [2, 3]

 [4, 5]

 [6, 7]

x

x

x

x

[10,11][12,15]

[0, 1]

[2, 3]
[4,5]

[6, 7]
p

p
p

p
p

p

 [0,3] [4, 7] aa

Legend:
2 bits
4 bits

244 Chapter 12 Variations in Multipliers

In designing larger multipliers based on b × c AMMs, the (b + c)-bit output of
each AMM is divided into a b-bit upper part and a c-bit lower part that are supplied
as additive inputs to other AMMs or serve as primary outputs. An AMM that receives
a[j,j+b−1] and x[i,i+c−1] as its multiplicative inputs should have values spanning the bit
positions [i + j, i + j + b − 1] and [i + j, i + j + c − 1] as its additive inputs (why?).
To design a k × l multiplier, where b and c divide both k and l, one can organize the
kl/(bc) AMMs as a (k/b) × (l/c) or a (k/c) × (l/b) array. This provides some flexibility
in fitting the design to the available chip area. However, the choice may have nontrivial
implications for speed.

12.3 BIT-SERIAL MULTIPLIERS

Bit-serial arithmetic is attractive in view of its smaller pin count, reduced wire length, and
lower floor space requirements in very large-scale integration. In fact, the compactness
of the design may allow us to run a bit-serial multiplier at a clock rate high enough to
make the unit almost competitive with much more complex designs with regard to speed.
In addition, in certain application contexts, inputs are supplied bit-serially anyway. In
such a case, using a parallel multiplier would be quite wasteful, since the parallelism may
not lead to any speed benefit. Furthermore, in applications that call for a large number of
independent multiplications, multiple bit-serial multipliers may be more cost-effective
than a complex highly pipelined unit.

Bit-serial multipliers can be designed as systolic arrays: synchronous arrays of pro-
cessing elements that are interconnected by only short, local wires thus allowing very
high clock rates. Let us begin by introducing a semisystolic multiplier, so named because
its design involves broadcasting a single bit of the multiplier x to a number of circuit
elements, thus violating the “short, local wires” requirement of pure systolic design
[Kung82].

Figure 12.7 shows a semisystolic 4 × 4 multiplier. The multiplicand a is supplied
in parallel from above and the multiplier x is supplied bit-serially from the right, with
its least-significant bit (LSB) arriving first. Each bit xi of the multiplier is multiplied by

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Carry

Sum

FA
Product
(serial out)

FA FA FA

a3 a2 a1 a0
x 0 x 1 x 2 x 3

Figure 12.7 Semisystolic circuit for 4× 4 multiplication in 8 clock cycles.

Bit-Serial Multipliers 245

a and the result added to the cumulative partial product, kept in carry-save form in the
carry and sum latches. The carry bit stays in its current position, while the sum bit is
passed on to the neighboring cell on the right. This corresponds to shifting the partial
product to the right before the next addition step (normally the sum bit would stay put
and the carry bit would be shifted to the left). Bits of the result emerge serially from the
right as they become available.

A k-bit unsigned multiplier x must be padded with k zeros to allow the carries to
propagate to the output, yielding the correct 2k-bit product. Thus, the semisystolic
multiplier of Fig. 12.7 can perform one k × k unsigned integer multiplication every 2k
clock cycles. If k-bit fractions need to be multiplied, the first k output bits are discarded
or used to properly round the most-significant k bits. Such a multiplier is useful in
designing a cell that must multiply a bit-serial input by a constant chosen from among
a set of values stored in its local memory. The chosen constant a is read out from the
cell’s random-access memory, stored in a register, and used for 1 operating cycle (2k
clock cycles) to perform the multiplication by x. Different constants may be used in
different operating cycles, hence the need for a general multiplier, rather than a constant
multiplier of the types discussed in Section 9.5.

To make the multiplier of Fig. 12.7 fully systolic, we must remove the broadcasting
of the multiplier bits. This can be accomplished by a process known as systolic retiming,
which is briefly explained below.

Consider a synchronous (clocked) circuit, with each line between two functional
parts having an integral number of unit delays (possibly 0). Then, if we cut the circuit
into two parts cL and cR, we can delay (advance) all the signals going in one direction
and advance (delay) the ones going in the opposite direction by the same amount without
affecting the correct functioning or external timing relations of the circuit. For this claim
to hold, the primary inputs and outputs to the two parts cL and cR must be correspondingly
advanced or delayed too (see Fig. 12.8).

For the retiming shown in Fig. 12.8 to be possible, all the signals that are advanced
by d must have had original delays of d or more (negative delays are not allowed). Note
that all the signals going into cL have been delayed by d time units. Thus, cL will work
as before, except that everything, including output production, occurs d time units later
than before retiming. Advancing the outputs by d time units will keep the external view
of the circuit unchanged.

Cut

cL cR cL cR

e

f

g

h

e + d

f + d

g – d

h – d

+d

–d

–d

+d

(a) Original delays. (b) Adjusted delays.

Figure 12.8 Example of retiming by delaying the inputs to cL and advancing the outputs
from cL by d units.

246 Chapter 12 Variations in Multipliers

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Carry

FA
Product
(serial out)

FA FA FA

a3 a2 a1 a0

x 0 x 1 x 2 x 3

Sum

Cut 1Cut 2Cut 3

Figure 12.9 A retimed version of our semisystolic multiplier.

Multiplicand (parallel in)

Multiplier
(serial in)
LSB-first

Sum

FA
Product
(serial out)

FA FA FA

a3 a2 a1 a0

x 0 x 1 x 2 x 3

Carry

Figure 12.10 Systolic circuit for 4 × 4 multiplication in 15 cycles.

We apply the preceding process to the multiplier circuit of Fig. 12.7 in three suc-
cessive steps corresponding to cuts 1, 2, and 3 in Fig. 12.9, each time delaying the
left-moving signal by one unit and advancing the right-moving signal by one unit. Ver-
ifying that the multiplier in Fig. 12.9 works correctly is left as an exercise. This new
version of our multiplier does not have the fan-out problem of the design in Fig. 12.7, but
it suffers from long signal propagation delay through the four FAs in each clock cycle,
leading to inferior operating speed. Note that the culprits are zero-delay lines that lead
to signal propagation through multiple circuit elements.

One way of avoiding zero-delay lines in our design is to begin by doubling all the
delays in Fig. 12.7. This is done by simply replacing each of the sum and carry flip-
flops with two cascaded flip-flops before retiming is applied. Since the circuit is now
operating at half its original speed, the multiplier x must also be applied on alternate
clock cycles. The resulting design in Fig. 12.10 is fully systolic, inasmuch as signals
move only between adjacent cells in each clock cycle. However, twice as many cycles
are needed.

Bit-Serial Multipliers 247

The easiest way to derive a multiplier with both inputs entering bit-serially is to allow
k clock ticks for the multiplicand bits to be put into place in a shift register and then use
the design of Fig. 12.7 (or its fully systolic counterpart in Fig. 12.10) to compute the
product. This increases the total delay by k cycles.

An alternative bit-serial input/output design is obtained by writing the relationship
between the output and inputs in the form of a recurrence and then implementing it in
hardware. Let a(i) and x(i) denote the values of a and x up to bit position i (a(0) =
a0, a(1) = (a1a0)two, etc.). Assume that the k-bit, 2’s-complement inputs are sign-
extended to 2k bits. Define the partial product p(i) as follows:

p(i) = 2−(i+1)a(i)x(i)

Then, given that a(i) = 2iai + a(i−1) and x(i) = 2ixi + x(i−1), we have:

2p(i) = 2−i(2iai + a(i−1))(2ixi + x(i−1))

= p(i−1) + aix
(i−1) + xia

(i−1) + 2iaixi

Thus, if p(i−1) is stored in double–carry-save form (three rows of dots in dot notation,
as opposed to two for ordinary carry-save), it can be combined with the terms aix(i−1)

and xia(i−1) using a (5; 3)-counter to yield a double–carry-save result for the next step.
The final term 2iaixi has a single 1 in the ith position where all the other terms have 0s.
Thus it can be handled by using a multiplexer (mux) (Fig. 12.11). In cycle i, ai and xi are
input and stored in the ith cell (the correct timing is achieved by a “token” t, which is
provided to cell 0 at time 0 and is then shifted leftward with each clock tick). The terms
a(i−1) and x(i−1), which are already available in registers, are ANDed with xi and ai,
respectively, and supplied along with the three bits of p(i−1) as inputs to the (5; 3)-counter.
Figures 12.11 and 12.12 show the complete cell design and cell interconnection [Ienn94].
The AND gate computing aixi is replicated in each cell for the sake of uniformity. A
single copy of this gate could be placed outside the cells, with its output broadcast to
all cells.

Mux

(5; 3)-counter

0

1

012

a x

a x

ss

c c

t t in

out in

in out

out

p

ii

ii(i–1)

Figure 12.11 Building block for a latency-free, bit-serial multiplier.

248 Chapter 12 Variations in Multipliers

a
x

ss

c c

t in

out in

in out

out

p

i
i

. . .

. . .

. . .

. . .

i

LSB

0

t

Figure 12.12 The cellular structure of the bit-serial multiplier based on the cell in Fig. 12.11.

p

x
a

Already
accumulated

into three
numbers

ai

xi

xia
(i –1)

ai xi

ai xi

Already output

(a) Structure of the bit-matrix

(b) Reduction after each input bit

p(i –1)

2p (i) Shift right to
obtain p(i)

a(i –1)

x(i –1)

ai x
(i –1)

ai x
(i –1)

xi a
(i –1)

Figure 12.13 Bit-serial multiplier design in dot notation.

Note that the 3-bit sum of the five inputs to the (5; 3)-counter is shifted rightward
before being stored in latches by connecting its LSB to the right neighboring cell, keeping
its middle bit in place, and shifting its most-significant bit to the left. The product becomes
available bit-serially at the sout output of the rightmost cell. Only k − 1 such cells are
needed to compute the full 2k-bit product of two k-bit numbers. The reason is that the
largest intermediate partial product is 2k − 1 bits wide, but by the time we get to this
partial product, k bits of the product have already been produced and shifted out.

Figure 12.13 uses dot notation to show the justification for the bit-serial multiplier
design in Figs. 12.11 and 12.12. Figure 12.13a depicts the meanings of the various partial

Modular Multipliers 249

operands and results, while Fig. 12.13b represents the operation of the (5; 3)-counters.
Note, in particular, how the dot representing aixi is transferred to the sout output by the
cell holding the token (refer to the lower right corner of Fig. 12.11).

12.4 MODULAR MULTIPLIERS

A modular multiplier is one that produces the product of two (unsigned) integers modulo
some fixed constant m. It is useful, for example, for implementing the multiplication
operation for residue number systems. A modular multiplier could be implemented by
attaching a modular reduction circuit to the output of an ordinary binary multiplier.
However, simpler designs are often possible if the modular reduction is intertwined with
the accumulation of partial products. In particular, this approach obviates the need for
keeping wider intermediate values.

The two special cases of m = 2b and m = 2b − 1 are, as usual, simpler to deal with
(see Section 8.6). For example, if the partial products are accumulated through carry-
save addition, then for m = 2b, the modular version simply ignores the carry output of
the FA in position b− 1 and for m = 2b − 1, the carry out of position b− 1 is combined
with bits in column 0 (Fig. 12.14).

As an example, consider the design of a modulo-15 multiplier for 4-bit operands.
Since 16 = 1 mod 15, the six heavy dots enclosed by the gray triangle in the upper
left corner of Fig. 12.15 can be moved as shown, leading to the square partial products
matrix on the lower left. The four 4-bit values can then be reduced by two levels of

Figure 12.14
Modulo-(2b − 1) CSA.

. . .FA FAFAFAFA

Mod-15 CSA

Divide by 16

4 4 4 4

Mod-15 CSA

4

Mod-15 CPA

Figure 12.15 Design of a 4 × 4 modulo-15 multiplier.

250 Chapter 12 Variations in Multipliers

Figure 12.16 One
way to design a 4 × 4
modulo-13 multiplier.

CSA (with wraparound links, as in Fig. 12.14) followed by a 4-bit adder (again with
end-around carry). We see that this particular modular multiplier is in fact simpler than
an ordinary 4× 4 binary multiplier.

The special case of m = 2b + 1 is also worth discussing, as it finds applications
in low-cost residue number system designs. Assuming diminished-1 representation of
nonzero mod-(2b+1) inputs, we simply need to multiply each bit of x by the diminished-
1 representation of a, adding all the terms. Some adjustments are required to compensate
for the 0 terms resulting from the 0 digits of x, as these are not in the diminished-1 format,
and for the representation of x being 1 less than its true value. These adjustments are
not difficult to derive, and they do not significantly increase the cost or latency of the
multiplier [Verg07].

Similar techniques can be used to handle modular multiplication in the general case.
For example, a modulo-13 multiplier can be designed by using the identities 16 = 3
mod 13, 32 = 6 mod 13, and 64 = 12 mod 13. Each dot inside the triangle in Fig. 12.15
must now be replaced with two dots in the four lower-order columns (Fig. 12.16). Thus,
some complexity is added in view of the larger number of dots to be reduced and the
need for the final adjustment of the result to be in [0, 12].

To complete the design of our 4× 4 modulo-13 multiplier, the values shown on the
right-hand side of Fig. 12.16 must be added modulo 13. After a minor simplification,
consisting of removing one dot from column 1 and replacing it with two dots in column
0, a variety of methods can be used for the required modular multioperand addition as
discussed at the end of Section 8.6.

For example, one can use a CSA tree in which carries into column 4 are reinserted
into columns 0 and 1. However, this scheme will not work toward the end of the process
and must thus be supplemented with a different modular reduction scheme. Another
approach is to keep some of the bits emerging from the left end (e.g., those that cannot
be accommodated in the dot matrix without increasing its height) and reduce them
modulo 13 by means of a lookup table or specially designed logic circuit. Supplying
the details is left as an exercise. Figure 12.17 shows a general method for converting an
n-input modulo-m addition problem to a three-input problem.

When dealing with very large numbers, say having widths of the order of hundreds of
bits, a modular multiplication algorithm known as Montgomery multiplication is quite
efficient. Such multiplications are used extensively in cryptographic applications. We
postpone discussion of this algorithm to Section 15.4, where we describe it along with
Montgomery modular reduction.

The Special Case of Squaring 251

Figure 12.17 A
general method for
modular
multioperand
addition.

. . .

Table

n Inputs

CSA tree

Sum mod m

 3-Input
modulo-m
 adder

.

.

.

Address

Data

12.5 THE SPECIAL CASE OF SQUARING

Any ordinary or modular multiplier can be used for computing p = x2 if both its inputs
are connected to x. However, a special-purpose k-bit squarer, if built in hardware, will
be significantly lower in cost and delay than a k × k multiplier.

To see why, consider the problem of squaring a 5-bit unsigned binary integer
(x4x3x2x1x0)two. As shown in Fig. 12.18a, the partial products matrix can be consid-
erably simplified before performing multioperand addition. A term xixi reduces to xi and
a pair of terms xixj and xjxi in any given column can be replaced by xixj in the next
higher column. The resulting simplified partial products matrix for our 5-bit example is
shown in Fig. 12.18b. We see that the two LSBs of the square are obtained with no effort
and that computing the remaining bits involves a three-operand addition as opposed to
a five-operand addition needed for 5× 5 multiplication.

Further simplifications and fine-tuning are often possible. For example, based on the
identities

x1x0 + x1 = 2x1x0 + x1 − x1x0

= 2x1x0 + x1(1− x0)

= 2x1x0 + x1x0

we can remove the two terms x1x0 and x1 from column 2, replacing them by x1x0 in
column 2 and x1x0 in column 3. This transformation reduces the width of the final carry-
propagate adder from 7 to 6 bits. Similar substitutions can be made for the terms in
columns 4 and 6, but they do not lead to any simplification or speedup in this particular
example. The design of truncated and modular squarers will be explored in the end-of-
chapter problems.

For a small word width k, the square of a k-bit number can be easily obtained
from a 2k × (2k − 2) lookup table, whereas a much larger table would be needed for
multiplying two k-bit numbers. In fact, two numbers can be multiplied based on two

252 Chapter 12 Variations in Multipliers

p0p1p2p3p4p5p6p7p8p9

p0p1p2p3p4p5p6p7p8p9

x0x0x1x0x2x0x3x0x4x0

x0x1x1x1x2x1x3x1x4x1

x0x2x1x2x2x2x3x2x4x2

x0x3x1x3x2x3x3x3x4x3

x0x4x1x4x2x4x3x4x4x4

x0x1x2x3x4

x0x1x2x3x4�

(a) Partial products bit-matrix for unsigned squaring

x0––x1x0x2x0x3x0

x1x2x1x3x1

x4x0x4x1x4x2x4x3

x4 x3x2

x2x3

Simplify
to x0

Move
to next
column

(b) Reduced partial products bit-matrix

Figure 12.18 Design of a 5-bit squarer.

table-lookup evaluations of the square function, and three additions, using the identity
ax = [(a + x)2 − (a − x)2]/4. Chapter 24 contains a comprehensive discussion of
table-lookup methods for performing, or facilitating, arithmetic computations.

Finally, exponentiation can be performed by a sequence of squaring or square-
multiply steps. For example, based on the identity

x13 = x((x(x2))2)2

we can compute x13 by squaring x, multiplying the result by x, squaring twice, and
finally multiplying the result by x. We discuss exponentiation for both real and integer
operands in greater detail in Section 23.3.

12.6 COMBINED MULTIPLY-ADD UNITS

In certain computations, such as vector inner-product, convolution, or fast Fourier trans-
form, multiplications are commonly followed by additions. In such cases, implementing
a multiply-add unit in hardware to compute p = ax + y might be cost-effective. Since
the preceding computations are commonplace in signal processing applications, most
modern digital signal processors have built-in hardware capability for multiply-add, or
multiply-accumulate, operations.

Combined Multiply-Add Units 253

We have already discussed AMMs (Section 12.2) that add one or two numbers to
the product of their multiplicative inputs. Similarly, at several points in this and the
preceding three chapters we have hinted at a means of incorporating an additive input
into the multiplication process (e.g., by initializing the cumulative partial product to a
nonzero value or by entering a nonzero value to the top row of an array multiplier). In all
cases, however, the additive inputs are comparable in width to the multiplicative inputs.

The type of multiply-add operation of interest to us here involves an additive input
that is significantly wider than the multiplicative inputs (perhaps even wider than their
product). For example, we might have 24-bit multiplicative inputs, yielding a 48-bit
product, that is then added to a 64-bit running sum. The wider running sum may be
required to avoid overflow in the intermediate computation steps or to provide greater
precision to counter the accumulation of errors when dealing with fractional values.

Figure 12.19 depicts several methods for incorporating a wide additive input into
the multiplication process. First, we might use a CSA tree to find the product of the
multiplicative inputs in carry-save form and then add the result to the additive input
using a CSA followed by a fast adder (Fig. 12.19a). To avoid a carry-propagate addition
in every step, the running sum may itself be kept in carry-save form, leading to the
requirement for two CSA levels (Fig. 12.19b). The resulting hardware implementation
for this latter scheme is quite similar to the partial-tree multiplier of Fig. 11.9.

Alternatively, the two-step process of computing the product in carry-save form and
adding it to the running sum can be replaced by a merged multiply-add operation that

• • • • • • • • • • • •
• • • • • • •
• • • •

Additive input

} CSA-tree output

• • • • • • • • • • • •
• • • • • • • • • • •

• • • • • • •
• • • •

}
} Carry-save additive input

CSA-tree output

Dot matrix for the
4 4 multiplication×

• • • • • • • • • • • •
• • • • • • •

• • • • •
• • •

•

Additive input

×

• • • • • • • • • • • •
• • • • • • • • • • •

• • • • • • •
• • • • •

• • •
•

}

Dot matrix for the
4 4 multiplication

Carry-save additive input

(a)

(b)

(c)

(d)

Figure 12.19 Dot notation representations of various methods for performing a
multiply-add operation in hardware.

254 Chapter 12 Variations in Multipliers

directly operates on the dots from the additive input(s) and the partial products bit matrix
(Figs. 12.19c and 12.19d). In the latter case, the speed and cost penalties for including the
additive input in a parallel tree multiplier are fairly small, thus leading to a cost-effective
design. We will revisit this notion of merged arithmetic in Section 23.6.

Multiply-add and multiply-accumulate units are particularly useful when dealing
with floating-point operands. Merging the two steps, so that a single rounding operation is
used just before producing the final result, leads to a fused multiply-add or fused multiply-
accumulate operation. Such a fused operation saves time and reduces computation errors.
These notions will be further discussed in Section 18.5.

PROBLEMS 12.1 Multipliers built of smaller modules

a. Draw a schematic diagram of a 16×4 multiplier for unsigned numbers using
only 4× 4 multipliers and 4-bit adders.

b. Using dot notation, show an implementation for summing the four partial
products of part a using only 4-bit CSA modules and 4-bit CPAs.

c. Repeat part a with the 16-bit number in 2’s-complement format.
d. Repeat part b for the multiplier of part c.

12.2 Multipliers built of smaller modules

Consider Fig. 12.2 depicting the construction of gb× gb multipliers from b× b
units.

a. Express the height of the partial products matrix of Fig. 12.2 as a function of g.
b. Generalize the result of part a to gb× hb multiplier built of b× b modules.
c. Repeat part a for the case of b × c multipliers being used to synthesize a

gb× gc multiplier.
d. Generalize the result of part c to gb× hc multiplier synthesized from b× c

units.

12.3 Multipliers built of AMMs

Compare the 8×8 multiplier designs in Figs. 12.5 and 12.6 with respect to speed,
assuming the following implementations for the 2× 4 AMM of Fig. 12.4.

a. A 4-bit CSA followed by 4-bit ripple-carry adder.
b. A 4-bit CSA followed by 4-bit carry-lookahead adder.

12.4 Multipliers built of AMMs

a. Design a 2×2AMM, with two 2-bit additive inputs, using only four single-bit
FAs and four AND gates.

b. Show how to connect fourAMMs of part a to form a 4×4 unsigned multiplier.
c. Estimate the delay of the 4× 4 multiplier of part b, in units of FA delay, by

drawing and justifying the critical path on the circuit diagram.
d. Can one use the multiplier of part b as a 4× 4 AMM? How or why not?

Problems 255

12.5 Building larger AMMs

a. We have an unlimited supply of 2 × 4 AMMs of the type depicted in Fig.
12.4. Using a minimal number of these AMMs, and no other component,
synthesize a 4× 4 AMM (with two 4-bit additive inputs).

b. Repeat part a for a 2× 8 AMM (additive inputs are 2 and 8 bits wide).
c. Repeat part a for a 6× 6 AMM (additive inputs are both 6 bits wide).
d. Repeat part a for a 4× 8 AMM (additive inputs are 4 and 8 bits wide).
e. Build the 4 × 8 AMM of part d using two of the 4 × 4 AMMs designed in

part a.
f. Compare the designs of parts d and e with respect to speed and cost.

12.6 Multipliers built of AMMs

a. Design a 16× 8 multiplier using 4× 2 AMMs arranged in a 4× 4 array.
b. Repeat part a, this time arranging the modules in an 8× 2 array.
c. Compare the designs of parts a and b with respect to speed.
d. Convert the designs of parts a and b into 16× 8 AMMs.

12.7 AMMs for 2’s-complement multiplication

a. Design a 2 × 4 AMM, similar to that in Fig. 12.4, but with the following
changes. The x input is internally recoded using the digit set [−2, 2], so a
third x bit, x−1, is needed as context and a fifth a input, a−1, in case of left
shifting. The 2-bit additive input is replaced by a 1-bit input ci and a 1-bit
output ci+4 that completes the 5-bit sum of the two 4-bit values. A 6-bit result
is needed at the most significant end, so the AMM should also produce the
two most-significant bits of the result, to be used in lieu of ci+4 when needed.

b. Build a 4× 4 2’s-complement multiplier using the AMMs of part a.
c. Repeat part b for an 8× 8 2’s-complement multiplier.

12.8 Systolic multipliers

a. Present an argument for the correctness of the systolic multiplier in Fig. 12.10.
b. Trace the steps of the unsigned binary multiplication (1101)two × (0101)two

to verify your conclusion in part a.
c. Propose a cell design such that the multiplicand is stored internally and can

be modified when needed (this is useful when the multiplicand is a coefficient
that seldom changes). There are two operation modes. In “load” mode, the
serial input pin is used to shift the multiplicand into internal latches (LSB
first). In “multiply” mode, the multiplier is supplied as input and the product
emerges as output.

12.9 Systolic multipliers

A fully bit-serial k× k systolic multiplier can be designed on the basis of a linear
array of 2k cells, numbered 0 through 2k − 1 from right to left, which at the
end will hold the 2k-bit product. The multiplier x is input from the left on even-
numbered clock ticks, with xi arriving at time 2i. The multiplicand a is input

256 Chapter 12 Variations in Multipliers

from the right, most-significant bit first, on odd-numbered clock ticks, with aj

input at time 2k − 2j − 1.

a. Show that xi and aj meet at cell h if and only if i + j = h.
b. Use the result of part a to derive a suitable cell design and intercell

connections.

12.10 Modular multipliers

Discuss the design of modulo-(2b + 1) multipliers using diminished-1 and
conventional binary encodings.

12.11 Modular multipliers

a. Present a complete design for the modulo-13 multiplier discussed at the end
of Section 12.4.

b. Compare the design of part a to a standard 4 × 4 multiplier with respect to
speed and cost.

c. Design a 5×5 modulo-29 multiplier. Hint: Work with partial results in [0, 31]
rather than [0, 28]. When a partial result exceeds 31, subtract 29 from it by
discarding the carry-out (worth 32 units) and adding 3. Thus, a wraparound
connection similar to that in Fig. 12.14 must be established from the carry-
out to the two least-significant positions. The final sum in [0, 31] may need
adjustment.

12.12 Modular squarers

a. Simplify the reduced partial products matrix of Fig. 12.18 to the extent
possible if the square of the 5-bit number x is to be obtained modulo 31.

b. Repeat part a for modulo-29 squaring of a 5-bit number.
c. Discuss how modular multiplication ax mod m can be performed based on

modular squaring tables that hold z2 mod m.

12.13 Design of squarers

a. Show that a 4-bit unsigned squarer can be designed using only two-input
AND gates, one FA, and a 5-bit binary adder.

b. Using the identity x1x0 + x1 = 2x1x0 + x1x0, as discussed near the end of
Section 12.5, reduce the complexity of the 4-bit squarer of part a to a 4-bit
adder plus a few logic gates.

c. Design a circuit to compute the square of a 4-bit 2’s-complement input integer.
Hint: Use the identity−xjxi = −2xj+xjxi+xj and note that the final product
is representable in only 7 bits.

12.14 Bit-serial squarers

Present a simplified version of the bit-serial multiplier design in Fig. 12.11 for
squaring a number x [Ienn94]. Hint: The two terms aix(i−1) and xia(i−1) are the
same. So a single value needs to be added to the accumulated result. Because of

Problems 257

this, the accumulated result can be kept in carry-save form, rather than as three
numbers, allowing the use of a (3; 2)-counter.

12.15 Bit-serial inner-product computation

Consider replacing the (5; 3)-counter in Fig. 12.11 by a (7; 3)-counter and using
the two extra inputs to accommodate serial inputs b and y, so that the value of
ax + by is computed bit-serially [Hayn96].

a. How should the part of the circuit producing sout be modified?
b. Show that the resulting cells can in fact be used to compute ax + by + z.

12.16 Multiplication of complex numbers

The quater-imaginary number system of Example 1.7 in Section 1.4 can be easily
generalized to radix j

√
r and digit set [0, r− 1]. Show that any complex number

is representable in such a number system and discuss whether this representation
leads to faster multiplication for complex numbers.

12.17 Multipliers with narrower products

Our discussions in Chapters 9–12 were based on the assumption that in
multiplying two k-bit operands, the full 2k-bit product must be produced.

a. Present a thorough discussion of how the various multiplier designs are
affected if the k-bit product of two k-bit integers, plus an overflow indication,
are sufficient.

b. Repeat part a, assuming that the input operands are k-bit fractions yielding a
k-bit product by truncating all bits of p beyond p−k .

12.18 Fractional precision multiplication

a. Consider a 6× 6 multiplier that uses a Wallace tree to reduce the six partial
products to two numbers and then adds them in a fast adder to obtain the
product. Suggest modifications in the design such that under the control of
a “fractional precision” signal, the multiplier acts as two independent 3 × 3
multipliers operating on the low and high halves of the 6-bit inputs.

b. Repeat part a, this time assuming that the 6 × 6 multiplier is built of 3 × 3
AMMs.

c. Compare the incremental cost of adding the fractional precision arithmetic
capability to the multipliers of parts a and b and discuss.

d. Many modern microprocessors have a capability for fractional precision
arithmetic that allows them to handle multimedia data efficiently. How would
you go about designing a 32×32 multiplier so that it can also view its 32-bit
inputs as two pairs of 16-bit values or four pairs of 8-bit values?

12.19 Synthesis of multipliers

a. We want to synthesize a 12×4 parallel multiplier using 1-bit and 4-bit binary
adders as the only building blocks. Using dot notation, specify an efficient

258 Chapter 12 Variations in Multipliers

design that minimizes the cost, assuming unit cost for 1-bit adders and 6 units
for 4-bit adders.

b. Repeat part a, this time using only (4, 4; 4)-counters and 4-bit adders.
c. Repeat part a, this time using 4× 4 multipliers and 4-bit adders as the only

building blocks.

12.20 Synthesis of multipliers

a. Using dot notation, draw the partial products bit-matrix for a 16 × 16
multiplier, assuming the use of 4× 4 multipliers as building blocks.

b. If we were to use only (7; 2)-counters to reduce the bit-matrix of part a to
two rows, how many such (7; 2)-counters are needed and where should they
be placed?

c. If we were to use only 4-bit adders and nothing else to complete the design of
our 16× 16 multiplier, how many such adders are needed and where should
they be placed?

12.21 Synthesis of multipliers

a. Using four FAs and four AND gates only, design a 2 × 2 AMM computing
the value of ab+ x + y, where a, b, x, and y are 2-bit unsigned integers.

b. Show how to connect four such modules, and no other component, to form a
4× 4 multiplier.

c. Estimate the delay of your 4× 4 multiplier in units of FA delay by drawing
and justifying the critical path on the diagram of part b.

d. Can one use the multiplier of part b as a 4× 4 AMM? How or why not?

12.22 Synthesis of multipliers

We want to implement a 16 × 16 unsigned multiplier using 4 × 4 multiplier
modules, 4-bit CSAs, and a fast carry-lookahead adder.

a. How many 4× 4 multiplier modules do we need? Explain.
b. How many 4-bit CSA modules do we need? Explain.
c. What is the minimum width of the carry-lookahead adder required if latency

is to be minimized?

12.23 Synthesis of multipliers

a. Design a 4× 4 AMM with two 4-bit additive inputs.
b. Design an 8×8 multiplier using fourAMMs of part a and no other component.
c. Show that two 8-bit numbers can be added to the product without changing

the design of part b. How does this observation help in designing a 16× 16
multiplier?

12.24 Building larger AMMs

A 6× 2 AMM computes an 8-bit value p = a× x+ b+ y, where a and b (x and
y) are 6-bit (2-bit) unsigned numbers. Using dot notation, show how three such

Problems 259

AMMs can be used to build a 6 × 6 AMM having two 6-bit multiplicative and
two 6-bit additive inputs and producing a 12-bit result.

12.25 Synthesis of multipliers

a. Show how a 12× 12 multiplier can be built from the following components:
4 × 4 multiplier modules, (3; 2)-counters, (5; 3)-counters, and two CPAs.
Indicate how many of the first three component types are needed and specify
the widths of the two adders.

b. Repeat part a, this time using (5, 5; 4)-counters instead of (3; 2)- and (5;
2)-counters.

c. Generalize the results of part a to a 3k×3k multiplier built from the following
components: k×k multipliers, (3; 2)-counters, (5; 3)-counters, and two CPAs.

d. Repeat part c, this time using (5, 5; 4)-counters instead of (3; 2)- and (5;
2)-counters.

12.26 Design of squarers

a. Show that a 3-bit unsigned squarer, producing a 6-bit result, can be built by
using only four two-input AND gates, one inverter, and a 2-bit binary adder.
Hint: x0x1 + x1 = 2x0x1 + x̄0x1.

b. Redesign your squarer to work with a 3-bit 2’s-complement input. Simplify
the design to the extent possible and compare it with the design in part a with
respect to cost and delay.

12.27 Bit-serial multiplication by a constant

a. Show that the semisystolic multiplier design of Fig. 12.7 needs only k − 1
cells for multiplying k-bit numbers.

b. How is the design of part a simplified if the multiplicand is a constant such
as a = (01000110)two?

12.28 Design of binary multipliers

a. Using 4 × 4 multipliers, each generating an 8-bit result, and 4-bit binary
adders as the only building blocks, draw a schematic diagram for a 12 × 8
unsigned binary multiplier.

b. True or false? Given a design for b×c unsigned binary multiplier using 1-bit
multipliers (AND gates) and 1-bit FAs as the only building blocks, it can be
converted to a gb× gc multiplier, for any given constant g, by replacing the
AND gates with g × g multipliers and the 1-bit FAs with g-bit FAs. Justify
your answer.

12.29 Design of a multimode squarer

Present the design of an 8-bit squarer that can operate in one of three modes.
One control bit specifies if the input operand is unsigned (0) or signed (1) and
another control bit specifies if the signed input operand is in signed-magnitude
(0) or 2’s-complement (1) format. For some ideas, see [Wire99].

260 Chapter 12 Variations in Multipliers

12.30 Design of cubers

Consider the design of a cuber, a circuit to compute x3 for a k-bit input operand x
[Lidd00].

a. Find the height of the partial products matrix composed of three-variable
terms of the form xhxixj.

b. Show that the partial products matrix can be reduced to approximately 1/3
of its original height, where most of the retained terms have a weight of 3.

c. Propose a scheme for reducing the simplified partial products matrix in two
stages: First combining the weight-3 terms and then merging the result with
the weight-1 terms.

d. Briefly compare the complexity and delay of the cuber thus designed to those
of two cascaded multipliers and discuss.

12.31 Saturating multiplier

In certain applications, when the result of an arithmetic operation exceeds the
maximum allowed value, it would be inappropriate to generate the result modulo
a power of 2. For example, in media processing, we do not want addition of 1 to a
black pixel, coded as FF in hexadecimal, to turn it into a white pixel 00. Discuss
how unsigned multiplication can be performed with saturation so that whenever
the resulting product exceeds 2k − 1, the maximum value 2k − 1 is produced at
output.

12.32 Add-multiply-add unit

Show how the expression (a ± b) × x ± c can be evaluated with a latency that
is essentially equivalent to that of a tree multiplier. Hint: The term b× x can be
evaluated as (−b)× (−x), with −x formed as x + 1. Because x has 1s where x
has 0s, the 1s in the partial products matrices of the two multiplications do not
overlap, leading to no increase in matrix height as a result of merging the two
multiplications. All that remains is to introduce the additive term c and some
correction terms [Hakk01].

12.33 Booth-encoded squaring circuits

Consider the design of an 8-bit 2’s-complement squarer. Instead of forming the
partial products bit-matrix directly and then simplifying as in Fig. 12.18, we can
form a 4-digit radix-4 Booth-encoded version of the operand for radix-4 squaring,
noting that the product of two digits in [−2, 2] is in {−4, −2, −1, 0, 1, 2, 4}.
Show how this leads to simplification over direct radix-2 squaring [Stro03].

12.34 Synthesizing squaring circuits via divide-and-conquer

a. We know that a 2h×2h multiplier can be built from h×h multipliers and some
adders or exclusively from h× h additive multiply modules. State and prove
a corresponding result for a 2h × 2h squarer built from h × h components
(whose types and number are to be specified).

References and Further Readings 261

b. A bh × bh multiplier needs b2 components that perform h × h arithmetic.
Develop the corresponding formula for a bh× bh squarer.

12.35 Truncated squarers

a. Discuss the design of truncated squarers in the style used for truncated mul-
tipliers in Section 11.4. In particular, consider both constant compensation
and variable compensation methods [Walt04].

b. Extend the discussion in part a to squarers designed based on the divide-and-
conquer strategy developed for multipliers in Sections 12.1 and 12.2.

REFERENCES AND FURTHER READINGS

[Alia91] Alia, G., and E. Martinelli, “A VLSI Modulo m Multiplier,” IEEE Trans. Computers,
Vol. 40, No. 7, pp. 873–878, 1991.

[Chen79] Chen, I.-N., and R. Willowner, “An O(n) Parallel Multiplier with Bit-Sequential
Input and Output,” IEEE Trans. Computers, Vol. 28, No. 10, pp. 721–727, 1979.

[Dany05] Danysh, A., and D. Tan, “Architecture and Implementation of a Vector/SIMD
Multiply-Accumulate Unit,” IEEE Trans. Computers, Vol. 54, No. 3, pp. 284–293,
2005.

[Ghes71] Ghest, C., “Multiplying Made Easy for Digital Assemblies,” Electronics, Vol. 44,
pp. 56–61, 22 November, 1971.

[Hakk01] Hakkennes, E., and S. Vassiliadis, “Multimedia Execution Hardware Accelerator,”
J. VLSI Signal Processing, Vol. 28, No. 3, pp. 221–234, 2001.

[Hayn96] Haynal, S., and B. Parhami, “Arithmetic Structures for Inner-Product and Other
Computations Based on a Latency-Free Bit-Serial Multiplier Design,” Proc. 30th
Asilomar Conf. Signals, Systems, and Computers, pp. 197–201, 1996.

[Hwan79] Hwang, K., Computer Arithmetic: Principles, Architecture, and Design, Wiley,
1979.

[Ienn94] Ienne, P., and M. A. Viredaz, “Bit-Serial Multipliers and Squarers,” IEEE Trans.
Computers, Vol. 43, No. 12, pp. 1445–1450, 1994.

[Kung82] Kung, H. T., “Why Systolic Architectures?” Computer, Vol. 15, No. 1, pp. 37–46,
1982.

[Lidd00] Liddicoat, A. A., and M. J. Flynn, “Parallel Square and Cube Computations,” Proc.
34th Asilomar Conf. Signals, Systems, and Computers, pp. 1325–1329, 2000.

[Mont05] Montgomery, P., “Five, Six, and Seven-Term Karatsuba-Like Formulae,” IEEE
Trans. Computers, Vol. 54, No. 3, pp. 362–369, 2005.

[Parh93] Parhami, B., and H.-F. Lai, “Alternate Memory Compression Schemes for Modular
Multiplication,” IEEE Trans. Signal Processing, Vol. 41, No. 3, pp. 1378–1385,
1993.

[Pies94] Piestrak, S. J., “Design of Residue Generators and Multioperand Modular Adders
Using Carry-Save Adders,” IEEE Trans. Computers, Vol. 43, No. 1, pp. 68–77,
1994.

262 Chapter 12 Variations in Multipliers

[Stro03] Strollo, A. G. M., and D. De Caro, “Booth Folding Encoding for High Performance
Squarer Circuits,” IEEE Trans. Circuits and Systems II, Vol. 50, No. 5, pp. 250–254,
2003.

[Verg07] Vergos, H. T., and C. Efstathiou, “Design of Efficient Modulo 2n + 1 Multipliers,”
IET Computers and Digital Techniques, Vol. 1, No. 1, pp. 49–57, 2007.

[Walt04] Walters, E. G. III, M. J. Schulte, and M. G. Arnold, “Truncated Squarers with
Constant and Variable Correction,” Advanced Signal Processing Algorithms,
Architectures, and Implementations XIV (Proc. SPIE Conf. 5559), pp. 40–50, 2004.

[Wire99] Wires, K. E., M. J. Schulte, L. P. Marquette, and P. I. Balzola, “Combined Unsigned
and Two’s Complement Squarers,” Proc. 33rd Asilomar Conf. Signals Systems and
Computers, pp. 1215–1219, 1999.

IVDIVISION

■ ■ ■

“Probably nothing in the modern world could have more astonished a Greek mathematician
than to learn that . . . a large proportion of the population of Western Europe could perform

the operation of division for the largest numbers.”
A L F R E D W H I T E H E A D , A N I N T R O D U C T I O N T O M AT H E M AT I C S , 1 9 1 1

“To divide one’s life by years is of course to tumble into a trap set by our own arithmetic.”
C L I F T O N FA D I M A N

■ ■ ■

D IVISION IS THE MOST COMPLEX OF THE FOUR BASIC ARITHMETIC OPERATIONS

and the hardest one to speed up. Thus, dividers are more

expensive and/or slower than multipliers. Fortunately, division

operations are also less common than multiplications.Two classes

of dividers are discussed here. In digit-recurrence schemes, the

quotient is generated one digit at a time, beginning at the most-

significant end. Binary versions of digit-recurrence division can

be implemented through shifting and addition, in much the same

way as shift/add multiplication schemes.Determining the digits of

the quotient from the most-significant end allows us to“converge”

to a k-digit quotient in k cycles. Speeding up of division via reduc-

ing the number of shift/add cycles leads to high-radix dividers.

Array dividers as well as convergence methods that require far

fewer than k iterations, with each iteration being more complex,

are also discussed. This part is composed of the following four

chapters:

C H A P T E R 13
Basic Division Schemes

C H A P T E R 14
High-Radix Dividers

C H A P T E R 15
Variations in Dividers

C H A P T E R 16
Division by Convergence

263

13 Basic Division Schemes

■ ■ ■

“I don’t think you need to worry about your failure at long division. I mean,
after all, you got through short division, and short division is all that a lady

ought to be called on to cope with.”
T E N N E S S E E W I L L I A M S , B A B Y D O L L

■ ■ ■

L ike sequential multiplication of k-bit operands, yielding a 2k-bit product, the

division of a 2k-bit dividend by a k-bit divisor can be realized in k cycles of shifting

and adding (actually subtracting), with hardware, firmware, or software control of the

loop. In this chapter, we review such economical, but slow, bit-at-a-time designs and

set the stage for speedup methods and variations to be presented in Chapters 14–16.

We also consider the special case of division by a constant. Chapter topics include:

13.1 Shift/Subtract Division Algorithms

13.2 Programmed Division

13.3 Restoring Hardware Dividers

13.4 Nonrestoring and Signed Division

13.5 Division by Constants

13.6 Radix-2 SRT Division

13.1 SHIFT/SUBTRACT DIVISION ALGORITHMS

The following notation is used in our discussion of division algorithms:

z Dividend z2k−1z2k−2 · · · z1z0
d Divisor dk−1dk−2 · · · d1d0
q Quotient qk−1qk−2 · · · q1q0
s Remainder [z − (d × q)] sk−1sk−2 · · · s1s0

265

266 Chapter 13 Basic Division Schemes

Dividend

Subtracted
bit-matrix

z

s Remainder

Quotientq
Divisor d

– q3d 23

– q2d 22

– q1d 21

– q0d 20

Figure 13.1 Division of an 8-bit number by a 4-bit number in dot notation.

The expression z − (d × q) for the remainder s is derived from the basic division
equation z = (d × q) + s. This equation, along with the condition s < d , completely
defines unsigned integer division.

Figure 13.1 shows a 2k-bit by k-bit unsigned integer division in dot notation. The
dividend z and divisor d are shown near the top. Each of the following four rows of
dots corresponds to the product of the divisor d and 1 bit of the quotient q, with each
dot representing the product (logical AND) of 2 bits. Since qk−j is in {0, 1}, each term
qk−jd is either 0 or d . Thus, the problem of binary division reduces to subtracting a set
of numbers, each being 0 or a shifted version of the divisor d , from the dividend z.

Figure 13.1 also applies to nonbinary division, except that with r > 2, both the
selection of the next quotient digit qk−j and the computation of the terms qk−jd become
more difficult and the resulting products are one digit wider than d . The rest of the
process, however, remains substantially the same.

Just as sequential multiplication was done by repeated additions, sequential division
is performed by repeated subtractions. The partial remainder is initialized to s(0) = z. In
step j, the next quotient digit qk−j is selected. Then, the product qk−jd (which is either 0
or d) is shifted and the result subtracted from the partial remainder. So, compared with
multiplication, division has the added complication of requiring quotient digit selection
or estimation.

Another aspect of division that is different from multiplication is that whereas the
product of two k-bit numbers is always representable in 2k bits, the quotient of a 2k-
bit number divided by a k-bit number may have a width of more than k bits. Thus, an
overflow check is needed before a division algorithm is applied. Since, for unsigned
division, we have q < 2k and s < d , to avoid overflow, we must have

z < (2k − 1)d + d = 2kd

Hence, the high-order k bits of z must be strictly less than d . Note that this overflow
check also detects the divide-by-0 condition.

Fractional division can be reformulated as integer division, and vice versa. In an
integer division characterized by z = (d × q)+ s, we multiply both sides by 2−2k :

2−2kz =
[
(2−kd)× (2−kq)

]
+ 2−2ks

Shift/Subtract Division Algorithms 267

Now, letting the 2k-bit and k-bit inputs be fractions, we see that their fractional values
are related by

zfrac = (dfrac × qfrac)+ 2−ksfrac

Therefore, we can divide fractions just as we divide integers, except that the final remain-
der must be shifted to the right by k bits. In effect, this means that k zeros are to be inserted
after the radix point to make the k-bit (fractional) remainder into a 2k-bit fractional num-
ber with k leading 0s. This makes sense because when we divide zfrac by a number dfrac
that is less than 1, the remainder should be less than ulp in the quotient (otherwise, the
quotient could be increased without the remainder going negative). The condition for no
overflow in this case is zfrac < dfrac, which is checked in exactly the same way as for
integer division.

Sequential or bit-at-a-time division can be performed by keeping a partial remain-
der, initialized to s(0) = z, and successively subtracting from it the properly shifted
terms qk−jd (Fig. 13.1). Since each successive number to be subtracted from the partial
remainder is shifted by 1 bit with respect to the preceding one, a simpler approach is
to shift the partial remainder by 1 bit, to align its bits with those of the next term to be
subtracted. This leads to the well-known sequential division algorithm with left shifts:

s(j) = 2s(j−1) − qk−j(2
kd) with s(0) = z and s(k) = 2ks

|shift|| left |
| subtract |

The factor 2k by which d is premultiplied ensures proper alignment of the values. After
k iterations, the preceding recurrence leads to

s(k) = 2ks(0) − q(2kd) = 2k [z − (q× d)] = 2ks

The fractional version of the division recurrence is

s(j)
frac = 2s(j−1)

frac − q−jdfrac with s(0)
frac = zfrac and s(k)

frac = 2ksfrac

Note that unlike multiplication, where the partial products can be produced and processed
from top to bottom or bottom to top, in the case of division, the terms to be subtracted
from the initial partial remainder must be produced from top to bottom. The reason is
that the quotient bits become known sequentially, beginning with the most-significant
one, whereas in multiplication all the multiplier bits are known at the outset. This is why
we do not have a division algorithm with right shifts (corresponding to multiplication
with left shifts).

The division of z = (117)ten = (0111 0101)two by d = (10)ten = (1010)two to
obtain the quotient q = (11)ten = (1011)two and the remainder s = (7)ten = (0111)two
is depicted in Fig. 13.2a. Figure 13.2b shows the fractional version of the same division,
with the operands z = (117/256)ten = (.0111 0101)two, d = (10/16)ten = (.1010)two
and the results q = (11/16)ten = (.1011)two, s = (7/256)ten = (.0000 0111)two.

268 Chapter 13 Basic Division Schemes

 (a) Integer division (b) Fractional division
 ========================= =========================
z 0 1 1 1 0 1 0 1 zfrac . 0 1 1 1 0 1 0 1
 24d 1 0 1 0 dfrac . 1 0 1 0
 ========================= =========================
s(0) 0 1 1 1 0 1 0 1 s(0) . 0 1 1 1 0 1 0 1
 2s(0) 0 1 1 1 0 1 0 1 2s(0) 0 . 1 1 1 0 1 0 1
–q 324d 1 0 1 0 {q3 = 1} –q –1d . 1 0 1 0 {q–1 = 1}
––––––––––––––––––––––––— –––––––––––––––––––––––––—
s(1) 0 1 0 0 1 0 1 s(1) . 0 1 0 0 1 0 1
 2s(1) 0 1 0 0 1 0 1 2s(1) 0 . 1 0 0 1 0 1
–q 224d 0 0 0 0 {q2 = 0} –q –2d . 0 0 0 0 {q–2 = 0}
––––––––––––––––––––––––— –––––––––––––––––––––––––—
s(2) 1 0 0 1 0 1 s(2) . 1 0 0 1 0 1
 2s(2) 1 0 0 1 0 1 2s(2) 1 . 0 0 1 0 1
–q 124d 1 0 1 0 {q1 = 1} –q –3d . 1 0 1 0 {q–3 = 1}
––––––––––––––––––––––––— –––––––––––––––––––––––––—
s(3) 1 0 0 0 1 s(3) . 1 0 0 0 1
 2s(3) 1 0 0 0 1 2s(3) 1 . 0 0 0 1
–q 024d 1 0 1 0 {q0 = 1} –q –4d . 1 0 1 0 {q–4 = 1}
––––––––––––––––––––––––— –––––––––––––––––––––––––—
s(4) 0 1 1 1 s(4) . 0 1 1 1
s 0 1 1 1 sfrac . 0 0 0 0 0 1 1 1
q 1 0 1 1 qfrac . 1 0 1 1
 ========================= =========================

Figure 13.2 Examples of sequential division with integer and fractional operands.

In practice, the required subtraction is performed by adding the 2’s complement of
2kd or d to the partial remainder (more on this later). Note that there are but two choices
for the value of the next quotient digit qk−j or q−j in radix 2, with the value 1 selected
whenever the shifted partial remainder 2s(j−1) is greater than 2kd or d . Sections 13.3
and 14.2 contain more detailed discussions on quotient digit selection.

13.2 PROGRAMMED DIVISION

On a processor that does not have a divide instruction, one can use shift and add instruc-
tions to perform integer division. Since one quotient digit is produced after each left shift
of the partial remainder, we need only two k-bit registers to store the partial remainder
and the quotient: Rs for the most-significant k bits of the partial remainder, and Rq for the
rest of the partial remainder plus the partial quotient produced thus far (Fig. 13.3). In each
cycle, the double-width register Rs|Rq is shifted left and the new quotient digit is inserted
in the just-vacated least-significant bit (LSB) of Rq. This insertion is accomplished by
incrementing Rq by 1 if the next quotient digit is 1.

Figure 13.4 shows the structure of the needed program for sequential division. The
instructions used in this program fragment are typical of instructions available on many
processors.

The subtract instruction in the program fragment of Fig. 13.4 needs some elaboration.
If we reach the subtract instruction by falling through its preceding branch instruction,
then Rs ≥ Rd, and the desired effect of leaving Rs − Rd in Rs is achieved through

Programmed Division 269

Rs Rq

Rd

0 0 . . . 0 0 0 0

2 dk

Carry
 flag

Shifted partial
 remainder

Shifted partial
 quotient

Partial remainder
 (2k –j bits)

Partial quotient
 (j bits)

Next
quotient
digit
inserted
here

Divisor d

Figure 13.3 Register usage for programmed division.

Figure 13.4 Programmed division using left shifts.

270 Chapter 13 Basic Division Schemes

subtraction. However, if we reach the subtract instruction from the skip instruction, then
the carry flag is 1 and Rs < Rd. In this case, the proper result is to leave (2k+Rs)−Rd in
Rs, where 2k represents the most-significant bit (MSB) of the shifted partial remainder
held in the carry flag. But we have

(2k + Rs)− Rd = Rs+ (2k − Rd)

= Rs+ 2’s-complement of Rd

Thus, even though we are performing unsigned division, a 2’s-complement subtract
instruction produces the proper result in either case.

Ignoring operand load and result store instructions (which would be needed in any
implementation), the function of a divide instruction is accomplished by executing
between 6k + 3 and 8k + 3 machine instructions, depending on the operands. More
precisely, if the binary representation of the quotient q is of weight w (i.e., its number of
1 bits equals w), then 6k + 2w + 3 instructions will be executed by the program of Fig.
13.4. The dependence of program execution time on w arises from the fact that the sub-
tract and increment instructions are skipped in an iteration when the derived bit of q is 0.
For 32-bit operands, this means well over 200 instructions on the average. The situation
improves somewhat if a special instruction that does some or all of the required functions
within the division loop is available. However, even then, no fewer than 32 instructions
would be executed in the division loop. We thus see the importance of hardware dividers
for applications that involve a great deal of numerical computations.

Microprogrammed processors with no hardware divider use a microroutine very
similar to the program in Fig. 13.4 to perform division. For the same reasons given
near the end of Section 9.2 in connection with programmed multiplication, division
microroutines are significantly faster than their machine-language counterparts, though
still slower than the hardwired implementations we examine next.

13.3 RESTORING HARDWARE DIVIDERS

Figure 13.5 shows a hardware realization of the sequential division algorithm for
unsigned integers. At the start of each cycle j, the partial remainder s(j−1) is shifted
to the left, with its MSB moving into a special flip-flop. Then the trial difference
2s(j−1) − qk−j(2kd) is computed. Because of the 2k factor in the preceding expres-
sion, the divisor is aligned with the upper k bits of the partial remainder for the trial
subtraction and the lower part of the partial remainder is not affected.

As stated in connection with programmed division in Section 13.2, the next quotient
digit should be 1 if the MSB of 2s(j−1), held in the special flip-flop, is 1 or if the trial
difference is positive (cout = 1). In either case, qk−j = 1 becomes the shift input for
the quotient register and also causes the trial difference to be loaded into the upper half
of the partial remainder register to form the new partial remainder for the next cycle.
Otherwise, qk−j = 0, and the partial remainder does not change.

We refer to the division scheme of Fig. 13.5 as restoring division. The quotient digit
in radix 2 is in {0, 1}. The trial subtraction corresponds to assuming qk−j = 1. If the trial

Restoring Hardware Dividers 271

Quotient q

Mux

Adder
cout

0 1

Partial remainder s(j) (initial value z)

Divisor d

Shift

Shift

Load

1
c in

Quotient
digit

selector

qk–j

MSB of
2s(j–1)

k

k

k

Trial difference

Figure 13.5 Shift/subtract sequential restoring divider.

difference is positive, then the next quotient digit is indeed 1. Otherwise, qk−j = 1 is
too large and the quotient digit must be 0. The term restoring division means that the
remainder is restored to its correct value if the trial subtraction indicates that 1 was not
the right choice for qk−j. Note that we could have chosen to load the trial difference
in the partial remainder register in all cases, restoring the remainder to its correct value
by a compensating addition step when needed. However, this would have led to slower
hardware.

Just as the multiplier could be stored in the lower half of the partial product register
(Fig. 9.4a), the quotient and the lower part of the partial remainder can share the same
space, since quotient bits are derived as bits of the partial remainder move left, freeing
the required space for them. Excluding the control logic, the hardware requirements
of multiplication and division are quite similar, so the two algorithms can share much
hardware components (compare Figs. 9.4a and 13.5).

As a numerical example, we use the restoring algorithm to redo the integer division
given in Fig. 13.2. The result is shown in Fig. 13.6; note the restoration step correspond-
ing to q2 = 0 and the extra bit devoted to sign in intermediate operands. A shifted partial
remainder does not need an extra sign bit, since its magnitude is immediately reduced
by a trial subtraction.

Thus far, we have assumed unsigned operands and results. For signed operands, the
basic division equation z = (d × q)+ s, along with

sign(s) = sign(z) and |s| < |d |

uniquely define the quotient q and remainder s.

272 Chapter 13 Basic Division Schemes

 =============================
z 0 1 1 1 0 1 0 1 No overflow, since:
 24d 0 1 0 1 0 (0111)two < (1010)two
–2 4d 1 0 1 1 0
 =============================
s(0) 0 0 1 1 1 0 1 0 1
 2s(0) 0 1 1 1 0 1 0 1
 +(–2 4d) 1 0 1 1 0
–––––––––––––––––––––––––––––––
s(1) 0 0 1 0 0 1 0 1 Positive, so set q3 = 1
 2s(1) 0 1 0 0 1 0 1
 +(–2 4d) 1 0 1 1 0
–––––––––––––––––––––––––––––––
s(2) 1 1 1 1 1 0 1 Negative, so set q2 = 0
s(2) = 2s(1) 0 1 0 0 1 0 1 and restore
 2s(2) 1 0 0 1 0 1
 +(–2 4d) 1 0 1 1 0
–––––––––––––––––––––––––––––––
s(3) 0 1 0 0 0 1 Positive, so set q1 = 1
 2s(3) 1 0 0 0 1
 +(–2 4d) 1 0 1 1 0
–––––––––––––––––––––––––––––––
s(4) 0 0 1 1 1 Positive, so set q0 = 1
s 0 1 1 1
q 1 0 1 1
 =============================

Figure 13.6 Example of restoring unsigned division.

Consider the following examples of integer division with all possible combinations
of signs for z and d :

z = 5 d = 3 ⇒ q = 1 s = 2
z = 5 d = −3 ⇒ q = −1 s = 2
z = −5 d = 3 ⇒ q = −1 s = −2
z = −5 d = −3 ⇒ q = 1 s = −2

We see from the preceding examples that the magnitudes of q and s are unaffected by
the input signs and that the signs of q and s are easily derivable from the signs of z and
d . Hence, one way to do signed division is through an indirect algorithm that converts
the operands into unsigned values and, at the end, accounts for the signs by adjusting
the sign bits or via complementation. This is the method of choice with the restoring
division algorithm.

13.4 NONRESTORING AND SIGNED DIVISION

Implementation of restoring division requires paying attention to the timing of various
events. Each of the k cycles must be long enough to allow the following events in
sequence:

Shifting of the registers.

Propagation of signals through the adder.

Storing of the quotient digit.

Nonrestoring and Signed Division 273

Thus, the sign of the trial difference must be sampled near the end of the cycle (say at
the negative edge of the clock). To avoid such timing issues, which tend to lengthen
the clock cycle, one can use the nonrestoring division algorithm. As before, we assume
qk−j = 1 and perform a subtraction. However, we always store the difference in the
partial remainder register. This may lead to the partial remainder being temporarily
incorrect (hence the name “nonrestoring”).

Let us see why it is acceptable to store an incorrect value in the partial remainder
register. Suppose that the shifted partial remainder at the start of the cycle was u. If we had
restored the partial remainder u− 2kd to its correct value u, we would proceed with the
next shift and trial subtraction, getting the result 2u− 2kd . Instead, because we used the
incorrect partial remainder, a shift and trial subtraction would yield 2(u−2kd)−2kd =
2u − (3 × 2kd), which is not the intended result. However, an addition would do the
trick, resulting in 2(u − 2kd) + 2kd = 2u − 2kd , which is the same value obtained
after restoration and trial subtraction. Thus, in nonrestoring division, when the partial
remainder becomes negative, we keep the incorrect partial remainder, but note the correct
quotient digit and also remember to add, rather than subtract, in the next cycle.

Before discussing the adaptation of nonrestoring algorithm for use with signed
operands, let us use the nonrestoring algorithm to redo the example division of Fig.
13.6. The result is shown in Fig. 13.7. We still need just 1 extra bit for the sign of s(j),
which doubles as a magnitude bit for 2s(j).

Figure 13.8 illustrates the relationship between restoring division and nonrestoring
division for the preceding example division, namely, (117)ten/(10)ten. In each cycle, the
value 2kd = (160)ten is added to or subtracted from the shifted partial remainder.

 ============================
z 0 1 1 1 0 1 0 1 No overflow, since:
 24d 0 1 0 1 0 (0111) < (1010)
–2 4d 1 0 1 1 0
 ============================
s(0) 0 0 1 1 1 0 1 0 1
 2s(0) 0 1 1 1 0 1 0 1 Positive,
 +(–2 4d) 1 0 1 1 0 so subtract

s(1) 0 0 1 0 0 1 0 1
 2s(1) 0 1 0 0 1 0 1 Positive, so set q3 = 1
 +(–2 4d) 1 0 1 1 0 and subtract
–––––––––––––––––––––––––––––––
s(2) 1 1 1 1 1 0 1
 2s(2) 1 1 1 1 0 1 Negative, so set q2 = 0
 +24d 0 1 0 1 0 and add
––––––––––––––––––––––––––––––
s(3) 0 1 0 0 0 1
 2s(3) 1 0 0 0 1 Positive, so set q1 = 1
 +(–2 4d) 1 0 1 1 0 and subtract
–––––––––––––––––––––––––––––––
s(4) 0 0 1 1 1 Positive, so set q0 = 1
s 0 1 1 1
q 1 0 1 1
 ============================

two two

–––––––––––––––––––––––––––––––

Figure 13.7 Example of nonrestoring unsigned division.

274 Chapter 13 Basic Division Schemes

Figure 13.8 Partial
remainder variations
for restoring and
nonrestoring division.

300

200

100

0

–100

117

234

74

148

–12

136

272

112
P

ar
tia

l r
em

ai
nd

er

s(0)

s(1)

s(2)
s(3)

s =16s(4)

–160× 2

× 2
× 2

× 2

–160

–160

148

296
–160

Trial difference negative;
restore previous value

(a) Restoring.

300

117

234

74

148

–12
–24

136

272

112

200

100

0

–100

P
ar

tia
l r

em
ai

nd
er

s(0)

s(1)

s(2)

s(3)

s =16s(4)

–160× 2

× 2

× 2

× 2

–160

+160

–160

(b) Nonrestoring.

Recall that in restoring division, the quotient digit values of 0 and 1 corresponded to
“no subtraction” (or subtraction of 0) and “subtraction of d ,” respectively. In nonrestoring
division, we always subtract or add. Thus, it is as if the quotient digits are selected from
the set {1,−1}, with 1 corresponding to subtraction and −1 to addition. Our goal is to
end up with a remainder that matches the sign of the dividend (positive in unsigned
division). Well, this viewpoint (of trying to match the sign of the partial remainder s
with the sign of the dividend z) leads to the idea of dividing signed numbers directly.
The rule for quotient digit selection becomes:

If sign(s) = sign(d) then qk−j = 1 else qk−j = −1

Two problems must be dealt with at the end:

1. The quotient with digits 1 and −1 must be converted to standard binary.
2. If the final remainder s has a sign opposite that of z, a correction step, involving

the addition of ±d to the remainder and subtraction of ±1 from the quotient, is
needed (since there is no next step to compensate for the nonrestoration of the
correct remainder).

Nonrestoring and Signed Division 275

Note that the correction step might be required even in unsigned division (when the final
remainder turns negative). We deal with the preceding two problems in turn.

To convert a k-digit quotient q = (qk−1qk−2 · · · q0)BSD with qi ∈ {−1, 1} to a k-bit,
2’s-complement number, do as follows:

a. Replace all −1 digits with 0s to get the k-bit number p = pk−1pk−2 · · · p0, with
pi ∈ {0, 1}. Note that the pis and qis are related by qi = 2pi − 1.

b. Complement pk−1 and then shift p left by 1 bit, inserting 1 into the LSB, to get
the 2’s-complement quotient q = (pk−1pk−2 · · · p01)2’s-compl.

The proof of correctness for the preceding conversion process is straightforward
(note that we have made use of the identity

∑k−1
i=0 2i = 2k − 1):

(pk−1pk−2 · · · p01)2’s-compl = −(1− pk−1)2
k + 1+

k−2∑
i=0

pi2
i+1

= −(2k − 1)+ 2
k−1∑
i=0

pi2
i

=
k−1∑
i=0

(2pi − 1)2i

=
k−1∑
i=0

qi2
i = q

From the preceding algorithm, we see that the conversion is quite simple and can be done
on the fly as the digits of the quotient are obtained. If the quotient is to be representable
as a k-bit, 2’s-complement number, then we must have pk−1 = pk−2, leading to the
requirement that the digits qk−1 and qk−2 be different. Thus, overflow is avoided if and
only if

sign(z) �= sign(s(1))

Hence, on-the-fly conversion consists of setting the quotient sign bit in the initial cycle,
producing a 1 (0) for each subtract (add) thereafter, and producing a 1 for the last digit
before proceeding to the correction step.

The final correction, needed when sign(s(k)) �= sign (z), is also quite simple. It
involves adding/subtracting 1 to/from q and subtracting/adding 2kd from/to the remain-
der. Note that the aim of the correction step is to change the sign of the remainder. Thus
if sign(s(k)) = sign(d), we subtract from s and increment q; otherwise, we add to s and
decrement q.

In retrospect, the need for a correction cycle is easy to see: with the digit set {−1, 1}
we can represent only odd integers. So, if the quotient happens to be even, a correction
is inevitable.

Figure 13.9 shows an example of nonrestoring division with 2’s-complement
operands. The example illustrates all aspects of the nonrestoring division algorithm,

276 Chapter 13 Basic Division Schemes

z

Figure 13.9 Example of nonrestoring signed division.

Figure 13.10
Shift/subtract
sequential
nonrestoring divider.

Quotient

k

Partial remainder

Divisor

Add/Sub

k-bit adder

k

cout cin

Complement

qk–j

2s(j–1)
MSB of

Divisor sign

 Complement of
partial remainder sign

including remainder correction and quotient conversion/correction. The reader is urged
to examine Fig. 13.9 closely and to construct other examples for practice.

Figure 13.10 shows a hardware realization of the sequential nonrestoring division
algorithm. At the start of each cycle j, the partial remainder s(j−1) is shifted to the left,
with its MSB moving into a special flip-flop. Except for the first cycle, the quotient digit

Division by Constants 277

is derived by XORing the sign of the divisor and the complement of the sign of the
partial remainder. The latter is the same as cout (since the two terms added to form the
new partial remainder always are opposite in sign).

Once all the digits of q have been derived in k cycles, 2–4 additional cycles may
be needed to correct the quotient q and the final remainder s. Implementation details
depend on various hardware considerations such as whether q in the quotient register
(or lower half of the partial remainder register) can be directly input to the adder for
correction or it should be moved to a different register to gain access to the adder.
Further implementation details, including a complete microprogram for nonrestoring
division can be found elsewhere [Wase82, pp. 181–192].

13.5 DIVISION BY CONSTANTS

Justification for our discussion of division by constants is similar to that given for multi-
plication by constants in Section 9.5. The performance benefits of these methods is even
more noticeable here, given that division is generally a slower operation than multipli-
cation. In what follows, we consider only division by odd integers, since division by an
even integer can be performed by first dividing by an odd integer and then shifting the
result. For example, to divide by 20, one can divide by 5 and then shift the result right
by 2 bit positions.

If only a limited number of constant divisors are of interest, their reciprocals can
be precomputed with an appropriate precision and stored in a table. Then, the problem
of division by any of these constants can be converted to that of multiplication by its
constant reciprocal, using the methods discussed in Section 9.5.

Faster constant division routines can be obtained for many small odd divisors by
using the mathematical property that for each odd integer d there exists an odd integer
m such that d × m = 2n − 1. Thus

1

d
= m

2n − 1
= m

2n(1− 2−n)

= m

2n
(1+ 2−n)(1+ 2−2n)(1+ 2−4n) · · ·

Note that the expansion of 1/(1− 2−n) involves an infinite number of product terms of
the form 1 + 2−2in. Thus to divide z by d , we need to multiply it by m/2n (which is
itself a constant that can be precomputed for integer divisors of interest) and then by
several factors of the form 1 + 2−j. The number of such factors is proportional to the
logarithm of the word width and multiplication by each one involves a shift followed by
an addition.

Consider as an example division by the constant d = 5. We find m = 3 and n = 4
by inspection. Thus, for 24 bits of precision, we have

z

5
= 3z

24 − 1
= 3z

16(1− 2−4)

= 3z

16
(1+ 2−4)(1+ 2−8)(1+ 2−16)

278 Chapter 13 Basic Division Schemes

Note that the next term (1 + 2−32) would shift out the entire operand and thus does
not contribute anything to a result with 24 bits of precision. Based on the preceding
expansion, we obtain the following procedure, consisting of shift and add operations, to
effect division by 5:

q ← z + z shift-left 1 {3z computed}
q ← q+ q shift-right 4 {3z(1+ 2−4)}
q ← q+ q shift-right 8 {3z(1+ 2−4)(1+ 2−8)}
q ← q+ q shift-right 16 {3z(1+ 2−4)(1+ 2−8)(1+ 2−16)}
q ← q shift-right 4 {3z(1+ 2−4)(1+ 2−8)(1+ 2−16)/16}

The preceding algorithm uses five shifts and four additions to divide z by 5.
In a particular application of the method above [Li85], division by odd constants

of up to 55 was frequently required. So the corresponding routines were obtained, fine-
tuned, and stored in the system. An aspect of the fine-tuning involved compensating
for truncation errors in the course of computations. For example, it was found, through
experimentation, that replacing the first statement in the preceding algorithm (division
by 5) by q ← z+ 3+ z shift-left 1 would minimize the truncation error on the average.
Similar modifications were introduced elsewhere.

When a fast multiplier is available, multiplication-based methods for division by
constants become attractive. Such methods may be deemed more suitable for discus-
sion in Chapter 16, where division algorithms based on multiplication are presented.
However, it is perhaps better to make this section complete by mentioning all available
methods for division by constants.

To divide a 32-bit unsigned integer z by 5, for example, we multiply z by the constant
M5 = (233 + 3)/5 = (1 717 986 919)ten = (66 66 66 67)hex, taking the upper half of
the 64-bit product, and right-shifting it by 1 bit. The value thus computed is:

q =
⌊

233 + 3

5
× z

233

⌋
=

⌊
z

5
+ 3z

5× 233

⌋

Given that the positive error term 3z/(5× 233) is less than 1/6, we have q = �z/5�. For
32-bit division by 3, the magic number is M3 = (232 + 2)/3 = (1 431 655 766)ten =
(55 55 55 56)hex, and the quotient q is taken directly from the upper half of the 64-
bit product (without any shift). The divisor 7 presents some difficulties, necessitating
a slightly more complex process, but similarly simple methods can be used for all
other divisors. For a general discussion of multiplication-based division by constants,
including the choice of the “magic number” Md , deriving the remainder s, and extension
to a signed dividend z, see Chapter 10 in [Warr02] and its on-line addendum [Warr03].

Simple hardware structures can be devised for division by certain constants [Scho97].
For example, one way to divide a number z by 3 is to multiply it by 4/3, shifting the
result to the right by 2 bits to cancel the factor of 4. Multiplication by 4/3 can in turn be
implemented by noting that the following recurrence has the solution q = 4z/3:

q(i) = q(i−1)/4+ z with q(0) = 0

Radix-2 SRT Division 279

An alternative to computing q sequentially is to use the fact that q is the output of an adder
with inputs y = q/4 (right-shifted version of the adder’s output) and z. The problem with
this implementation strategy is that feeding back the output qi to the input yi−2 creates a
feedback loop, given carry propagation between the positions i− 2 and i. However, the
feedback loop can be eliminated by using a carry-save adder instead of a carry-propagate
adder. Working out the implementation details is left as an exercise.

13.6 RADIX-2 SRT DIVISION

Let us reconsider the radix-2 nonrestoring division algorithm for fractional operands
characterized by the recurrence

s(j) = 2s(j−1) − q−jd with s(0) = z and s(k) = 2ks

with q−j ∈ {−1, 1}. Note that the same algorithm can be applied to integer operands if
d is viewed as standing for 2kd .

The quotient is obtained with the digit set {−1, 1} and is then converted (on the fly)
to the standard digit set {0, 1}. Figure 13.11 plots the new partial remainder, s(j), as a
function of the shifted old partial remainder, 2s(j−1). For 2s(j−1) ≥ 0, we subtract the
divisor d from 2s(j−1) to obtain s(j), while for 2s(j−1) < 0, we add d to obtain s(j). These
actions are represented by the two oblique lines in Fig. 13.11. The heavy dot in Fig.
13.11 indicates the action taken for 2s(j−1) = 0.

Nonrestoring division with shifting over 0s is a method that avoids addition or sub-
traction when the partial remainder is “small.” More specifically, when 2s(j−1) is in the
range [−d , d), we know that the addition/subtraction prescribed by the algorithm will
change its sign. Thus, we can choose q−j = 0 and only shift the partial remainder.
This will not cause a problem because the shifted partial remainder will still be in the
valid range [−2d , 2d) for the next step. With this method, the quotient is obtained using

–2d 2d

d

–d

q = 1

2s
(j–1)

s (j)

q = –1–j –j

d–d

Figure 13.11 The new partial remainder, s(j), as a function of the shifted old partial
remainder, 2s(j−1), in radix-2 nonrestoring division.

280 Chapter 13 Basic Division Schemes

–2d 2d

d

–d

q = –1 q =0

q = 1

2s
(j–1)

s (j)

–j

–j –j

d–d

Figure 13.12 The new partial remainder, s(j), as a function of the shifted old partial
remainder, 2s(j−1), with q−j in {−1, 0, 1}.

the digit set {−1, 0, 1}, corresponding to “add,” “no operation,” and “subtract,” respec-
tively. Figure 13.12 plots the new partial remainder s(j) as a function of the shifted old
partial remainder 2s(j−1) for such a modified nonrestoring division algorithm that selects
q−j = 0 for − d ≤ 2s(j−1) < d .

Since, with the preceding method, some iterations are reduced to just shifting, one
might think that the average division speed will improve in an asynchronous design
in which the adder can be selectively bypassed. But how can you tell if the shifted
partial remainder is in [−d , d)? The answer is that you can’t, unless you perform trial
subtractions. But the trial subtractions would take more time than they save! An ingenious
solution to this problem was independently suggested by Sweeney, Robertson, and
Tocher. The resulting algorithm is known as SRT division in their honor.

Let us assume d ≥ 1/2 (positive bit-normalized divisor) and restrict the partial
remainder to the range [−1/2, 1/2) rather than [−d , d). Initially this latter condition
might not hold, so we may have to shift the dividend z (which is assumed to be in the
range −d ≤ z < d if overflow is to be avoided) to the right by 1 bit. To compensate for
this initial right shift, we double the quotient and remainder obtained after k + 1 cycles.

Once the initial partial remainder s(0) is adjusted to be in the range [−1/2, 1/2),
all subsequent partial remainders can be kept in that range, as is evident from the solid
rectangle in Fig. 13.13.

The quotient digit selection rule associated with Fig. 13.13 to guarantee that s(j)

remains in the range [−1/2, 1/2) is

if 2s(j−1) < −1/2

then q−j = −1

else if 2s(j−1) ≥ 1/2

then q−j = 1

else q−j = 0

endif

endif

Radix-2 SRT Division 281

–2d 2d

d

–d

=–1

=0

=1

2s(j–1)

s(j)

1/2–1/2

1–1

1/2

–1/2

q–j

q–j

q–j

Figure 13.13 The relationship between new and old partial remainders in radix-2 SRT
division.

Two comparisons are still needed to select the appropriate quotient digit, but the com-
parisons are with the constants −1/2 and 1/2 rather than with −d and d . Comparison
with 1/2 or −1/2 is quite simple. When the partial remainder s(j−1) is in [−1/2, 1/2),
the shifted partial remainder 2s(j−1) will be in [−1, 1), thus requiring 1 bit before the
radix point (the sign bit) for its 2’s-complement representation.

2s(j−1) ≥ +1/2 = (0.1)2’s-compl implies 2s(j−1) = (0.1u−2u−3 · · ·)2’s-compl

2s(j−1) < −1/2 = (1.1)2’s-compl implies 2s(j−1) = (1.0u−2u−3 · · ·)2’s-compl

We see that the condition 2s(j−1) ≥ 1/2 is given by the logical AND term u0u−1 and
that of 2s(j−1) < −1/2 by u0u−1. Thus, the required comparisons are preformed by two
two-input AND gates. What could be simpler?

With minor changes in the data path and the control state machine, the divider in Fig.
13.10 remains valid for the SRT algorithm. The data path change consists of replacing
the selective complement logic with a multiplexer that allows us to choose 0, d , or d compl

as the left input to the adder. The control unit (quotient digit selection logic) will then
supply an additional signal “nonzero” to enable the multiplexer. What the SRT algorithm
does is similar to Booth’s recoding: it changes an addition (subtraction) followed by a
sequence of subtractions (additions) to a number of no operations followed by a single
addition (subtraction); that is, it takes advantage of the equality ±(2j − 2j−1 − 2j−2−
· · · − 2i) = ±2i.

Figure 13.14 shows an example division performed with the SRT algorithm. The rules
for the final correction, if required, are exactly the same as for nonrestoring division,
but the quotient conversion algorithm given in Section 13.4 is inapplicable here in view
of the presence of 0s in the quotient. One can use an on-the-fly conversion algorithm to
convert the binary signed-digit (BSD) quotient to binary [Erce87]. Alternatively, one can
have two quotient registers into which the positive and negative digits of q are shifted.
The binary version of q, before correction, can then be obtained by a subtraction after
all digits have been shifted in.

To further speed up the division process, we can skip over any number of identical
leading bits in s(j−1) by shifting. A combinational logic circuit can detect the number of

282 Chapter 13 Basic Division Schemes

==============================
z . 0 1 0 0 0 1 0 1 In [–1/2, 1/2), so OK
d . 1 0 1 0 In [1/2, 1), so OK
–d 1 . 0 1 1 0
==============================
s(0) 0 . 0 1 0 0 0 1 0 1
2s(0) 0 . 1 0 0 0 1 0 1 ≥ 1/2, so set q–1 = 1
+(–d) 1 . 0 1 1 0 and subtract
–––––––––––––––––––––––––––––––
s(1) 1 . 1 1 1 0 1 0 1
2s(1) 1 . 1 1 0 1 0 1 In [–1/2, 1/2), so set q–2 = 0
–––––––––––––––––––––––––––––––
s(2) = 2s(1) 1 . 1 1 0 1 0 1
2s(2) 1 . 1 0 1 0 1 ln [–1/2, 1/2) so set q–3 = 0
–––––––––––––––––––––––––––––––
s(3) 0 . 1 0 1 0 1
2s(3) 1 . 0 1 0 1 < –1/2, so set q–4 = –1
+d 0 . 1 0 1 0 and add
–––––––––––––––––––––––––––––––
s(4) 1 . 1 1 1 1 Negative,
+d 0 . 1 0 1 0 so add to correct
–––––––––––––––––––––––––––––––
s(4) 0 . 1 0 0 1
s 0 . 0 0 0 0 1 0 0 1
q 0 . 1 0 0 -1 Uncorrected BSD quotient
q 0 . 0 1 1 0 Convert and subtract ulp
==============================

= 2s(2)

Figure 13.14 Example of unsigned radix-2 SRT division.

identical leading bits, resulting in significant speedup if a variable shifter is available.
Here are two examples:

s(j−1) = 0.0000110 · · · Shift left by 4 bits and subtract
s(j−1) = 1.1110100 · · · Shift left by 3 bits and add

When we shift the partial remainder to the left by h bits, the quotient is extended by
h − 1 zeros and one nonzero digit in {−1, 1}. In the first example above, the digits 0 0
0 1 must be appended to q, while in the second example, the quotient is extended using
the digits 0 0 -1.

Through statistical analysis, the average skipping distance in variable-shift SRT
division has been determined to be 2.67 bits. This means that on the average, one
add/subtract is performed per 2.67 bits, compared with one per bit in simple nonrestoring
division. The result above assumes random bit values in the numbers. However, numbers
encountered in practice are not uniformly distributed. This leads to a slight increase in
the average shift distance.

Speedup of division by means of simple or variable-shift SRT algorithm is no
longer applied in practice. One reason is that modern digital systems are predomi-
nantly synchronous. Another, equally important, reason is that in fast dividers we do
not really perform a carry-propagate addition in every cycle. Rather, we keep the partial

Radix-2 SRT Division 283

a
x

p

×
z

s

q
Divisor d

–q3 d 23

–q 2 d 22

–q 1 d 21

–q 0 d 20

x1 a 21

x2 a 22

x0 a 20

x3 a 23

(a) k × k integer multiplication (b) 2k/k integer division

Figure 13.15 Multiplication and division as multioperand addition problems.

remainder in stored-carry form, which needs only a carry-save addition in each cycle
(see Section 14.2). Now, carry-save addition is so fast that skipping it does not buy us
anything; in fact the logic needed to decide whether to skip will have delay comparable
to the carry-save addition itself.

We conclude this chapter with a preview of fast dividers discussed in Chapters 14 and
15. Like multiplication, sequential division can be viewed as a multioperand addition
problem (Fig. 13.15). Thus, there are but two ways to speed it up:

Reducing the number of operands to be added.

Adding the operands faster.

Reducing the number of operands leads to high-radix division. Adding them faster leads
to the use of carry-save representation of the partial remainder. One complication makes
division more difficult and thus slower than multiplication: the terms to be subtracted
from (added to) the dividend z are not known a priori but become known as the quotient
digits are computed. The quotient digits are in turn dependent on the relative magnitudes
of the intermediate partial remainders and the divisor (or at least the sign of the partial
remainder in the radix-2 nonrestoring algorithm). With carry-save representation of the
partial remainder, the magnitude or sign information is no longer readily available; rather,
it requires full carry propagation in the worst case.

High-radix dividers, introduced in Chapter 14, produce several bits of the quotient,
and multiply them by the divisor, at once. Speedup is achieved for radix 2j as long as
each radix-2j division cycle is less than j times as long as a radix-2 division cycle. A
key issue in the design of high-radix dividers is the selection of the next quotient digit
directly from a few bits of the carry-save partial remainder, thus postponing full carry
propagation to the very end.

Because of the sequential nature of quotient digit production, there is no counter-
part to tree multipliers in the design of dividers. However, array dividers do exist and
are discussed in Chapter 15, along with some variations in the design of dividers and
combined multiplier/divider units.

There is no reason to limit ourselves to the use of shift and add/subtract operations
for implementing dividers. We will see, in Chapter 16, that division by repeated multi-
plications can be quite cost-effective and competitive in speed, especially when one or
more fast parallel multipliers are available.

284 Chapter 13 Basic Division Schemes

PROBLEMS 13.1 Unsigned decimal division

Perform the division z/d for the following dividend/divisor pairs, obtaining the
quotient q and the remainder s. Present your work in tabular form, as in Fig. 13.2.

a. a = 1234 5678 and x = 4321
b. a = .1234 5678 and x = .4321

13.2 Programmed nonrestoring division

Write a program similar to the one in Fig. 13.4 for nonrestoring division. Compare
the running time of your program to the restoring version and discuss.

13.3 Programmed restoring division

a. Modify the division program of Fig. 13.4 for the case in which both the
dividend and the divisor are k bits wide. Analyze the running time of the new
program.

b. Modify the division program of Fig. 13.4 to correspond to true restoring
division, where subtraction is always performed, but the partial remainder
is restored to its original value via addition if it becomes negative. Com-
pare the running time of your modified program to the original one and
discuss.

13.4 Fixed-time programmed division

We would like to modify the division program of Fig. 13.4 so that it always
takes the same number of machine cycles to execute, provided a divide-by-0
or overflow exception does not occur. We do not know the number of machine
cycles taken by each instruction, but any particular instruction always takes the
same number of cycles. Suggest the required modifications in the program and
compare the running time of the resulting program to the original one.

13.5 Unsigned sequential restoring division

Perform the division z/d for the following dividend/divisor pairs, obtaining the
quotient q and the remainder s. Use the restoring algorithm and present your
work in tabular form, as in Fig. 13.6.

a. z = 0101 and d = 1001
b. z = .0101 and d = .1001
c. z = 10010100 and d = 1101
d. z = .10010100 and d = .1101

13.6 Sequential nonrestoring division

a. After complementing z, redo the division example of Fig. 13.7.
b. After complementing both z and d , redo the division example of Fig. 13.7.

Problems 285

13.7 Sequential nonrestoring division

Represent the following signed-magnitude dividends and divisors in 5-bit
2’s-complement format and then perform the division using the nonrestoring
algorithm. In each case, convert the quotient to 2’s-complement format.

a. z = +.1001 and d = +.1101
b. z = +.1001 and d = −.1101
c. z = −.1001 and d = +.1101
d. z = −.1001 and d = −.1101

13.8 Sequential multiplication/division

Assuming 2’s-complement binary operands:

a. Perform the division z/d = 1.100/0.110 and obtain the 4-bit 2’s-complement
quotient q and remainder s using the nonrestoring method.

b. Check your answer to part a by doing the 2’s-complement multiplication
d × q, with q as the multiplier, and adding the remainder s to the resulting
product.

c. Use the restoring method to perform the division of part a.

13.9 Radix-2 unsigned integer division

Given the binary dividend z = 0110 1101 1110 0111 and the divisor d = 1010
0111, perform the unsigned division z/d to determine the 8-bit quotient q and
remainder s using both the restoring and nonrestoring algorithms.

13.10 Radix-2 signed division

Given the binary 2’s-complement operands z = 1.1010 0010 11 and d =
0.10110, use both the restoring and nonrestoring algorithms to perform the divi-
sion z/d to find the 2’s-complement quotient q = q0.q−1q−2q−3q−4q−5 and
remainder 1.11111s−6s−7s−8s−9s−10. Present your work in tabular form as in
Fig. 13.9.

13.11 Nonrestoring hardware dividers

By analyzing all eight possible combinations of signs for the dividend, divisor,
and final remainder, along with the corrective actions required in each case,
propose an efficient hardware design for a nonrestoring divider. Hint: Based on
the sign of the final remainder, produce an extra bit q−1 of the quotient, which
becomes the LSB of the left-shifted p in converting to 2’s-complement. Then,
only negative quotients will need correction [Wase82, pp. 183–186].

13.12 Division by constants

Using shift and add/subtract instructions only, devise efficient routines for
division by the following constants. Assume 32-bit unsigned operands.

286 Chapter 13 Basic Division Schemes

a. 19
b. 43
c. 88
d. 129 (Hint: 214 − 1 = 127× 129.)

13.13 Division by special constants

a. Discuss the division of unsigned binary numbers by constants of the form
2b ± 1.

b. Extend the procedure of part a to the case of a divisor that can be factored
into a product of terms, each of which is of the form 2b ± 1 [e.g., 45 =
(22 + 1)(23 + 1)].

c. Apply the method of part b to division by 99, with 32 bits of precision.
d. Compare the result of part c with that obtained from the method discussed in

Section 13.5.

13.14 Division by special constants

a. Devise general strategies for dividing z by positive constants of the form
2j − 2i, where 0 < i < j (e.g., 62 = 26 − 21, 28 = 25 − 22).

b. Repeat part a for constants of the form 2j + 2i.

13.15 Fully serial dividers

a. A fully serial, nonrestoring divider is obtained if the adder of Fig. 13.10 is
replaced with a bit-serial adder. Show the block diagram of the fully serial
divider based on the nonrestoring division algorithm.

b. Design the required control circuit for the fully serial divider of part a.
c. Does it make sense to build a fully serial divider based on the restoring

algorithm?

13.16 Hardware for division by constants

A simple hardware scheme for dividing z by certain constants was discussed at
the end of Section 13.5 [Scho97].

a. Supply the details of the required circuit for computing z/3.
b. Outline the algorithm and hardware requirements for dividing z by 5.
c. Characterize the class of constants for which this scheme can be used.

13.17 Sequential division

Perform the unsigned fractional binary division .0110 1101/.1011 using the restor-
ing and nonrestoring methods. Verify that both methods yield the same results
and check these results by converting to decimal.

Problems 287

13.18 Sequential nonrestoring division

Represent the following signed-magnitude dividends and divisors in 5-bit
2’s-complement format and then perform the division using the nonrestoring
algorithm. In each case, convert the quotient to 2’s-complement format.

a. z = +.1010 and d = +.1101
b. z = +.1010 and d = −.1101
c. z = −.1010 and d = +.1101
d. z = −.1010 and d = −.1101

13.19 Sequential non-restoring division

Apply the following modified form of nonrestoring division to the unsigned
division .101/.110. In each iteration, the shifted partial remainder is compared
with ±d ; if it is greater than or equal to d (less than −d), qi = 1(-1) is chosen;
otherwise, qi is set to 0. What do you think of this algorithm?

13.20 Sequential division

Perform the unsigned binary division .1100 1100 1100/.1001 11 by means of
both the restoring and nonrestoring algorithms. Hint: Watch for overflow.

13.21 Division by constants

Show how a number z can be divided by an integer of the form d = 2b +
2b−1+ · · ·+ 2a (i.e., an integer such as 60 that is the sum of several consecutive
powers of 2).

13.22 Robertson diagram for division

A Robertson diagram for division is constructed as follows. We take the s(j)-
versus-2s(j−1) plot of the division algorithm, exemplified by Figs. 13.11–13.13,
and mark off the dividend z = s(0) on the vertical axis. We then draw a curved
arrow from this point to the point representing 2s(0) on the horizontal axis, a ver-
tical arrow from there to the diagonal line representing the quotient digit value,
followed by a horizontal arrow to the s(1) point on the vertical axis. If we continue
in this manner, the arrows will trace a path showing the variations in the partial
remainders and the accompanying quotient digits selected. Construct Robert-
son diagrams corresponding to the following divisions using the nonrestoring
algorithm.

a. z = +.1001 and d = +.1010
b. z = +.1001 and d = −.1010
c. z = −.1001 and d = +.1010
d. z = −.1001 and d = −.1010

13.23 Restoring binary division

a. Construct a diagram similar to Figs. 13.11–13.13 for restoring division.

288 Chapter 13 Basic Division Schemes

b. Draw a Robertson diagram (see Problem 13.22) for the unsigned binary
division .101001/.110.

13.24 Division with shifting over 0s and 1s

a. Assuming uniform distribution of 0 and 1 digits in the dividend, divisor, and
all intermediate partial remainders, determine the expected shift amount if
division is performed by shifting over 0s and 1s, as discussed in Section 13.6.

b. Arbitrarily long shifts require the use of a complex shifter. What would
be the expected shift amount in part a if the maximum shift is limited to
4 bits?

c. Repeat part b with maximum shift limited to 8 bits and discuss whether
increasing the maximum shift to 8 bits would be cost-effective.

d. Explain the difference between the result of part a and the 2.67-bit average
shift mentioned in Section 13.6.

13.25 SRT division with 2d and d/2 multiples

The following method has been suggested to increase the average shift amount,
and thus the speed, of SRT division. Suppose we shift over 0s in a positive partial
remainder. In the next step, corresponding to a 1 digit in the partial remainder,
we choose the quotient digit 1 and subtract d . If the partial remainder is much
larger than the divisor, the 1 in the quotient will be followed by other 1s, as in
· · · 0000111 · · ·, necessitating several subtractions. In this case, we can subtract
2d instead of d , which is akin to going back and “correcting” the previous 0
digit in the quotient to 1 and setting the current digit to 0 in order to produce a
small negative partial remainder and thus a larger shift. On the other hand, if the
partial remainder is much smaller than the divisor, the 1 in the quotient will be
followed by−1s, and thus one or more additions. In this case, it is advantageous
to subtract d /2 rather than d , which corresponds to picking the current and next
quotient digits to be 01.

a. Construct an 8 × 8 table in which, for the various combination of values in
the upper 4 bits of d and s, you indicate whether d /2, d , or 2d should be
subtracted. Assume that d is of the form .1xxx and s is positive.

b. Extend the table in part a to negative partial remainders.
c. Use the table of part b to perform the example division z/d with 2’s-

complement operands z = 1.1010 0010 11 and d = 0.10110.

13.26 Division by 3

In Section 13.5, we introduced a multiplication-based method for computing z/3,
where z is a 32-bit unsigned integer.

a. Present a complete proof for the correctness of the procedure.
b. Adapt the 32-bit procedure to a general word width k.
c. Extend the procedure to signed values of z, represented in 2’s-complement

format.

References and Further Readings 289

13.27 Linear-array circuit for division by 3

One can design an unsigned divide-by-3 hardware circuit that has roughly the
same latency and complexity as a ripple-carry adder. The partial remainder s,
which is in the range [0, 2] and can thus be represented with 2 bits, propagates
from left to right. The cell indexed k− j in the linear array computes the quotient
digit qk−j and a new partial remainder, to be passed to the right, based on com-
paring 2s+ zk−j with 3. Present a complete design for such a divide-by-3 circuit,
paying special attention to the initial value of s at the left end of the linear array.
Can the method be extended to division by an arbitrary constant d?

13.28 SRT division by 3/4

Show that when dividing z by d = 3/4, the SRT algorithm always produces the
quotient in canonic signed-digit form, that is, with no consecutive nonzero digits.

REFERENCES AND FURTHER READINGS

[Frei61] Freiman, C. V., “Statistical Analysis of Certain Binary Division Algorithms,” Proc.
IRE, Vol. 49, No. 1, pp. 91–103, 1961.

[Kore93] Koren, I., Computer Arithmetic Algorithms, Prentice-Hall, 1993.

[Li85] Li, R. S.-Y., “Fast Constant Division Routines,” IEEE Trans. Computers, Vol. 34,
No. 9, pp. 866–869, 1985.

[Nadl56] Nadler, M., “A High-Speed Electronic Arithmetic Unit for Automatic Computing
Machines,” Acta Technica (Prague), No. 6, pp. 464–478, 1956.

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture and
Implementation, Prentice-Hall, 1994.

[Robe58] Robertson, J. E., “A New Class of Digital Division Methods,” IRE Trans. Electronic
Computers, Vol. 7, pp. 218–222, 1958.

[Scho97] Schoner, B., and S. Molloy, “A New Architecture for Area-Efficient Multiplication
by a Class of Rational Coefficients,” Proc. Midwest Symp. Circuits and Systems, Vol.
1, pp. 373–376, 1997.

[Toch58] Tocher, K. D., “Techniques for Multiplication and Division for Automatic Binary
Computers,” Quarterly J. Mechanics and Applied Mathematics, Vol. 11, Pt. 3,
pp. 364–384, 1958.

[Warr02] Warren, H. S. Jr., Hacker’s Delight, Addison-Wesley, 2002.

[Warr03] Warren, H. S. Jr., “Integer Division by Constants,” addendum to Chapter 10 of
the book Hacker’s Delight, see [Warr02], available on-line at: http://www.
hackersdelight.org/

[Wase82] Waser, S., and M. J. Flynn, Introduction to Arithmetic for Digital Systems Designers,
Holt, Rinehart, & Winston, 1982.

14 High-Radix Dividers

■ ■ ■

“Good mathematicians see analogies between theories;
great mathematicians see analogies between analogies.”

S T E FA N B A N A C H

■ ■ ■

I n this chapter, we review division schemes that produce more than 1 bit of the

quotient in each cycle (2 bits per cycle in radix 4, 3 bits in radix 8, etc.). The

reduction in the number of cycles, along with the use of carry-save addition to

reduce the computation latency in each cycle, leads to significant speed gain over

the basic restoring and nonrestoring dividers discussed in Chapter 13. Chapter topics

include:

14.1 Basics of High-Radix Division

14.2 Using Carry-Save Adders

14.3 Radix-4 SRT Division

14.4 General High-Radix Dividers

14.5 Quotient Digit Selection

14.6 Using p-d Plots in Practice

14.1 BASICS OF HIGH-RADIX DIVISION

Recall, from Chapter 13, that the equation z = (d × q) + s, along with the two condi-
tions sign(s) = sign(z) and |s| < |d |, completely defines the results q (quotient) and s
(remainder) of fixed-point division.

The radix-r counterpart of the binary division recurrence, derived in Section 13.1,
can be written as follows:

s(j) = rs(j−1) − qk−j(r
kd) with s(0) = z and s(k) = rks

290

Basics of High-Radix Division 291

Figure 14.1 Radix-4
division in dot
notation. Dividendz

s Remainder

Quotientq
Divisor d

(– q3q2)twod 41

–(q1q0)twod 40

 (a) Radix-4 integer division (b) Radix-10 fractional division
 ========================== ===================
z 0 1 2 3 1 1 2 3 zfrac . 7 0 0 3
 44d 1 2 0 3 dfrac . 9 9
 ========================== ===================
s(0) 0 1 2 3 1 1 2 3 s(0) . 7 0 0 3
 4s(0) 0 1 2 3 1 1 2 3 10s(0) 7 . 0 0 3
–q 344d 0 1 2 0 3 {q3 = 1} –q –1d 6 . 9 3 {q–1 = 7}
––––––––––––––––––––––––––– ––––––––––––––––––––
s(1) 0 0 2 2 1 2 3 s(1) . 0 7 3
 4s(1) 0 0 2 2 1 2 3 10s(1) 0 . 7 3
–q 244d 0 0 0 0 0 {q2 = 0} –q –2d 0 . 0 0 {q–2 = 0}
––––––––––––––––––––––––––– ––––––––––––––––––––
s(2) 0 2 2 1 2 3 s(2) . 7 3
 4s(2) 0 2 2 1 2 3 sfrac . 0 0 7 3
–q 144d 0 1 2 0 3 {q1 = 1} qfrac . 7 0
––––––––––––––––––––––––––– ===================
s(3) 1 0 0 3 3
 4s(3) 1 0 0 3 3
–q 044d 0 3 0 1 2 {q0 = 2}
–––––––––––––––––––––––––––
s(4) 1 0 2 1
s 1 0 2 1
q 1 0 1 2
 ==========================

Figure 14.2 Examples of high-radix division with integer and fractional operands.

where the radix-r division parameters are:

z Dividend z2k−1z2k−2 · · · z1z0
d Divisor dk−1dk−2 · · · d1d0
q Quotient qk−1qk−2 · · · q1q0
s Remainder [z − (d × q)] sk−1sk−2 · · · s1s0

High-radix dividers of practical interest have r = 2b (and, occasionally, r = 10).
Consider, for example, radix-4 division. Each radix-4 quotient digit, obtained in one
division cycle, represents two radix-2 digits. So, radix-4 division can be viewed as radix-
2 division with 2 bits of the quotient obtained in each cycle. In an 8-by-4 binary division
performed in radix 4, for example, q3 and q2 are determined first, with (q3q2)two(42d)

subtracted from 4z to obtain the first partial remainder. This partial remainder is then
used for determining q1 and q0 in the second and final cycle. Figure 14.1 shows the
preceding radix-4 division in dot notation.

Figure 14.2 depicts examples of radix-4 and radix-10 division. The radix-4 division
example shown has z = (7003)ten = (0123 1123)four and d = (99)ten = (1203)four,

292 Chapter 14 High-Radix Dividers

yielding the quotient q = (70)ten = (1012)four and the remainder s = (73)ten =
(1021)four. The radix-10 example corresponds to the division (.7003)ten/(.99)ten,
yielding q = (.70)ten and s = (.0073)ten.

Dividing binary numbers in radix 2b reduces the number of cycles required by a
factor of b, but each cycle is more difficult to implement because:

a. The higher radix makes the guessing of the correct quotient digit more difficult;
we certainly do not want to try subtracting 2kd , 2(2kd), 3(2kd), etc., and noting
the sign of the partial remainder in each case, until the correct quotient digit
has been determined—this would nullify all the speed gain (in radix 4, two trial
subtractions of d and 2d would be needed, thus making each cycle almost twice
as long with one adder).

b. Unlike multiplication, where all the partial products can be computed initially and
then subjected to parallel processing by multiple carry-save adders (CSAs), the
values to be subtracted from (added to) z in division are determined sequentially,
one per cycle. Furthermore, the determination of the quotient digits depends on
the magnitude and/or sign of the partial remainder; information that is not readily
available from the stored-carry representation.

Thus before discussing high-radix division in depth, we try to solve the more pressing
problem of using carry-save techniques to speed up the iterations in binary division
[Nadl56]. Once we have learned how to use a carry-save representation for the partial
remainder, we will revisit the problem of high-radix division. The reason we attach
greater importance to the use of carry-save partial remainders than to high-radix division
is that in going from radix 2 to radix 4, say, the division is at best speeded up by a factor
of 2. The use of carry-save partial remainders, on the other hand, can lead to a larger
performance improvement via replacing the delay of a carry-propagate adder by the
delay of a single full adder.

The key to being able to keep the partial remainder in carry-save form is introducing
redundancy in the representation of the quotient. With a nonredundant quotient, there is
no room for error. If the binary quotient is (0110 · · ·)two, say, subsequent recovery from
an incorrect guess setting the most-significant bit of q to 1 will be impossible. However,
if we allow the digit set [−1, 1] for the radix-2 quotient, the partial quotient (1 · · ·)two can
be modified to (1 -1 · · ·)two in the next cycle if we discover that 1 was too large a guess
for the most-significant bit. The aforementioned margin for error allows us to guess
the next quotient digit based on the approximate magnitude of the partial remainder.
The greater the margin for error, the less precision (fewer bits of the carry-save partial
remainder) we need in determining the quotient digits.

14.2 USING CARRY-SAVE ADDERS

Let us reconsider the radix-2 division scheme with the partial remainders in [−d , d),
as represented by Fig. 13.12. However, instead of forcing the selection of q−j = 0
whenever 2s(j−1) falls in the range [−d , d), we allow the choice of either valid digit in
the two overlap areas where the quotient digit can be−1 or 0 and 0 or+1 (see Fig. 14.3).

Using Carry-Save Adders 293

–2d 2d

d

–d

q = –1

q = 0 q = 1

2s
(j–1)

s (j)

–j

–j

–j

d–d

–1/2 0

Choose –1 Choose 0 Choose 1

–1/0 0/+1
Overlap Overlap

Figure 14.3 Constant thresholds used for quotient digit selection in radix-2 division with q−j
in {−1, 0, 1}.

Now, if we want to choose the quotient digits based on comparing the shifted partial
remainder with constants, the two constants can fall anywhere in the overlap regions. In
particular, we can use the thresholds−1/2 and 0 for our decision, choosing q−j = −1, 0,
or 1 when 2s(j−1) falls in the intervals [−2d ,−1/2), [−1/2, 0), or [0, 2d), respectively.
The advantages of these particular comparison constants will become clear shortly.

Suppose that the partial remainder is kept in stored-carry form: that is, as two numbers
whose sum is equal to the true partial remainder. To perform exact magnitude comparison
with such carry-save numbers would require full carry propagation since, in the worst
case, the least significant bit values can affect the most significant end of the sum.
However, the overlaps in valid ranges of 2s(j−1) for selecting q−j = −1, 0, or 1 in Fig.
14.3 allow us to perform approximate comparisons without risk of choosing a wrong
quotient digit.

Let u = (u1u0.u−1u−2 · · ·)2’s-compl and v = (v1v0.v−1v−2 · · ·)2’s-compl be the sum
and carry components of the stored-carry representation of 2s(j−1). Like 2s(j−1) itself,
each of these components is a 2’s-complement number in the range [−2d , 2d). Then the
following quotient digit selection algorithm can be devised based on Fig. 14.3:

t = u[−2,1] + v[−2,1] {Add the most significant 4 bits of u and v}
if t < −1/2
then q−j = −1
else if t ≥ 0

then q−j = 1
else q−j = 0
endif

endif

The 4-bit number t = (t1t0.t−1t−2)2’s-compl obtained by adding the most significant 4
bits of u and v [i.e., (u1u0.u−1u−2)2’s-compl and (v1v0.v−1v−2)2’s-compl] can be compared

294 Chapter 14 High-Radix Dividers

Carry v

Mux

Adder

0 1

Divisor d

k k

Carry-save adder

Select
q–j

4 bits
Shift left

2 s

+ulp for
2’s compl

Sum u

Non0
(enable)

Sign
(select)

0, d, or d compl

Carry Sum

Figure 14.4 Block diagram of a radix-2 divider with partial remainder in stored-carry form.

with the constants −1/2 and 0 based only on the four bit values t1, t0, t−1 and t−2. If
t < −1/2, the true value of 2s(j−1) is guaranteed to be less than 0, since the error in
truncating each component was less than 1/4. Similarly, if t < 0, we are guaranteed
to have 2s(j−1) < 1/2 ≤ d . Note that when we truncate a 2’s-complement number,
we always reduce its value independent of the number’s sign. This is true because the
discarded bits are positively weighted.

The preceding division algorithm requires the use of a 4-bit fast adder to propagate
the carries in the high-order 4 bits of the stored-carry shifted partial remainder. Then,
the 4-bit result can be supplied to a logic circuit or a 16-entry table to obtain the next
quotient digit. Figure 14.4 is a block diagram for the resulting divider. The 4-bit fast
adder to compute t and the subsequent logic circuit or table to obtain q−j are lumped
together into the box labeled “Select q−j.” Each cycle for this divider entails quotient
digit selection, as discussed earlier, plus only a few logic gate levels of delay through
the multiplexer and CSA.

Even though a 4-bit adder is quite simple and fast, we can obtain even better per-
formance by using a 256 × 2 table in which the 2-bit encoding of the quotient digit is
stored for all possible combinations of 4+4 bits from the two components u and v of the
shifted partial remainder. Equivalently, an eight-input programmable logic array (PLA)
can be used to derive the two output bits using two-level AND-OR logic. This does not
affect the block diagram of Fig. 14.4, since only the internal design of the “Select q−j”
box will change. The delay per iteration now consists of the time taken by a table lookup
(PLA) plus a few logic levels.

Using Carry-Save Adders 295

–2d 2d

d

–d

= –1

= 0

 =1

2s (j–1)

s(j)

1–1

1/2 q –j

q –j

q –j

–d d

1 –d

–1/2

1 – d

Figure 14.5 Overlap regions in radix-2 SRT division.

Can we use stored-carry partial remainders with SRT division of Section 13.6? Unless
we modify the algorithm in some way, the answer is “no.” Figure 14.5, derived from
Fig. 13.13 by extending the lines corresponding to q−j = −1 and q−j = 1 inside the
solid rectangle, tells us why. The width of each overlap region in Fig. 14.5 is 1 − d .
Thus, the overlaps can become arbitrarily small as d approaches 1, leaving no margin
for error and making approximate comparisons impossible.

We can use a p-d plot (shifted partial remainder vs. divisor) as a graphical tool for
understanding the quotient digit selection process and deriving the needed precision
(number of bits to look at) for various division algorithms. Figure 14.6 shows the p-d
plot for the radix-2 division, with quotient digits in [−1, 1], depicted in Fig. 14.3. The
area between lines p = −d and p = d is the region in which 0 is a valid choice for
the quotient digit q−j. Similar observations apply to −1 and 1, whose associated areas
overlap with that of q−j = 0.

In the overlap regions between p = 0 and p = ±d , two valid choices for the
quotient digit exist. As noted earlier, placing the decision lines at p = 0 and p = −1/2
would allow us to choose the quotient digit by inspecting the sign, one integer, and two
fractional bits in the sum and carry parts of p. This is because the error margins of 1/2
in the partial remainder depicted in Fig. 14.6 allow us to allocate an error margin of
1/4 in each of its two components. We use an approximate shifted partial remainder
t = (t1t0.t−1t−2)2’s-compl, obtained by adding 4 bits of the sum and carry components,
to select the quotient digit value of 1 when t1 = 0 (i.e., t non-negative) and −1 when
t1 = 1 and t0 and t−1 are not both 1s (i.e., t is strictly less than −1/2). Thus the logic
equations for the “Non0” and “Sign” signals in Fig. 14.4 become

Non0 = t1 ∨ t0 ∨ t−1 = t1t0t−1

Sign = t1(t0 ∨ t−1)

Because decision boundaries in the p-d plot of Fig. 14.6 are horizontal lines, the value
of d does not affect the choice of q−j. We will see later that using horizontal decision
lines is not always possible in high-radix division. In such cases, we embed staircaselike

296 Chapter 14 High-Radix Dividers

 d

p

Infeasible region
(p cannot be ≥ 2d)

Infeasible region
(p cannot be < − 2d)

.100 .101 .110 .111 1.

00.1

00.0

11.1

10.0

10.1

11.0

01.1

01.0

 −00.1

−01.0

 −01.1

 −10.0

 d

2d

−2d

−d

Worst-case error
margin in comparison

Choose 1

Choose −1

Choose 0

−1

 1

−1 max

−1min

 1 min

 1 max

 0 max

 0 min

O
ve

rla
p

O

ve
rla

p

 0

Figure 14.6 A p-d plot for radix-2 division with d ∈ [1/2, 1), partial remainder in [−d, d), and
quotient digits in [−1, 1].

boundaries in the overlap regions that allow us to choose the quotient digit value by
inspecting a few bits of both p and d .

Note that the decision process for quotient digit selection is asymmetric about the d
axis. This is due to the asymmetric effect of truncation on positive and negative values
represented in 2’s-complement format. More on this in Section 14.6.

In our discussions thus far, we have assumed that the divisor d is positive. For a
2’s-complement divisor, the p-d plot must be extended to the left to cover negative
divisors. If Fig. 14.6 is thus extended for negative values of d , the two straight lines can
still be used as decision boundaries, as the value of d is immaterial. However, for the
staircaselike boundaries just alluded to, the asymmetry observed about the d axis is also
present about the p axis. Thus, all four quadrants of the p-d plot must be used to derive
the rules for quotient digit selection. Very often, though, we draw only one quadrant of
the p-d plot, corresponding to positive values for d and p, with the understanding that
the reader can fill in the details for the other three quadrants if necessary.

14.3 RADIX-4 SRT DIVISION

We are now ready to present our first high-radix division algorithm with the partial
remainder kept in stored-carry form. We begin by looking at radix-4 division with quo-
tient digit set [−3, 3]. Figure 14.7 shows the relationship of new and shifted old partial
remainders along with the overlapping regions within which various quotient digit values
can be selected.

Radix-4 SRT Division 297

–4d 4d

d

–d

4s
(j–1)

–3 –2 –1 0 +1 +2 +3

s (j)

Figure 14.7 New versus shifted old partial remainder in radix-4 division with q−j in [−3, 3].

 d

p

Infeasible region
(p cannot be ≥ 4d)

.100 .101 .110 .111

10.1

10.0

01.1

00.0

00.1

01.0

11.1

11.0

 d

2d

Choose 2

Choose 0

Choose 1

 3

 1

 2 max

 2 min

 1 min

 1 max

 0 max

O
ve

rla
p

 0

3d

4d

Choose 3

 3 min

 2

O
ve

rla
p

O
ve

rla
p

Figure 14.8 A p-d plot for radix-4 SRT division with quotient digit set [−3, 3].

The p-d plot corresponding to this new division algorithm is shown in Fig. 14.8.
For the sake of simplicity, the decision boundaries (heaviest lines) are drawn with the
assumption that the exact partial remainder is used in the comparisons. In this example,
we see, for the first time, a decision boundary that is not a straight horizontal line. What
this means is that the choice between q−j = 3 or q−j = 2 depends not only on the value
of p but also on 1 bit, d−2, of d , to tell us whether d is in [1/2, 3/4) or in [3/4, 1). If p is
only known to us approximately, the selection boundaries must be redrawn to allow for
correct selection with the worst-case error in p. More on this later.

When the quotient digit value of±3 is selected, one needs to add/subtract the multi-
ple 3d of the divisor to/from the partial remainder. One possibility is to precompute

298 Chapter 14 High-Radix Dividers

4d

d

–d

4s
(j –1)

–3 –2 –1 0 +1 +2 +3

8d/3– 8d/3

2d/3

–2d/3

s (j)

– 4d

Figure 14.9 New versus shifted old partial remainder in radix-4 division with q−j in [−2, 2].

and store 3d in a register at the outset. Recall that we faced the same problem of
needing the multiple 3a in radix-4 multiplication. This reminds us of Booth’s recod-
ing and the possibility of restricting the quotient digits to [−2, 2], since this restriction
would facilitate quotient digit selection (fewer comparisons) and the subsequent multiple
generation.

Figure 14.9 shows that we can indeed do this if the partial remainder range is suitably
restricted. To find the allowed range, let the restricted range be [−hd , hd) for some
h < 1. Then, 4s(j−1) will be in the range [−4hd , 4hd). We should be able to bring
the worst-case values to within the original range by adding ±2d to it. Thus, we must
have 4hd − 2d ≤ hd or h ≤ 2/3. Let us choose h = 2/3. As in SRT division, since
z may not be in this range, an initial shift and final adjustment of the results may be
needed.

The p-d plot corresponding to the preceding division scheme is given in Fig. 14.10.
Upon comparing Figs. 14.10 and 14.8, we see that restricting the digit set to [−2, 2] has
made the overlap regions narrower, forcing us to examine p and d with greater accuracy
to correctly choose the quotient digit. On the positive side, we have gotten rid of the 3d
multiple, which would be hard to generate. Based on staircaselike boundaries in the p-d
plot of Fig. 14.10, we see that 5 bits of p (plus its sign) and 4 bits of d must be inspected
(d−1 also provides the sign information).

The block diagram of a radix-4 divider based on the preceding algorithm is quite
similar to the radix-2 divider in Fig. 14.4 except for the following changes:

Four bits of d are also input to the quotient digit selection box.

We need a four-input multiplexer, with “enable” and two select control lines, the
inputs to which are d and 2d , as well as their complements. Alternatively, a two-
input multiplexer with “enable” line can be used to choose among 0, d , and 2d ,
followed by a selective complementer to produce −d or −2d if needed.

The final conversion of the quotient from radix-4 signed-digit form, with the digit
set [−2, 2], to 2’s-complement form, is more complicated.

Radix-4 SRT division was the division algorithm used in the Intel Pentium processor.
We are now close to being able to explain what exactly went wrong in the Pentium
division unit (see the discussion at the beginning of Section 1.1). However, before doing
so, we need a more detailed understanding of p-d plots and how they are implemented
in practice. So, we postpone the explanation to the end of Section 14.5.

General High-Radix Dividers 299

 d

p

.100 .101 .110 .111

10.1

10.0

01.1

00.0

00.1

01.0

11.1

11.0

Choose 2

Choose 0

Choose 1 1

 2 min

 1 min

 2 max

 1 max

 0 max

 0

 2

O
ve

rla
p

O
ve

rla
p

Infeasible region
(p cannot be ≥ 8d/3)

8d/3

5d/3

4d/3

2d/3

d/3

Figure 14.10 A p-d plot for radix-4 SRT division with quotient digit set [−2, 2].

14.4 GENERAL HIGH-RADIX DIVIDERS

Now that we know how to construct a fast radix-4 divider, it is quite easy to generalize
the idea to higher radices. For example, a radix-8 divider can be built by restricting the
partial remainder in the range [−4d/7, 4d /7) and using the minimal quotient digit set
[−4, 4]. The required 3d multiple can either be precomputed and stored in a register
or dynamically produced by selectively supplying 2d and d as inputs to a CSA tree
that receives the two numbers representing the partial remainder as its other two inputs.
Determining the required precision in inspecting the partial remainder and the divisor to
select the next quotient digit is left as an exercise.

Digit sets with greater redundancy, such as [−7, 7] in radix 8, are possible and lead to
wider overlap regions and, thus, lower precision in the comparisons needed for selecting
the quotient digit. However, they also lead to more comparisons and the need to generate
other difficult multiples (e.g., ±5 and ±7) of the divisor.

The block diagram of a radix-r hardware divider is shown in Fig. 14.11. Note that this
radix-r divider is similar to the radix-2 divider in Fig. 14.4, except that its more general
multiple generation/selection circuit may produce the required multiple as a set of num-
bers, and several bits of d are also examined by the quotient digit selection logic. Further
details and design considerations for high-radix dividers are presented in Sections 14.5
and 14.6.

300 Chapter 14 High-Radix Dividers

Carry v

CSA tree

Adder

Divisor d

k k

Select
q–j

Shift left

2 s
Sum u

Multiple
generation/

selection

Carry Sum

q–j

. . . | | d
or its complement

q–j

Figure 14.11 Block diagram of radix-r divider with partial remainder in stored-carry form.

For a long time after the introduction of the high-radix division concept, practical
implementations in commercial processors were limited to the radix-4 version. This
was in part due to the relative unimportance of division speed in determining processor
performance on typical workloads. Interestingly, algorithms and implementation details
for radices greater than 4 have been steadily appearing in the literature for more than
two decades (see, for example, [Ante05], [Erce94a], [Fand89], [Hobs95], [Mont94],
[Tayl85]). The recently announced Penryn core from Intel is said to use a radix-16
division algorithm with nearly double the speed of a radix-4 version [Inte07], but the
details of the algorithm or its implementations are not known. Increasingly, where high
performance is desired, division is being implemented through reciprocation and/or
multiplication. The requisite algorithms are discussed in Chapter 16.

14.5 QUOTIENT DIGIT SELECTION

In the remaining two sections of this chapter, we elaborate on the quotient digit selection
process and the practical use of p-d plots for high-radix division.

The dashed portion of Fig. 14.12 defines radix-r SRT division where the partial
remainder s is in [−d , d), the shifted partial remainder is in [−rd , rd), and quotient
digits are in [−(r − 1), r − 1]. Radix-4 division with the quotient digit set [−3, 3],
discussed in Section 14.3, is an example of this general scheme.

Quotient Digit Selection 301

r–1+1 +α–r+1 –α –1

 αdd

 hd hd

–hd –hd

 rhd –rhd

–αd –d–rd rd

 d

–d

 rs(j–1)

 s(j)

0

0

Figure 14.12 The relationship between new and shifted old partial remainders in radix-r
division with quotient digits in [−α,+α].

Consider now radix-r division with the symmetric quotient digit set [−α, α], where
α < r − 1. Because of the restriction on quotient digit values, we need to restrict the
partial remainder range, say to [−hd , hd), to ensure that a valid quotient digit value
always exists. From the solid rectangle in Fig. 14.12, we can easily derive the condition
rhd − αd ≤ hd or, equivalently, h ≤ α/(r − 1). To minimize the restriction on range,
we usually choose:

h = α

r − 1

As a special case, r = 4 and α = 2 lead to h = 2/3 and the range [−2d/3, 2d /3) for
the partial remainder (see Fig. 14.9). Note that since α ≥ r/2, we have h > 1/2. Thus,
a 1-bit right shift is always enough to ensure that s(0) is brought to within the required
range at the outset.

The p-d plot is a very general and useful tool. Even though thus far we have assumed
that d is in the range [1/2, 1), this does not have to hold, and we can easily draw a p-d
plot in which d ranges from any dmin to any dmax (e.g., from 1 to 2 for floating-point
significands, introduced in Chapter 17). Figure 14.13 shows a portion of a p-d plot with
this more general view of d .

With reference to the partial p-d plot depicted in Fig. 14.13, let us assume that
inspecting 4 bits of p and 3 bits of d places us at point A. Because of truncation, the point
representing the actual values of p and d can be anywhere inside the rectangle attached
to point A. As long as the entire area of this “uncertainty rectangle” falls within the
region associated with β or β+1, there is no problem. So, at point A, we can confidently
choose q−j = β + 1 despite the uncertainty.

Now consider point B in Fig. 14.13 and assume that 3 bits of p and 4 bits of dare
inspected. The new uncertainty rectangle drawn next to point B is twice as tall and half
as wide and contains points for which each of the values β or β + 1 is the only correct
choice. In this case, the ambiguity cannot be resolved and a choice for q−j that is valid
within the entire rectangle does not exist.

In practice, we want to make the uncertainty rectangle as large as possible to minimize
the number of bits in p and d needed for choosing the quotient digits. To determine
whether uncertainty rectangles of a given size (say the one shown at pointAin Fig. 14.13)
are admissible, we tile the entire p-d plot with the given rectangle beginning at the origin
(see Fig. 14.14). Next we verify that no tile intersects both boundaries of an overlap region
(touching one boundary, while intersecting another one, is allowed). This condition is

302 Chapter 14 High-Radix Dividers

p

d

 + 1

4 bits of d

4 bits of p

(h +)d

(–h +)d

(h + + 1)d

(–h + + 1)d

Note: h =

A

Choose

Choose

d dmin max

�

�

�

�

�

�

�

3 bits of d

3 bits of p

r – 1
B

Figure 14.13 A part of p-d plot showing the overlap region for choosing the quotient digit
value β or β + 1 in radix-r division with quotient digit set [−α, α].

Figure 14.14 A part
of p-d plot showing
an overlap region
and its staircaselike
selection boundary.

p

d

β

 +1
(h +)d

(–h +)d

(h + + 1)d

(–h + + 1)d

Note: h =

β
β

β

β

β

αββ
β + 1 β

β

β
ββ

β
ββ

ββ
ββ

β+1 β +1
β +1

β +1 β +1
ββ +1

ββ

Origin

r – 1

+1

β +1

equivalent to being able to embed a staircaselike path, following the tile boundaries, in
each overlap region (Fig. 14.14).

If the tiling is successful, we complete the process by associating a quotient digit
value with each tile. This value is the table entry corresponding to the lower left corner
point of the tile. When there is a choice, as is the case for the dark tile in Fig. 14.14, we
use implementation- and technology-dependent criteria to pick one value over the other.
More on this later.

In the preceding discussion, the partial remainder was assumed to be in standard
binary form. If p is in carry-save form, then to get l bits of accuracy for p, we need to
inspect l + 1 bits in each of its two components. Hence to simplify the selection logic

Using p-d Plots in Practice 303

(or size of the lookup table), we try to maximize the height of the uncertainty rectangle.
For example, if both rectangles shown in Fig. 14.13 represented viable choices for the
precision required of p and d , then the one associated with point B would be preferable
(the quotient digit is selected based on 4+ 4+ 4 = 12 bits, rather than 5+ 5+ 3 = 13
bits, of information).

We now have all the pieces of information that are required to understand the Pentium
division flaw and why it was so difficult to detect. A flaw that occurred in the mid-1990s
hardly seems a timely topic for discussion. However, it is not the flaw itself, but the
lessons that we can learn from it, that are important. As discussed at the end of Section
1.2, lack of attention to precision and range requirements in computer arithmetic have
led, and will continue to lead, to unacceptable outcomes. The more obscure a flaw, the
more likely that it will have disastrous consequences if exposed at an inopportune time.
The combination of increasing circuit complexity, trends toward smaller operational
margins to save power, and extreme circuit speed have magnified the problems and have
led to a situation where hardware can no longer be exhaustively validated or assumed
reliable under conditions not explicitly tested.

And now, the rest of the story that we began in Section 1.1. According to Intel’s
explanation of the Pentium division bug, after the p-d plot for SRT division with the
quotient digit set [−2, 2] was numerically generated, a script was written to download
the entries into a hardware PLA.An error in this script resulted in the inadvertent removal
of five entries from the lookup table. These missing entries, when hit, would result in the
digit 0, instead of +2, being read out from the PLA [Gepp95]. Unfortunately for Intel,
these entries were consulted very rarely, and thus the problem was not caught during the
testing of the chip.

Removal of table entries is common practice and is typically done for hardware
economy when the entries are known to be redundant. Consider Fig. 14.10, for example,
and recall that each of the tiles corresponds to a table entry. Clearly, any tile that is
completely contained in the infeasible region can be removed with no harm. On the other
hand, table entries whose corresponding tiles are partially in the feasible region should
not be removed, no matter how small their exposure. To paraphrase Einstein’s famous
statement, things should not be made any simpler than possible. Coe and Tang [Coe95]
explained that only if a binary divisor began with the bits xxxxx111111, where "x"
represents an arbitrary bit value, could it possibly lead to a division error in early Pentium
chips. This explanation revealed why the bug was difficult to catch, and it provided a
simple test for software patches that would circumvent problematic division operations,
allowing the flawed chips to work correctly. Edelman [Edel97] further elaborated on the
observations of Coe and Tang, provided a new proof for their result, showed the exact
location of the five erroneous entries on a p-d plot (his Fig. 4.1), and established that the
worst-case absolute error for arguments in [1, 2) is on the order of 10−5.

14.6 USING p-d PLOTS IN PRACTICE

Based on our discussions so far, the goal of the designer of a high-radix divider is to
find the coarsest possible grid (the dotted lines in Fig. 14.14) such that staircaselike

304 Chapter 14 High-Radix Dividers

Figure 14.15
Establishing upper
bounds on the
dimensions of
uncertainty
rectangles.

p
(h + – 1)d

(–h +)d

α − 1

d
min

d
max

(h + – 1)d
min

∆p

α

α

α

α

+d min ∆d

min(–h +)dα

α region

∆d

Overlap

d

boundaries, entirely contained within each of the overlap areas, can be built. Unfortu-
nately, there is no closed-form formula for the required precisions, given the parameters
r and α and the range of d . Thus, the process involves some trial and error, with the
following analytical results used to limit the search space.

Consider the staircase embedded in the narrowest overlap area corresponding to the
overlap between the digit values α and α − 1. The minimum horizontal and vertical
distances between the lines (−h + α)d and (h + α − 1)d place upper bounds on the
dimensions of uncertainty rectangles (why?). From Fig. 14.15, these bounds, �d and
�p, can be found:

�d = dmin 2h− 1

−h+ α

�p = dmin(2h− 1)

For example, in radix-4 division with the divisor range [1/2, 1) and the quotient digit set
[−2, 2], we have α = 2, dmin = 1/2, and h = α/(r − 1) = 2/3. Therefore:

�d = (1/2)
4/3− 1

−2/3+ 2
= 1/8

�p = (1/2)(4/3− 1) = 1/6

Since 1/8 = 2−3 and 2−3 ≤ 1/6 < 2−2, at least 3 bits of d (2, excluding its leading 1)
and 3 bits of pmust be inspected. These are lower bounds, and they may turn out to be
inadequate. However, they help us limit the search to larger values only. Constructing
a detailed p-d plot on graph paper for the preceding example shows that in fact 3 bits
of p and 4 (3) bits of d are required. If p is kept in carry-save form, then 4 bits of each
component must be inspected (or first added in a small fast adder to give the high-order
4 bits of p).

The entire process discussed thus far, from determining lower bounds on the preci-
sions required to finding the actual precisions along with table contents or PLA structure,

Using p-d Plots in Practice 305

Figure 14.16 The
asymmetry of
quotient digit
selection process.

p

d

β + 1

d min
d max

ββ

−(β + 1)

−β

β + 1

−β

A

B

can be easily automated. However, the Intel Pentium bug teaches us that the results of
such an automated design process must be rigorously verified.

So far, our p-d plots have been mostly limited to the upper right quadrant of the plane
(nonnegative p and d). Note that even if we divide unsigned numbers, p can become
negative in the course of division. So, we must consider at least one other quadrant of the
p-d plot. We emphasize that the asymmetric effect of truncation of positive and negative
values in 2’s-complement format prevents us from using the same table entries, but with
opposite signs, for the lower right quadrant.

To justify the preceding observation, consider point A, with coordinates d and p,
along with its mirror image B, having coordinates d and −p (Fig. 14.16). We see, from
Fig. 14.16, that the quotient digit value associated with point B is not the negative of
that for point A. So the table size must be expanded to include both (all four) quadrants
of the p-d plot. To account for the sign information, 1 bit must be added to the number
of bits inspected in both d and p.

Occasionally, we have a choice of two different quotient digit values for a given tile
in the p-d plot (dark tiles in Figs. 14.14 and 14.17). In a full table-lookup implementation
of the quotient digit selection box, the choice has no implication for cost or delay. With
a PLA implementation, however, such entries constitute partial don’t-cares and can lead
to logic simplification. The extent of simplification is dependent on the encoding used
for the quotient digit.

In practice, one might select a lower precision that is “almost” good enough in the
sense that only a few uncertainty rectangles are not totally contained within the region
of a single quotient digit. These exceptions are then handled by including more inputs in
their corresponding product terms. For the portion of the p-d plot shown in Fig. 14.17,
the required precision can be reduced by 1 bit for each component (combining four small
tiles into a larger tile), except for the four small tiles marked with asterisks.

306 Chapter 14 High-Radix Dividers

Figure 14.17
Example of p-d plot
allowing larger
uncertainty
rectangles, if the four
cases marked with
asterisks are handled
as exceptions.

d

�

 + 1�

� �

�

�

�

δδ
�� + 1 � + 1

� + 1 � + 1
� + 1

� + 1
orδ+1δ+1δδ

* *
*

p

*

For instance, if 3 bits of p in carry-save form (u−1, u−2, u−3, v−1, v−2, v−3) and 2
bits of d (d−2, d−3) are adequate in most cases, with d−4 also needed occasionally, the
logical expression for each of the PLA outputs will consist of the sum of product terms
involving eight variables in true or complement form. The ninth variable is needed in
only a few of the product terms; thus its effect on the complexity of the required PLA is
reduced.

It is evident from our discussions in this chapter that high-radix division is funda-
mentally more difficult than high-radix multiplication. Designers of division hardware
must thus be extra vigilant to ensure the correctness of their designs via formal proof
methods and extensive testing.

PROBLEMS 14.1 Nonrestoring unsigned integer division

Given the binary dividend z = 0110 1101 1110 0111 and the divisor d = 1010
0111, perform the unsigned radix-2 division z/d to determine the 8-bit quotient
q and 16-bit remainder s, selecting the quotient digits according to

a. Fig. 13.11
b. Fig. 13.12
c. Fig. 13.13
d. Fig. 14.6

14.2 Nonrestoring signed integer division

Given the binary 2’s-complement operands z= 1.1010 0010 11 and d = 0.10110,
perform the signed radix-2 division z/d to determine the 2’s-complement quotient
q = q0.q−1q−2q−3q−4q−5 and remainder 1.11111s−6s−7s−8s−9s−10, selecting
the quotient digits according to:

a. Fig. 13.11
b. Fig. 13.12

Problems 307

c. Fig. 13.13
d. Fig. 14.6

14.3 Carry-save and high-radix division

Perform the division z/d , with z = 1.1010 0010 11 and d = 0.10110, using:

a. Radix-2 division, with the partial remainder kept in carry-save form
(Fig. 14.3).

b. The radix-4 division scheme depicted in Fig. 14.8.
c. The radix-4 division scheme depicted in Fig. 14.10.

14.4 Radix-4 SRT division

a. Complete Fig. 14.10 by drawing all four quadrants on graph paper.
b. Use rectangular tiles to tile the diagram of part a with dimensions determined

by smallest step size in each direction. On each tile, write the quotient digit
value(s).

c. If the quotient digit is to be selected by a PLA, rather than a ROM table,
adjacent tiles of part b that have identical labels can be merged into a single
product term. Combine the tiles to minimize the number of product terms
required.

14.5 Radix-4 SRT division

Present a complete logic design for the quotient digit selection box of Fig. 14.4,
trying to maximize the speed.

14.6 Radix-8 SRT division

a. Draw a p-d plot, similar to Fig. 14.10, for radix-8 division using the quotient
digit set [−4, 4].

b. Estimate the size of the ROM table needed for quotient digit selection with
and without a small fast adder to add a few bits of the stored-carry partial
remainder.

14.7 Pentium’s division flaw

The Intel Pentium division flaw was due to five incorrect entries in the quotient
digit lookup table for its radix-4 SRT division algorithm with carry-save partial
remainder and quotient digits in [−2, 2]. The bad entries should have contained
±2 but instead contained 0. Because of redundancy, it is conceivable that on
later iterations, the algorithm could recover from a bad quotient digit. Show that
recovery is impossible for the Pentium flaw.

14.8 Conversion of redundant quotients

A redundant radix-r quotient resulting from high-radix division needs to be
converted to standard representation at the end of the division process.

308 Chapter 14 High-Radix Dividers

a. Show how to convert the binary signed-digit quotient of SRT division to
2’s-complement.

b. To avoid a long conversion delay on the critical path of the divider, one can use
on-the-fly conversion [Erce87]. Show that by keeping two standard binary
versions of the quotient and updating them appropriately as each quotient
digit is chosen in [−1, 1], one can obtain the final 2’s-complement quotient
by simple selection from one of the two registers.

c. Repeat part a for radix-4 SRT algorithm with the digit set [−2, 2].
d. Repeat part b for radix-4 SRT algorithm with the digit set [−2, 2].

14.9 Radix-3 division

a. Develop an algorithm for unsigned radix-3 division with standard operands
(i.e., digit set [0, 2]) and the quotient obtained with the redundant digit set
[−2, 2].

b. Repeat part a when the inputs are signed radix-3 numbers using the symmetric
digit set [−1, 1].

14.10 Radix-2 division with over-redundant quotient

Consider radix-2 division with the “over-redundant” [Srin97] quotient digit set
[−2, 2].

a. Draw a p-d plot for this radix-2 division.
b. Show that inspecting the sign and two digits of the partial remainder (three

if in carry-save form) is sufficient for determining the next quotient digit.
c. Devise a method for converting the over-redundant quotient to binary signed-

digit using the digit set [−1, 1] as the first step of converting it to standard
binary. Hint: When a quotient digit is ±2, the next digit must be 0 or
of the opposite sign. Rewrite a digit ±2 as ±1, with a right-moving
“carry” of ±2.

14.11 Decimal division

The quotient digit set [−α, α] can be used to perform radix-10 division.

a. Determine the minimally redundant quotient digit set if the next quotient
digit is to be determined based on one decimal digit each from the partial
remainder and divisor.

b. Present a design for the decimal divider, including its quotient digit
selection box.

c. Assume that the decimal partial remainder is kept in carry-save form (i.e.,
using the digit set [0, 10]). How does this change affect the quotient digit
selection logic?

14.12 Decimal division

Consider radix-10 division using the quotient digit set [−6, 6].

Problems 309

a. Construct the upper right quadrant of the p-d plot and determine the number
of decimal digits that need to be examined in p and d for selecting the quotient
digit.

b. Can the quotient digit selection logic or ROM be simplified if we are not
restricted to inspect whole decimal digits (e.g., we can, if necessary, inspect
the most significant 2 bits in the binary encoding of a decimal digit)?

c. Present a hardware design for the decimal divider assuming that the multiples
2d , 3d , 4d , 5d , and 6d are precomputed through five additions and stored in
registers.

14.13 Quotient digit selection logic

Formulate a lower bound on the size of the lookup table for quotient digit selec-
tion as a function of �d and �p, introduced in Section 14.6. State all your
assumptions. Does your lower bound apply to the number of product terms in a
PLA implementation?

14.14 Radix-8 division

a. Draw the complete p-d plot (both quadrants) for radix-8 division, with
quotient digits in [−4, 4] and the divisor in the range [1, 2), on graph paper.

b. Using �d and �p, as discussed in Section 14.6, determine lower bounds on
the precisions required of d and p in order to correctly select the quotient
digit.

c. Assuming that p is in stored-carry form, determine the needed precision for
d and p to minimize the number of input bits to the quotient digit selection
logic or table.

d. Can you reduce the precisions obtained in part c for common cases by
allowing a few special cases with higher precision?

14.15 Theory of high-radix division

Prove or disprove the following assertions.

a. Once lower bounds on the number of bits of precision in p and d have been
obtained through the analysis presented in Section 14.6 (i.e., from �d and
�p), the use of 1 extra bit of precision for each is always adequate.

b. It is always possible to trade off 1 extra bit of precision in d for 1 fewer bit
of precision in p in quotient digit selection.

14.16 High-radix division with over-redundant quotient

Study the effect of changing the radix from r to r/2, while keeping the same digit
set as in radix r, on the overlap regions in Fig. 14.15 and the precision required of
p and d in selecting the quotient digit. Relate your discussion to radix-2 division
with over-redundant quotient introduced in Problem 14.10.

310 Chapter 14 High-Radix Dividers

14.17 Division with quotient digit prediction

In a divider, whether using a carry-propagate or a carry-save adder in each cycle,
the quotient digit selection logic is on the critical path that determines the cycle
time. Since the delay for quotient digit selection can be significant for higher
radices, one idea is to select the following cycle’s quotient digit q−j−1 as the
current cycle’s quotient digit q−j is used to produce the new partial remainder
s(j). The trick is to overcome the dependence of q−j−1 on s(j) by generating an
approximation to s(j) that is then used to predict q−j−1 in time for the start of the
next cycle. Discuss the issues involved in the design of dividers with quotient
digit prediction. Include in your discussion the two cases of carry-propagate and
carry-save division cycles [Erce94].

14.18 Radix-16 division in the Intel Penryn

Investigate the radix-16 division algorithm of the Intel Penryn processor and
present your findings in a two-page report. Try to obtain as much detail about the
algorithm and its hardware implementation as possible. At the very least, your
report should provide information about the quotient digit set, quotient digit
selection, clock cycle, and overall latency.

14.19 On-the-fly conversion of a high-radix quotient

Design an on-the-fly conversion circuit for converting an unsigned quotient with
each of the following digit sets to binary.

a. Radix-4 digit set [−2, 2]
b. Radix-4 digit set [−3, 3]
c. Radix-8 digit set [−4, 4]

14.20 On-the-fly rounding of the quotient

Design an on-the-fly converter to binary for the radix-4 quotient digit set [−2,
2] so that it uses an extra digit of the quotient to properly round its output. The
rounding should be done on-the-fly, in the sense of not requiring any carry prop-
agation. Once the final quotient digit has been determined, the properly rounded
output should be selectable from among precomputed values.

14.21 Quotient digit selection with restricted divisor range

When the divisor range can be restricted to a very narrow band, quotient digit
selection will be simplified. For each of the following, radices, digit sets,
and restricted divisor ranges, design the required quotient digit selection logic,
assuming that the partial remainder is kept in stored-carry form.

a. Radix-4 digit set [−2, 2], d ∈ [1− 2−6, 1)
b. Radix-4 digit set [−3, 3], d ∈ [1− 2−5, 1+ 2−5)
c. Radix-8 digit set [−4, 4], d ∈ [1− 2−8, 1+ 2−8)

References and Further Readings 311

REFERENCES AND FURTHER READINGS

[Ante05] Antelo, E., T. Lang, P. Montuschi, and A. Nannarelli, “Digit-Recurrence Dividers with
Reduced Logical Depth,” IEEE Trans. Computers, Vol. 54, No. 7, pp. 837–851, 2005.

[Atki68] Atkins, D. E., “Higher-Radix Division Using Estimates of the Divisor and Partial
Remainders,” IEEE Trans. Computers, Vol. 17, No. 10, pp. 925–934, 1968.

[Coe95] Coe, T., and P. T. P. Tang, “It Takes Six Ones to Reach a Flaw,” Proc. 12th Symp.
Computer Arithmetic, July 1995, pp. 140–146.

[Edel97] Edelman, A., “The Mathematics of the Pentium Division Bug,” SIAM Rev., Vol. 39,
No. 1, pp. 54–67, 1997.

[Erce87] Ercegovac, M. D., and T. Lang, “On-the-Fly Conversion of Redundant into
Conventional Representations,” IEEE Trans. Computers, Vol. 36, No. 7, pp. 895–897,
1987.

[Erce94] Ercegovac, M. D., and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations, Kluwer, 1994.

[Erce94a] Ercegovac, M. D., T. Lang, and P. Montuschi, “Very High Radix Division with
Prescaling and Selection by Rounding,” IEEE Trans. Computers, Vol. 43, No. 8,
pp. 909–918, 1994.

[Fand89] Fandrianto, J., “Algorithm for High Speed Shared Radix 8 Division and Radix 8
Square Root,” Proc. 9th Symp. Computer Arithmetic, pp. 68–75, 1989.

[Gepp95] Geppert, L., “Biology 101 on the Internet: Dissecting the Pentium Bug,” IEEE
Spectrum, pp. 16–17, 1995.

[Gerw03] Gerwig, G., H. Wetter, E. M. Schwarz, and J. Haess, “High Performance
Floating-Point Unit with 116 Bit Wide Divider,” Proc. 16th IEEE Symp. Computer
Arithmetic, pp. 87–94, 2003.

[Hobs95] Hobson, R. F., “An Efficient Maximum-Redundancy Radix-8 SRT Division and
Square-Root Method,” IEEE J. Solid-State Circuits, Vol. 30, No. 1, pp. 29–38, 1995.

[Inte07] Intel Corporation, “Introducing the 45nm Next-Generation Intel Core
Microarchitecture,” White Paper, 2007.

[Korn05] Kornerup, P., “Digit Selection for SRT Division and Square Root,” IEEE Trans.
Computers, Vol. 54, No. 3, pp. 294–303, 2005.

[Mont94] Montuschi, P., and L. Ciminiera, “Over-Redundant Digit Sets and the Design of
Digit-by-Digit Division Units,” IEEE Trans. Computers, pp. 269–277, March 1994.

[Nadl56] Nadler, M., “A High-Speed Electronic Arithmetic Unit for Automatic Computing
Machines,” Acta Technica (Prague), No. 6, pp. 464–478, 1956.

[Parh03] Parhami, B., “Tight Upper Bonds on the Minimum Precision Required of the Divisor
and the Partial Remainder in High-Radix Division,” IEEE Trans. Computers, Vol. 52,
No. 11, pp. 1509–1514, 2003.

[Robe58] Robertson, J. E., “A New Class of Digital Division Methods,” IRE Trans. Electronic
Computers, Vol. 7, pp. 218–222, 1958.

[Srin97] Srinivas, H. R., K. K. Parhi, and L. A. Montalvo, “Radix 2 Division with
Over-Redundant Quotient Selection,” IEEE Trans. Computers, Vol. 46, No. 1,
pp. 85–92, 1997.

[Tayl85] Taylor, G. S., “Radix-16 SRT Dividers with Overlapped Quotient Selection Stages,”
Proc. 7th Symp. Computer Arithmetic, pp. 64–71, 1985.

15 Variations in Dividers

■ ■ ■

“. . . the effort required to find this divisor will, in several cases, be so large as to
discourage the most intrepid computer”

E T I E N N E B E Z O U T, 1 7 6 4

■ ■ ■

I n this chapter, we examine some variations in the design of dividers. These

variations include making high-radix division algorithms faster and/or more effi-

cient by prescaling the operands or merging or overlapping multiple cycles of

quotient digit selection. Modular and floor variations of division, combinational

hardware dividers (including array dividers), and the special case of reciprocation

are other topics discussed. Square-rooting, which is intimately related to division,

will be discussed in Chapter 21, following our coverage of convergence division in

Chapter 16 and floating-point arithmetic in Part V (Chapters 17–20).

15.1 Division with Prescaling

15.2 Overlapped Quotient Digit Selection

15.3 Combinational and Array Dividers

15.4 Modular Dividers and Reducers

15.5 The Special Case of Reciprocation

15.6 Combined Multiply/Divide Units

15.1 DIVISION WITH PRESCALING

By inspecting Fig. 14.10 (or any of the other p-d plots that we have encountered thus
far), one may observe that the overlap regions are wider toward the high end of the
divisor range. Thus, if we can restrict the magnitude of the divisor to an interval close
to dmax(say 1 − ε < d < 1 + δ, when dmax = 1), the selection of quotient digits may
become simpler; that is, it may be based on inspecting fewer bits of p and d or perhaps
even made independent of d altogether.

312

Division with Prescaling 313

The preceding goal can be accomplished by performing the division (zm)/(dm),
instead of z/d , for a suitably chosen scale factor m (m > 1). Multiplying both the divi-
dend and the divisor by a factor m to put the divisor in the restricted range (1− ε, 1+ δ)
is called prescaling.

For an arbitrary scaling factor, two multiplications would be required to find the
scaled dividend and divisor. The trick is to accomplish the scaling through addition.
A reasonable restriction, to keep the time and hardware overhead of prescaling to a
minimum, is to require that only one pass through the hardware circuit that performs the
division iterations be used for scaling each operand. In this way, we essentially use 2
additional cycles in the division process (one for scaling each operand). Since simpler
quotient selection logic makes each iteration simpler and thus faster, a net gain in speed
may result despite the extra cycles.

For example, in radix-8 division of 60-bit fractions, the number of iterations required
is increased by 10% (from 20 to 22). Areduction of 20%, say, in the delay of each iteration
would lead to a net gain of 12% in division time.

A main issue in the design of division algorithms with prescaling is the choice of
the scaling factors. Consider the high-radix divider shown in Fig. 14.11: except that
the partial remainder is kept as a single number rather than in stored-carry form. In
the new arrangement, the carry-propagate adder is used in each cycle, with its output
loaded into the partial remainder register. If the multiple generation/selection circuit
provides h inputs to the carry-save adder (CSA) tree, then each division cycle essentially
consists of an (h+ 1)-operand addition. Let the scaling factor m be represented in radix
4 as m = (m0.m−1m−2 · · ·m−h)four using the digit set [−1, 2]; in fact, m0 can be further
restricted to [1, 2]. Then, the scaled divisor m×d can be computed by the (h+1)-operand
summation

m0d + 4−1m−1d + 4−2m−2d + · · · + 4−hm−hd

Each of the h+ 1 terms is easily obtained from d by shifting. The mj values can be read
out from a table based on a few most-significant bits (MSBs) of d .

Consider an example with h = 3. If we inspect only 4 bits of d (beyond the mandatory
1) and they happen to be 0110, then d = (0.10110 · · ·)two is in the range [11/16, 23/32).
To put the scaled divisor as close to 1 as possible, we can pick the scale factor to be
m = (1.2 -1 -1)four = 91/64. The scaled divisor will thus be in [1001/1024, 2093/2048)
or [1− 23/1024, 1+ 45/2048). For more detail and implementation considerations, see
[Erce94].

The use of prescaling offers two advantages. One advantage, as discussed previously,
is to simplify the quotient digit selection logic, thus leading to lower iteration latency for
a given radix. A complementary benefit is that prescaling makes the use of higher radices
feasible. The difficulty in quotient digit selection has restricted the implementation of
high-radix dividers to radix 16 at the most. So, whereas a radix of r = 64 or higher
is quite feasible for high-radix multipliers, the term high-radix divider is often used to
refer to a divider with 4 ≤ r ≤ 16. Dividers with radices beyond this range are some-
times characterized as very-high-radix dividers, and they are always implemented by
augmenting the conventional SRT method (named for Sweeny, Robertson, and Tocher)
to ease the quotient digit selection problem.

314 Chapter 15 Variations in Dividers

Prescaling is one such augmentation of the SRT algorithm that has been applied to
the design of very-high-radix dividers, with implementations reported for radices as high
as 1024 (10 bits of the quotient produced in each cycle). The ultimate in fast division is
offered by a combinational divider without any iterations. Fully combinational dividers
will be discussed in Section 15.3, but first we present another method that allows us
to increase the effective radix in division, without a need for very complex, and thus
slow, quotient digit selection logic. It is worth noting that high-radix and very-high-radix
dividers resemble high-radix and partial-tree multipliers in the sense that they represent
points along the spectrum of designs between bit-at-a-time and fully combinational
dividers (see Fig. 10.13). Each design point in this spectrum is characterized by the
choice of radix and the associated digit set.

15.2 OVERLAPPED QUOTIENT DIGIT SELECTION

One way to avoid very complex and slow quotient digit selection logic is to determine
multiple quotient digits in parallel, using overlapped selection circuits. This method
can be used in lieu of, or in combination with, prescaling. In the rest of this section,
we will describe the design of a radix-4 divider using overlapped stages to determine
two radix-2 quotient digits in 1 cycle. This idea can be readily extended to the use of
m overlapped radix-(2h) stages to provide the equivalent of a radix-(2mh) divider. For
example, a radix-16 divider can be built of four overlapped radix-2, or two overlapped
radix-4, stages.

The motivation for overlapped quotient digit selection is quite simple. Comparing
Figs. 14.6 and 14.10, we note that quotient digit selection in radix-2 algorithm with
the digit set [−1, 1] is much simpler than that of radix-4 algorithm with the digit set
[−2, 2]. In the conventional SRT algorithm, we cannot determine the following quotient
digit qk−j+1 until the carry-save addition associated with the current digit qk−j has been
performed and the leading bits of the sum and carry results have become available.
However, because we have only three possible values for qk−j in radix 2, it is feasible
to compute the next partial remainder for all three choices in parallel and to decide what
the next quotient digit qk−j+1 would be in each case. Then, once qk−j becomes known,
we can use it to control a multiplexer (mux) to select the appropriate value for qk−j+1
from among the three precomputed values.

Figure 15.1 shows a block diagram for the radix-4 divider just described. In the upper
left corner of the diagram, we see the selection logic for qk−j, with its inputs coming from
the first few bits of the sum and carry registers, together holding the partial remainder
in carry-save form. In the upper right corner, we see two CSAs that compute the first
few bits of the new partial remainder for qk−j = 1 and qk−j = −1; no computation is
needed for qk−j = 0. Next, three copies of the quotient digit selection logic are used to
determine the next quotient digit qk−j+1 in the three possible cases. Finally, the actual
value of qk−j is used to select the correct next quotient digit value from among the three
precomputed values.

The method of overlapped quotient digit selection is reminiscent of carry-select
addition (Section 7.3), where two versions of the upper sum bits are computed and

Combinational and Array Dividers 315

 –d 0 d

Sum

Carry

CSA

CSA

 d

 –d 0 d

qk–j

qk–j
Quotient digit

selectorMux

–d

CSA

qk–j+1

CSA

A few bits

Signal bundle

Figure 15.1 Overlapped radix-2 quotient digit selection for radix-4 division. A dashed line
represents a signal pair that denotes a quotient digit value in [−1, 1].

the correct version is selected once the carry into the upper part of the adder becomes
known. This type of speculative computation, that is, precomputing values that may
turn out to be unnecessary for the particular case at hand, is used extensively in modern
digital systems to enhance the speed of operation. The increased speed, however, does
not come for free. Besides the obvious chip area penalty arising from the additional
circuit elements and their interconnections, the energy requirement of the circuit also
increases. Thus, the design of advanced digital systems entails a delicate balancing act
to accommodate the conflicting requirements of added speed, reduced complexity (chip
area), and low power consumption. Techniques for reducing power consumption will be
addressed in Chapter 26.

15.3 COMBINATIONAL AND ARRAY DIVIDERS

Theoretically, it is possible to carry the overlapped quotient digit selection method
of Section 15.2 to the extreme when all k quotient digits are produced in one cycle.
Unfortunately, however, the complexity of such a purely combinational divider grows
exponentially with k, given that the speculative logic branches out like a tree. Recall that
a fully combinational tree multiplier has O(log k) latency and O(k2) cost. Theoretical
studies of the division process have shown that logarithmic-time dividers can be built,
but that they would entail O(k4) cost. Sacrificing some speed, say by going to O(log k
log log k) latency, leads to an asymptotic complexity that is of the same order as that

316 Chapter 15 Variations in Dividers

z

z

–5

–6

s s s–4 –5 –6

q

q

q

–1

–2

–3

FS

Cell

z z z z–1 –1 –2 –2 –3 –3 –4

1 0

d d d

0

0

0

Dividend z = .z z z z z z
Divisor d = .d d d

Remainder s = .0 0 0 s s s

–1 –2 –3 –4 –5 –6
–1 –2 –3

–4 –5 –6

Quotient q = .q q q–1 –2 –3

Figure 15.2 Restoring array divider composed of controlled subtractor cells.

of a multiplier. However, none of these theoretical constructions have led to practical
circuit designs for division.

Cells and structures very similar to those of array multipliers, discussed in Section
11.5, can be used to build an array divider. Figure 15.2 shows a restoring array divider
built of controlled subtractor cells. Each cell has a full subtractor (FS) and a two-input
multiplexer. When the control input broadcast to the multiplexers in a row of cells is
0, the cells’ vertical inputs (bits of the partial remainder) are passed down unchanged.
Otherwise, the diagonal input (divisor) is subtracted from the partial remainder and the
difference is passed down. Note that the layout of the cells in Fig. 15.2 resembles the
layout of dots in the dot notation view of division, exemplified by Fig. 13.1.

Effectively, each row of cells performs a trial subtraction, with the sign of the result
determining the next quotient digit as well as whether the original partial remainder or the
trial difference is to be forwarded to the next row. For practical hardware implementation,
a faster cell can be built by merging the function of the multiplexer with that of the FS.

The similarity of the array divider of Fig. 15.2 to an array multiplier is somewhat
deceiving. The same number of cells is involved in both designs, and the cells have
comparable complexities. However, the critical path in a k × k array multiplier contains
O(k) cells, whereas in Fig. 15.2 the critical path passes through all k2 cells. This is
because the borrow signal ripples in each row. Thus, an array divider is quite slow and,
given its high cost, not very cost-effective.

If many divisions are to be performed, pipelining can be applied to improve the
throughput of the array divider. For example, if latches are inserted on the output lines
for each row of cells in Fig. 15.2, the input data rate will be dictated by the delay
associated with borrow propagation in a single row. Thus, with pipelining, the array
divider of Fig. 15.2 becomes much more cost-effective, though it will still be slower
than its pipelined array multiplier counterpart.

Combinational and Array Dividers 317

Dividend z = z .z z z z z z
Divisor d = d .d d d

Remainder s = 0 .0 0 s s s s

0 –1 –2 –3 –4 –5 –6
0 –1 –2 –3

–3 –4 –5 –6

z

z

z

–4

–5

–6

s s s s

q

q

q

0

–1

–2

q –3

d d d d0 0 –1 –1 –2 –2 –3 –3z z z z

FA

XOR

Cell

1

Quotient q = q .q q q0 –1 –2 –3

–3 –4 –5 –6

Figure 15.3 Nonrestoring array divider built of controlled add/subtract cells.

Figure 15.3 depicts a nonrestoring array divider. The cells have roughly the same
complexity as the controlled subtractor cells of Fig. 15.2, but more of them are used to
handle the extra sign position and the final correction of the partial remainder (last row
of cells). The XOR gate in the cells of Fig. 15.3 acts as a selective complementer that
passes the divisor or its complement to the full adder (FA), thus leading to addition or
subtraction being performed, depending on the sign of the previous partial remainder.
The delay is still O(k2), and considerations for pipelining remain the same as for the
restoring design.

Several techniques are available for reducing the delay of an array divider, but in
each case additional complexity is introduced into the design. Therefore, none of these
methods has found significant practical applications.

To obviate the need for carry/borrow propagation in each row, the partial remainder
can be passed between rows in carry-save form. However, we still need to know the
carry-out or borrow-out resulting from each row to determine the action to be performed
in the following row (subtract vs. do not subtract in Fig. 15.2 or subtract vs. add in
Fig. 15.3). This can be accomplished by using a carry- (borrow-)lookahead circuit laid
out between successive rows of the array divider. However, in view of their need for
long wires, the tree-structured lookahead circuits add considerably to the layout area
and nullify some of the speed advantages of the original regular layout with localized
connections.

Alternatively, a radix-2 or high-radix SRT algorithm can be used to estimate the
quotient digit from a redundant digit set, using only a few of the MSBs of the partial

318 Chapter 15 Variations in Dividers

remainder and divisor. This latter approach may simplify the logic to be inserted between
rows, but necessitates a more complex conversion of the redundant quotient to standard
binary. Even though the wires required for this scheme are shorter than those for a
lookahead circuit, they tend to make the layout irregular and thus less efficient.

To summarize, fully combinational dividers, including all array divider variants, are
not as practical as combinational (tree and array) multipliers are. Such dividers tend
to be excessively complex or too slow for the extent of investment in hardware. Many
modern processors that need high-performance dividers resort to multiplication-based
methods, discussed in Chapter 16. The most common forms of such methods use several
multiplications in consecutive cycles. However, it is possible to convert such designs
to combinational dividers through the use of cascaded hardware multipliers, essentially
unrolling the sequential computation, in the same way that cascaded adders can be used
for multiplication.

15.4 MODULAR DIVIDERS AND REDUCERS

Given a dividend z and divisor d , with d ≥ 0, a modular divider computes

q = �z/d� and s = z mod d = 〈z〉d
Note that the quotient q is, by definition, an integer, but the inputs z and d do not have
to be integers. For example, we have

�−3.76/1.23� = −4 and 〈−3.76〉1.23 = 1.16

When z is positive, modular division is the same as ordinary integer division. Even when
z and d are fixed-point numbers with fractional parts, we can apply an integer division
algorithm to find q and s (how?). For a negative dividend z, however, ordinary division
yields a negative remainder s, whereas the remainder (residue) in modular division
is always positive. Thus, in this case, we must follow the division iterations with a
correction step (adding d to the remainder and subtracting 1 from the integer quotient)
whenever the final remainder is negative.

Often the aim of modular division is determining only the quotient q, or only the
remainder s, with no need to obtain the other result. When only q is needed, we still have
to perform a normal division; the remainder is obtained as a by-product of computing
q. However, the computation of 〈z〉d , known as modular reduction, might be faster or
need less work than a full-blown division.

We have already discussed modular reduction for a constant divisor d in connection
with obtaining the residue number system (RNS) representation of binary or decimal
numbers (Section 4.3). Consider now the computation of 〈z〉d for arbitrary 2k-bit div-
idend z and k-bit divisor d (both unsigned integers). The 2k-bit dividend z can be
decomposed into k-bit parts zH and zL, leading to

〈z〉d = 〈zH2k + zL〉d = 〈zH(2k − 1)+ zH + zL〉d

Modular Dividers and Reducers 319

Thus, modular reduction can be converted to mod-d multiplication of zH by 2k − 1 (see
Section 12.4) and a couple of modular additions. This might be an attractive option if
a fast modular multiplier is already available. One of the two additive terms, zH or zL,
can be accommodated by using it as the initial value of the cumulative partial product.
Both additive terms can be accommodated initially if the modular multiplier uses a
stored-carry cumulative partial product.

If d is bit-normalized (its MSB is 1), then

〈2k〉d = 2k − d = 2’s-complement of d

Thus, in this case, 〈z〉d can be computed by mod-d multiplication of zH and 2k −d , with
the cumulative partial product initialized to zL.

The preceding methods are relevant only if we do not have, or need, a fast hardware
divider.

When dealing with large operands, say on the order of hundreds of bits wide, an
algorithm known as Montgomery modular reduction is very useful. It is often used in
connection with modular multiplication, which is a basic operation in modular expo-
nentiation, needed for certain cryptographic algorithms. In the following, we present
the radix-2 version of Montgomery’s algorithm that is suitable for low-cost hardware
realization. Software implementations of the algorithm are usually based on radix 232

or 264, with a word or double word viewed as one digit.
Consider the computation q = ax mod m, that is, assume that we want to reduce

the product ax modulo m, for a given odd m. Let a, x, q, and other mod-m numbers
of interest be represented as k-bit pseudoresidues, where m < 2k ; in other words,
we allow “residues” that are greater than or equal to m. So, for example, 15 is an
acceptable 4-bit pseudoresidue modulo 13, even though it is not a valid residue. A
pseudoresidue can be converted to an ordinary residue, if desired, using conventional
modular reduction, as discussed at the beginning of Section 4.3. A commonly used
modular multiplication process consists of developing the double-width product p = ax
by means of conventional multiplication and reducing it modulo m at the end. It is also
possible to perform gradual reduction based on bits that are generated in positions k and
higher, but the process is rather costly and slow. Montgomery multiplication does not
quite provide what we want (that is, ax mod m), but rather yields ax/R mod m, where
R is a constant. We will see, however, that this related result does allow us to perform
modular multiplication quite efficiently.

As an example, we take r = 2, m = 13, R = 16 = r4, and R−1 = 9 mod 13
(because 16 × 9 = 1 mod 13). Figure 15.4 shows how the ordinary multiplication
algorithm with right shifts can be modified to yield ax/R mod m (which is the same
as axR−1 mod m). The division by R arises from ignoring bits as they are right-shifted
past the rightmost bit in a or x, getting a 4-bit result instead of an 8-bit product in
our example. Modular operation is achieved by ensuring that each cumulative partial
product is a multiple of r (an even number in our example) before it is shifted to the
right. When the shifted partial product 2p(i) is odd, we simply add m to it to get an even
number before performing the right shift. Clearly, adding m does not affect modulo-m
operations. The correctness of the modular result shown in Fig. 15.4 is readily ver-

320 Chapter 15 Variations in Dividers

======================= ===============
a 1 0 1 0 a 1 0 1 0
x 1 0 1 1 x 1 0 1 1
======================= ===============

2p(2) 0 1 1 1 1 0
p(2) 0 1 1 1 1 0

0 0 0 0

2p(3) 0 0 1 1 1 1 0
p(3) 0 0 1 1 1 1 0

1 0 1 0

0 1 1 0 1 1 1 0
p(4) 0 1 1 0 1 1 1 0
=======================

===============

p(0) 0 0 0 0
1 0 1 0+x0a

2p(1) 0 1 0 1 0
0 1 0 1 0p(1)

1 0 1 0+x1a

+x2a

+x3a

2p(4)

p(0) 0 0 0 0
 1 0 1 0+x0a

0 1 0 1 0 Even2p(1)

 0 1 0 1 p(1)

 1 0 1 0+x1a

2p(2) 0 1 1 1 1 Odd
+13 1 1 0 1

2p(2) 1 1 1 0 0
p(2) 1 1 1 0
+x2a 0 0 0 0

Even2p(3) 0 1 1 1 0
p(3) 0 1 1 1
+x3a 1 0 1 0

Odd2p(4) 1 0 0 0 1
+13 1 1 0 1

2p(4) 1 1 1 1 0
p(4) 1 1 1 1

(a) Ordinary multiplication (b) Modulo 13

Figure 15.4 Ordinary and modulo-13 Montgomery multiplication of two 4-bit numbers.

ified: ax/R mod m = 10 × 11/16 mod 13 = 10 × 11 × 9 mod 13 = 2 mod 13.
Note that the binary result (1111)two obtained is a pseudoresidue that is equivalent to
2 mod 13.

To convert the obtained result t = ax/R mod m to the desired result q = ax mod
m, we have to multiply it by R; that is, we must compute tR mod m. This result can be
obtained via Montgomery multiplication if instead of multiplying t by R, we multiply it
by R2 mod m. Thus, the reduction process yields tR2/R mod m, which is what we want.
Verifying that applying the process depicted in Fig. 15.4b, using the input operands
(0010)two and R2 mod m = 256 mod 13 = 9 = (1001)two, will yield a correct result for
10× 11 mod 13 is left to the reader.

Because of the two Montgomery multiplication steps needed, as previously dis-
cussed, Montgomery’s method is seldom cost-effective for a single modular multipli-
cation. However, when a large number of modular multiplications are to be performed
in sequence, the desirable property of the method, that the decision on whether or not
to add m in any given step depends only on the least-significant bit (LSB) of the partial
product, allows us to use carry-save addition quite effectively. Recall that in stored-carry
representation, the MSBs of a number are not known, as carries propagated when we add
the two components can affect the MSBs, whereas the LSB is readily available. Thus,
Montgomery modular multiplication can be efficiently implemented using carry-save
arithmetic in all intermediate steps.

The Special Case of Reciprocation 321

To illustrate the advantage of Montgomery’s method for a sequence of multiplica-
tions, let us assume that we represent a number y as yR mod m. Let us call yR mod m the
Montgomery code (M-code) for y. Because R = 1 mod m, different numbers in the range
[0, m− 1] will have distinct M -codes. Now, performing Montgomery multiplication on
the M -codes of a and x, that is, on aR mod m and xR mod m, would yield aRxR/R mod
m = axR mod m, which is the M-code for ax. So, when many mod-m multiplications are
to be performed, we can convert all inputs to M-codes, perform the multiplications, and
reconvert the result(s) from M-code to conventional format. The initial conversion of y
to yR mod m can be performed by using Montgomery multiplication on the operands y
and R2 mod m, which yields (yR2/R) mod m = yR mod m. The reconversion process can
be similarly performed via Montgomery multiplication: Given a result t = yR mod m,
perform Montgomery multiplication on the operands 1 and t, obtaining t/R mod m = y
mod m.

For example, to compute y13 = (((y2)y)2)2y modulo m, proceed as follows: use
Montgomery multiplication of y by R2 mod m to derive the M-code for y, then apply
five Montgomery squarings/multiplications on the M-code for y to compute t = y13R
mod m, and conclude by performing Montgomery multiplication of 1 by t to derive y13

mod m.

15.5 THE SPECIAL CASE OF RECIPROCATION

In Section 12.5, we covered the special case of squaring under “variations in multipliers.”
We concluded that, whereas a multiplier can be used as a squarer, direct hardware
realization of a squarer can be much simpler and faster. It may appear, therefore, that a
discussion of square-rooting belongs in this chapter. However, square-rooting, though
quite similar to division, is not a special case of the latter. In other words, whereas a
multiplier can act as a squarer (Fig. 15.5a), the simplistic idea depicted in Fig. 15.5b
cannot be used to convert a divider into a square-rooter (why not?). We will deal with
square-rooting methods in Chapter 21, after we have covered floating-point number
representation and arithmetic. The reason is that square-rooting is of interest primarily
with a floating-point radicand.

a x

y

 d

y

Divider

y

Multiplier

p = ax

y2

(a) Squaring

z

y

Divider

q = z/d

(b) Square-rooting?

1

z d

q = z/d

1/y

(c) Reciprocation

Figure 15.5 Square-rooting is not a special case of division, but reciprocation is.

322 Chapter 15 Variations in Dividers

Instead, we will cover the computation of 1/d as a special case of division. As
shown in Fig. 15.5c, we can use a divider, with its dividend input tied to the constant 1,
as a reciprocator. However, it is quite reasonable to expect that a reciprocator would be
simpler and faster than a divider. In the following discussion, we will assume an unsigned
bit-normalized fractional d in the range [0.5, 1), whose binary representation is of the
form (0.1xxx . . .)two. Its reciprocal, will then be in the range [1, 2]. For simplicity, we
ignore the special case of d = 0.5, allowing us to represent 1/d as the binary number
(1.xxxx . . .)two.

Unfortunately, digit-recurrence reciprocation does not lead to any time or hardware
savings compared with division. Even though the initial partial remainder has a spe-
cial value, this advantage is lost almost right away, because all other partial remainders
have arbitrary values and are subject to the same complexities for reciprocal digit selec-
tion as in quotient digit selection. However, it is possible to combine digit-recurrence
reciprocation with other schemes to gain speed and cost benefits. In what follows,
we provide a conceptual overview of one such method in the simplest radix-2 form,
ignoring its possible extensions to higher radices for even better performance [Ante05],
[Nann06].

The gist of the method is to derive roughly one-half of the reciprocal digits, which
comprise an approximation Q to the desired reciprocal q = 1/d , and then resort to
a refinement scheme to develop the remaining digits. It is easy to prove that if Q is
an approximation to 1/d with an error bound of 2−k/2, then t = Q(2 − Qd) offers a
much better approximation for q, with an error of no greater than 2−k . Bits of Q are
developed by means of the conventional division recurrence, with t also computed by a
digit-recurrence method, using the chosen reciprocal digit q−j:

s(j+1) = 2s(j) − q−jd with 2s(0) = 1
t(j+1) = 4t(j) + q−j(4s(j) − q−jd) with t(0) = 0

As depicted in Fig. 15.6, the reciprocation time is nearly halved compared with a simple
digit-recurrence scheme, because the two recurrences can be evaluated concurrently.

Time saved

 d A: Digit-recurrence
reciprocation to obtain Q ≈ 1/d

B: Digit-recurrence refinement
to obtain q = Q(2 –Qd)

q–j

s(j)

Iterations for box B

Iterations for box A

Iterations for simple digit-recurrence reciprocation

q

Figure 15.6 Hybrid evaluation of the reciprocal 1/d by an approximate reciprocation stage
and a refinement stage that operate concurrently.

Combined Multiply/Divide Units 323

Approximate reciprocation can also be performed via table lookup. We will leave
the discussion of such methods to Chapter 16, where they are used for division through
multiplication or reciprocation. General methods for function evaluation via table lookup
will be covered in Chapter 24. Finally, a low-precision approximation to 1/d can be
derived directly by means of a custom-designed combinational logic circuit. This method
will be explored in the end-of-chapter problems.

15.6 COMBINED MULTIPLY/DIVIDE UNITS

Except for the quotient digit selection logic in dividers, which has no counterpart in
multipliers, the required hardware elements for multipliers and dividers are quite similar.
This similarity, which extends from basic radix-2 units, through high-radix designs, to
array implementations, stems from the fact that both multiplication and division are
essentially multioperand addition problems.

It is thus quite natural to combine multiplication and division capabilities into a single
unit. Often, a capability for square-rooting is also included in the unit, since it too requires
the same hardware elements (see Chapter 21). Such combined designs are desirable when
the volume of numerical computations in expected applications does not warrant the
inclusion of separate dedicated multiply and divide units. Even in a high-performance
CPU optimized for applications with heavy use of multiplications and divisions, the use
of two combined multiply/divide units, say, provides more opportunities for concurrent
execution than separate multiply and divide units.

Figure 15.7 shows a radix-2 multiply/divide unit obtained by merging the multiplier
of Fig. 9.4a with the nonrestoring divider of Fig. 13.10. The reader should be able to
understand all elements in Fig. 15.7 by referring to the aforementioned figures and their
accompanying descriptions. Note that the multiplier (quotient) register has been merged
with the partial product (remainder) register, with their shifting boundary shown by a
dotted line. Another difference is that the extra flip-flop in Fig. 13.10, used to hold the
MSB of 2s(j−1) has been incorporated into the multiply/divide control unit logic.

A similar merging of high-radix multipliers and dividers leads to combined high-
radix multiply/divide units. For example, a radix-4 multiplier with Booth’s recoding
(Fig. 10.9) can be merged with a radix-4 SRT divider based on the quotient digit set [−2,
2] (Fig. 14.4, modified for radix-4 division, as suggested near the end of Section 14.3)
to yield a radix-4 multiply/divide unit. Since the recoded multiplier and the redundant
quotient use the same digit set [−2, 2], much of the multiple selection circuitry for the
multiplicand and divisor can be shared. Supplying the block diagram and design details
is left as an exercise.

Merging of partial- or full-tree multipliers with very-high-radix dividers is also pos-
sible. One way is to use the multioperand addition capability of the multiplier’s partial
or full tree to generate a reasonably accurate estimate for the divisor reciprocal 1/d .
This initial step is then followed by a small number of multiplications to produce
the quotient q. Division algorithms based on multiplication are discussed in depth in
Chapter 16.

324 Chapter 15 Variations in Dividers

Because of the similarity of a nonrestoring array divider (Fig. 15.3) to an array
multiplier (Fig. 11.14), it is possible to design a universal circuit that can act as an array
multiplier or divider depending on the value of a control input. Figure 15.8 shows a
high-level view of such a circuit that also accepts an additive input for multiplication.
The cells now become more complex than their array multiplier or divider counterparts,
but the universality of the design obviates the need for separate circuits for multiplication
and division. In an early universal pipelined array design of this type [Kama74], squaring
and square-rooting were also included among the functions that could be performed. The
array consisted of identical computational cells, plus special control cells in a column
on its left edge.

Mux

Adder
cout

0 1

Multiplicand a
or divisor d

 Shift control

Shift

Enable

cin

k

k

k

xj

 Divisor sign
Multiply/
divide
control

Select

 Mul Div

qk–j
Partial product p or
partial remainder s

Multiplier x
or quotient q

MSB of 2s (j–1)

MSB of p (j+1)

Figure 15.7 Sequential radix-2 multiply/divide unit.

Figure 15.8
Input/output
specification of a
universal circuit that
can act as an array
multiplier or array
divider.

Multiplicand
 or divisor

Multiplier

Product or
remainder

Quotient

Mul/Div

Additive input
or dividend

Problems 325

PROBLEMS 15.1 Bit-serial division

Prove that bit-serial division is infeasible for standard binary numbers, regardless
of whether the inputs are supplied LSB-first or MSB-first. Note that we excluding
any scheme in which all input bits are shifted in serially before division begins.

15.2 Significand divider with no remainder

In dividing the significands of two floating-point numbers, both the dividend and
divisor are k bits wide and computing the remainder is not needed. Discuss if and
how this can lead to simplified hardware for the significand divider. Note that the
divider can have various designs (restoring or nonrestoring binary, high-radix,
array, etc.).

15.3 1’s-complement binary dividers

a. Draw the block diagram of a restoring signed divider for 1’s-complement
numbers. Discuss any complication due to the use of 1’s-complement
operands and differences with a 2’s-complement divider.

b. Repeat part a for a nonrestoring 1’s-complement binary divider.

15.4 RNS dividers

Sketch the design of an RNS divider that uses approximate magnitude compar-
ison between RNS partial remainder and divisor, as discussed in Section 4.4,
to produce a binary signed-digit (BSD) quotient. Include on-the-fly conversion
hardware to generate an RNS quotient from the BSD quotient and an analysis of
the precision required in the comparisons.

15.5 Division with prescaling

Suppose that prescaling is used to limit the range of the divisor d to (0.9, 1.1).

a. Construct a p-d plot similar to that in Fig. 14.10 for radix-4 division with the
digit set [−2, 2].

b. Derive the required precision in p and d for quotient digit selection.
c. Compare the results of part b to those obtained from Fig. 14.10 and discuss.

15.6 Division with prescaling

Discuss whether it is possible to apply prescaling to a divider that keeps its partial
remainder in stored-carry form.

15.7 Restoring array divider

For the restoring array divider of Fig. 15.2:

a. Explain the function of the OR gates at the left edge of the array.
b. Can the OR gates be replaced by controlled subtractor cells in the interest of

uniformity? How or why not?

326 Chapter 15 Variations in Dividers

c. Verify that the array divider works correctly by tracing through the signal
values for the division .011111/.110.

d. Explain how the array can be modified to perform signed division.

15.8 Nonrestoring array divider

For the nonrestoring array divider of Fig. 15.3:

a. Explain the wraparound links for the four cells located at the right edge of
the array.

b. Explain the dangling or unused outputs in three of the four cells located at
the left edge of the array.

c. Verify that the array divider works correctly by tracing through the signal
values for the division 0.011111/0.110.

d. Present modifications in the design such that partial remainders are passed
downward in carry-save form and lookahead circuits are used between rows
to derive the carry-out q−i.

e. Estimate the improvement in speed as a result of the modifications presented
in part d and discuss the cost-effectiveness of the new design.

f. Show how the array can be used for signed division. Hint: Modify the input
at the upper left corner, which is now connected to the constant 1.

g. Test your proposed solution to part f by tracing the division 1.10001/0.110.
h. Show how the array can be modified to perform modular division, as

discussed in Section 15.4.

15.9 BSD array divider

We would like to construct an array divider for BSD numbers using the digit set
[−1, 1], encoded as 10, 00, and 01, for −1, 0, and 1, respectively.

a. Present the design of a controlled subtractor cell for BSD numbers.
b. Show how the structure of a nonrestoring array divider must be modified to

deal with BSD numbers.
c. Compare the resulting design with a nonrestoring array divider with respect

to speed and cost.

15.10 Combined multiply/divide units

a. Draw a complete block diagram for a radix-4 multiply/divide unit, as
discussed in Section 15.6.

b. Supply the detailed design of the array multiplier/divider shown in Fig. 15.8,
assuming unsigned inputs.

c. Discuss modifications required to the design of part b for 2’s-complement
inputs.

15.11 Divider with a multiplicative input

Consider the design of a unit to compute y = az/d , where y, a, z, and d are k-bit
fractions. A radix-4 algorithm is to be used for computing q = z/d . As digits of
q = z/d in [−2, 2] are obtained, they are multiplied by a and the product aq is
accumulated using radix-4 multiplication with left shifts.

Problems 327

a. Present a block diagram for the design of this divider with multiplicative
input.

b. Evaluate the speed advantage of the unit compared with cascaded multiply
and divide units.

c. Evaluate the speed penalty of the unit when used to perform simple
multiplication or division.

15.12 Array dividers

Present the design of 16/8 array dividers of the following types, assuming
fractional operands, and compare them with respect to speed and cost.

a. Restoring (Fig. 15.2).
b. Nonrestoring (Fig. 15.3).
c. Restoring, but with carry-save partial products passed between rows and a

two-level lookahead circuit included to predict the final carry in each row.
d. Nonrestoring, but with the provisions of part c.

15.13 Radix-8 division

Argue that the use of the quotient digit set [−6, 6] is preferable to the minimal
digit set [−4, 4] in a radix-8 divider that forms the multiple 3d by inputting the
two values 2d and d into a four-input CSA tree that also receives the carry-save
partial remainder as inputs.

15.14 Division by table lookup and multiplication

In the fixed-point binary division z/d , with 1 ≤ z, d < 2, let the divisor d be
composed of dH with h fractional bits and dL = d−dH. Because dL � dH, in the
Taylor-series expansion z/d = z/(dH+ dL) = (z/dH)[1− dL/dH+ (dL/dH)2−
· · ·], we can ignore all higher-order terms, leading to z/d ≈ z(dH − dL)/d2

H.
Thus, division can be performed by one table lookup to read out 1/d2

H, one
subtraction, and two multiplications [Jeon04].

a. Show that the subtraction can be avoided by obtaining the modified Booth
recoding of dH − dL directly from dH and dL.

b. Determine the parameter h and the size of the lookup table if the error is to
be limited to 1 ulp.

15.15 Division with prescaling

Consider the division q = z/d , with z = 0.01111110, d = 0.11000000, and an
8-bit quotient q. After prescaling the operands using the scale factor m = 1.3125,
perform the division (zm)/(dm) in radix 16. Select the quotient digits by rounding
the partial remainder, that is, qk−j = int(shifted partial remainder+ 0.5).

15.16 Division with prescaling

Consider the division q = z/d in radix r = 2h, using the quotient digit set
[−α, α]. Suppose that the scale factor m is chosen such that the scaled divisor dm

328 Chapter 15 Variations in Dividers

is in the range 1 ≤ dm ≤ 1+δ and that the quotient digits are selected by rounding
the shifted partial remainder, that is, qk−j = int(shifted partial remainder+0.5).

a. Find a suitable value for δ that ensures the convergence of this division
algorithm.

b. Derive a procedure for the choice of the scale factor m based on inspecting
a few leading bits of d . In each case, choose m so that dm and zm can be
computed via a three-operand addition.

c. Illustrate the working of the algorithm by performing radix-1000 division on
a pair of decimal operands that you choose.

15.17 Overlapped quotient digit selection

Consider the divider whose block diagram is given in Fig. 15.1.

a. Label the three inputs of each of the multiplexers with the corresponding
quotient digit values used to select them.

b. Given that the two partial remainder components do not change when qk−j =
0, why do we need the middle quotient digit selection logic on the right-hand
side of the diagram, between the two CSAs?

c. Draw the critical signal path on the diagram and estimate the corresponding
delay, stating all your assumptions.

d. Present at least one way of reducing the length of the critical path of part c
using more speculative computations.

15.18 Overlapped quotient digit selection

Draw a block diagram similar to Fig. 15.1 that shows a radix-8 divider using three
overlapping radix-2 stages (Hint: 11 quotient digit selection blocks are needed).
Estimate the latency of your design and comment on its cost-effectiveness relative
to the radix-4 design of Fig. 15.1.

15.19 Montgomery modular reduction

We mentioned in Section 15.4 that we can use a Montgomery multiplication
to convert the obtained result t = ax/R mod m to the desired result q = ax
mod m.

a. Use this method to derive the correct result of 10×11 mod 13 in conventional
binary form from the M-encoding obtained in Fig. 15.4b.

b. Redo the Montgomery modular multiplication of Fig. 15.4b with the operands
a = 21 and x = 18, and the modulus m = 25.

c. Repeat part a for the modular multiplication of part b.

15.20 Montgomery modular reduction

Suppose that q = ax/R mod m, where a, x, and q are conventional modulo-
m residues (not pseudoresidues). Prove that in Montgomery multiplication for
computing ax/R mod m, if the constant R = 2k satisfies m < R < 2m, then the
final pseudoresidue obtained is either q or m+ q.

References and Further Readings 329

15.21 Reciprocation

In Section 15.5, we noted that if Q is an approximation to 1/d with an error
bound of 2−k/2, where 1/2 ≤ d < 1, then t = Q(2− Qd) offers a much better
approximation for q, with an error of no greater than 2−k . Justify this assertion
by proving the more general result that if the error in the approximation Q is ε,
then the error in the refinement t will be no greater than ε2.

15.22 Reciprocal square-root

Show that if box A in Fig. 15.6 is replaced by a mechanism that provides the
digits of U ≈ 1

√
d instead of the digits of Q ≈ 1/d , then replacing box B with

a circuit that implements the refinement u = U (3 − U 2d)/2 will yield a better
approximation of 1/

√
d with the same error characteristics as in the computation

of q = 1/d .

15.23 Approximate reciprocation by combinational logic

The approximate reciprocal q = 1.xxxx of the bit-normalized binary divisor
d = 0.1xxx . . . , in the open interval (0.5, 1), can be obtained by a custom-
designed hardware circuit. Construct a truth table and present the design of
a three-input, four-output logic circuit that supplies 4 bits of the approximate
reciprocal q (after the mandatory 1.) based on examining 3 bits of d (after the
mandatory 1). Justify your method of choosing the output bits. Hint: A particular
pattern abc in the 3 examined bits of the divisor indicates a divisor in the range
[dabc, dabc + 1/16), where dabc = (8+ 4a + 2b+ c)/16.

15.24 Applications of reciprocation

Study the applications of reciprocation in computer geometry and graphics pro-
cessors. Prepare a two-page report outlining the nature of the applications and
hardware acceleration methods that are used in practice.

REFERENCES AND FURTHER READINGS

[Agra79] Agrawal, D. P., “High-Speed Arithmetic Arrays,” IEEE Trans. Computers, Vol. 28,
No. 3, pp. 215–224, 1979.

[Ante05] Antelo, E., T. Lang, P. Montuschi, and A. Nannarelli, “Low Latency Digit Recurrence
Reciprocal and Square-Root Reciprocal Algorithm and Architecture,” Proc. 17th
Symp. Computer Arithmetic, pp. 147–152, 2005.

[Beam86] Beame, P., S. Cook, and H. Hoover, “Log Depth Circuits for Division and Related
Problems,” SIAM J. Computing, Vol. 15, pp. 994–1003, 1986.

[Capp73] Cappa, M., and V. C. Hamacher, “An Augmented Iterative Array for High-Speed
Binary Division,” IEEE Trans. Computers, Vol. 22, pp. 172–175, 1973.

[Erce94] Ercegovac, M. D., and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations, Kluwer, 1994.

330 Chapter 15 Variations in Dividers

[Erce04] Ercegovac, M. D., and T. Lang, Digital Arithmetic, Morgan Kaufmann, 2004.

[Jeon04] Jeong, J.-V., W.-C. Park, W. Jeong, T.-D. Han, and M.-K. Lee, “A Cost-Effective
Pipelined Divider with a Small Lookup Table,” IEEE Trans. Computers, Vol. 53, No.
4, pp. 489–495, 2004.

[Kama74] Kamal, A. K., et al., “A Generalized Pipeline Array,” IEEE Trans. Computers,
Vol. 23, No. 5, pp. 533–536, 1974.

[Lo86] Lo, H.-Y., “An Improvement of Nonrestoring Array Divider with Carry-Save and
Carry-Lookahead Techniques,” in VLSI ’85, E. Horbst, (ed.), Elsevier, 1986,
pp. 249–257.

[Matu03] Matula, D. W. and A. Fit-Florea, “Prescaled Integer Division,” Proc. 16th IEEE Symp.
Computer Arithmetic, pp. 63–68, 2003.

[Mont85] Montgomery, P. L., “Modular Multiplication without Trial Division,” Mathematics of
Computation, Vol. 44, No. 170, pp. 519–521, 1985.

[Nann06] Nannarelli, A., M. S. Rasmussen, and M. B. Stuart, “A 1.5 GFLOPS Reciprocal Unit
for Computer Graphics,” Proc. 40th Asilomar Conf. Signals, Systems, and
Computers, October 2006, pp. 1682–1686.

[Ober97] Oberman, S. F., and M. J. Flynn, “Division Algorithms and Implementations,” IEEE
Trans. Computers, Vol. 46, No. 8, pp. 833–854, 1997.

[Pipp87] Pippenger, N., “The Complexity of Computations by Networks,” IBM J. of Research
& Development, Vol. 31, No. 2, pp. 235–243, 1987.

[Prab95] Prabhu, J. A., and G. B. Zyner, “167 MHz Radix-8 Divide and Square Root Using
Overlapped Radix-2 Stages,” Proc. 12th Symp. Computer Arithmetic, pp. 155–162,
1995.

[Reif89] Reif, J. H., and S. R. Tate, “Optimal Size Integer Division Circuits,” Proc. 21st ACM
Symp. Theory of Computing, pp. 264–273, 1989.

[Schw93] Schwarz, E. M., and M. J. Flynn, “Parallel High-Radix Nonrestoring Division,” IEEE
Trans. Computers, Vol. 42, No. 10, pp. 1234–1246, 1993.

[Stef72] Stefanelli, R., “A Suggestion for a High-Speed Parallel Divider,” IEEE Trans.
Computers, Vol. 21, No. 1, pp. 42–55, 1972.

[Tayl85] Taylor, G. S., “Radix-16 SRT Dividers with Overlapped Quotient Selection Stages,”
Proc. 7th Symp. Computer Arithmetic, pp. 64–71, 1985.

[Zura87] Zurawski, J. H. P., and J. B. Gosling, “Design of a High-Speed Square Root, Multiply,
and Divide Unit,” IEEE Trans. Computers, Vol. 36, No. 1, pp. 13–23, 1987.

16 Division by Convergence

■ ■ ■

“The mathematically sophisticated will know how to skip formulae.
This skill is easy to practice for others also.”

L E S L I E G . VA L I A N T, C I R C U I T S O F T H E M I N D (1 9 9 4)

■ ■ ■

D igit-recurrence division schemes discussed in Chapters 13–15 can be viewed as

manipulation of s (initially z) and q (initially 0) in k cycles such that s tends to 0

as q converges to the quotient. One digit of convergence is obtained per cycle. In this

chapter, we will see that through the use of multiplication as the basic step, instead

of addition, convergence of q to its final value can occur in O(log k) rather than O(k)

cycles, albeit with each cycle being more complex than in digit-recurrence division.

16.1 General Convergence Methods

16.2 Division by Repeated Multiplications

16.3 Division by Reciprocation

16.4 Speedup of Convergence Division

16.5 Hardware Implementation

16.6 Analysis of Lookup Table Size

16.1 GENERAL CONVERGENCE METHODS

Convergence computation methods are characterized by two or three recurrence
equations that are used to iteratively adjust/update the values of the variables u and v
(and w). The two- and three-variable versions of such convergence methods are written
as follows:

u(i+1) = f (u(i), v(i)) u(i+1) = f (u(i), v(i), w(i))

v(i+1) = g(u(i), v(i)) v(i+1) = g(u(i), v(i), w(i))

w(i+1) = h(u(i), v(i), w(i))

331

332 Chapter 16 Division by Convergence

The functions f and g (and h) specify the computations to be performed in each
updating cycle. Beginning with the initial values u(0) and v(0) (and w(0)), we go through
a number of iterations, each time computing u(i+1) and v(i+1) (and w(i+1)) based on u(i)

and v(i) (and w(i)). We direct the iterations such that one value, say u, converges to some
constant. The value of v (and/or w) then converges to the desired function(s).

The complexity of this method obviously depends on two factors:

Ease of evaluating f and g (and h)

Rate of convergence (or number of iterations needed)

Many specific instances of the preceding general method are available and can be used
to compute a variety of useful functions. A number of examples are discussed in this
chapter and in Chapters 21–23.

Digit-recurrence division methods, discussed in Chapters 13–15, can in fact be
formulated as convergence computations. Given the fractional dividend z and divi-
sor d , the quotient q and remainder s can be computed by a recurrence scheme of the
general form

s(j) = s(j−1) − γ (j)d Set s(0) = z; make s converge to 0

q(j) = q(j−1) + γ (j) Set q(0) = 0; obtain q ≈ q(k)

where the γ (j) can be any sequence of values that make the residual (partial remainder)
s converge to 0. The invariant of the iterative computation above is

s(j) + q(j)d = z

which leads to q(k) ≈ z/d when s(k) ≈ 0.
In digit-recurrence division with fractional operands, γ (j) is taken to be q−jr−j (i.e.,

the contribution of the jth digit of the quotient q to its value). We can rewrite the pre-
ceding recurrences by dealing with rjs(j) and rjq(j) as the scaled residual and quotient,
respectively:

s(j) = rs(j−1) − q−jd Set s(0) = z; keep s bounded

q(j) = rq(j−1) + q−j Set q(0) = 0; obtain q ≈ q(k)r−k

The original residual s can be made to converge to 0 by keeping the magnitude of the
scaled residual in check. For example, if the scaled residual s(j) is in [−d , d), the unscaled
residual would be in [−d2−j, d2−j); thus convergence of s to 0 is readily accomplished.

The many digit-recurrence division schemes considered in Chapters 13–15 simply
correspond to variations in the radix r, the scaled residual bound, and quotient digit
selection rule. The functions f and g of digit-recurrence division are quite simple. The
function f , for updating the scaled residual, is computed by shifting and (multioperand)
addition. The function g, for updating the scaled quotient, corresponds to the insertion
of the next quotient digit into a register via a one-digit left shift.

Even though high-radix schemes can reduce the number of iterations in digit-
recurrence division, we still need O(k) iterations with any small fixed radix r = 2b.

Division by Repeated Multiplications 333

The rest of this chapter deals with division by other convergence methods that require
far fewer [i.e., O(log k)] iterations. Note that as we go to digit-recurrence division
schemes entailing very high radices, quotient digit selection and the computation of the
subtractive term q−jd become more difficult. Computation of q−jd involves a multipli-
cation in which one of the operands is much narrower than the other one. So, in a sense,
high-radix digit-recurrence division also involves multiplication.

16.2 DIVISION BY REPEATED MULTIPLICATIONS

To compute the ratio q = z/d , one can repeatedly multiply z and d by a sequence of m
multipliers x(0), x(1), · · · , x(m−1):

q = z

d
= zx(0)x(1) · · · x(m−1)

dx(0)x(1) · · · x(m−1)

If this is done in such a way that the denominator dx(0)x(1) · · · x(m−1) converges to 1, the
numerator zx(0)x(1) · · · x(m−1) will converge to q. This process does not yield a remainder,
but the remainder s (if needed) can be computed, via an additional multiplication and a
subtraction, using s = z − qd .

To perform division based on the preceding idea, we face three questions:

1. How should we select the multipliers x(i) such that the denominator does in fact
converge to 1?

2. Given a selection rule for the multipliers x(i) how many iterations (pairs of
multiplications) are needed?

3. How are the required computation steps implemented in hardware?

In what follows, we will answer these three questions in turn. But first, let us formulate
this process as a convergence computation.

Assume a bit-normalized fractional divisor d in [1/2, 1). If this condition is not
satisfied initially, it can be made to hold by appropriately shifting both z and d . The
corresponding convergence computation is formulated as follows:

d (i+1) = d (i)x(i) Set d (0) = d ; make d (m) converge to 1

z(i+1) = z(i)x(i) Set z(0) = z; obtain z/d = q ≈ z(m)

We now answer the first question posed above by selecting

x(i) = 2− d (i)

This choice transforms the recurrence equations into

d (i+1) = d (i)(2− d (i)) Set d (0) = d ; iterate until d (m) ≈ 1

z(i+1) = z(i)(2− d (i)) Set z(0) = z; obtain z/d = q ≈ z(m)

334 Chapter 16 Division by Convergence

Table 16.1 Quadratic convergence in computing z/d by
repeated multiplications, where 1/2 ≤ d = 1 − y < 1

i d(i) = d(i−1) x(i−1), with d(0) = d x(i) = 2 − d(i)

0 1− y = (.1xxx xxxx xxxx xxxx)two ≥ 1/2 1+ y

1 1− y2 = (.11xx xxxx xxxx xxxx)two ≥ 3/4 1+ y2

2 1− y4 = (.1111 xxxx xxxx xxxx)two ≥ 15/16 1+ y4

3 1− y8 = (.1111 1111 xxxx xxxx)two ≥ 255/256 1+ y8

4 1− y16 = (.1111 1111 1111 1111)two = 1− ulp

Thus, computing the functions f and g consists of determining the 2’s-complement of
d (i) and two multiplications by the result 2− d (i).

Now on to the second question: How quickly does d (i) converge to 1? In other words,
how many multiplications are required to perform division? Noting that

d (i+1) = d (i)(2− d (i)) = 1− (1− d (i))2

we conclude that

1− d (i+1) = (1− d (i))2

Thus, if d (i) is already close to 1 (i.e., 1 − d (i) ≤ ε), d (i+1) will be even closer to 1
(i.e., 1 − d (i+1) ≤ ε2). This property is known as quadratic convergence and leads to
a logarithmic number m of iterations to complete the process. To see why, note that
because d is in [1/2, 1), we begin with 1 − d (0) ≤ 2−1. Then, in successive iterations,
we have 1− d (1) ≤ 2−2, 1− d (2) ≤ 2−4, · · · , 1− d (m) ≤ 2−2m

. If the machine word is
k bits wide, we can get no closer to 1 than 1 − 2−k . Thus, the iterations can stop when
2m equals or exceeds k. This gives us the required number of iterations:

m = 	log2 k

Table 16.1 shows the progress of computation, and the pattern of convergence, in the 4

cycles required with 16-bit operands. For a 16-by-16 division, the preceding convergence
method requires 7 multiplications (two per cycle, except in the last cycle, where only z(4)

is computed); with 64-bit operands, we need 11 multiplications and 6 complementation
steps. In general, for k-bit operands, we need

2m− 1 multiplications and m 2’s-complementations

where m = 	log2 k
.
Figure 16.1 shows a graphical representation of the convergence process in division

by repeated multiplications. Clearly, convergence of d (i) to 1 and z(i) to q occurs from
below; that is, in all intermediate steps, d (i) < 1 and z(i) < q. After the required number
m of iterations, d (m) equals 1 − ulp, which is the closest it can get to 1. At this point,
z(m) is the required quotient q.

Answering the third, and final, question regarding hardware implementation is
postponed until after the discussion of a related algorithm in Section 16.3.

Division by Reciprocation 335

1 1 – ulp

d

z

q –

d

z

0 1 2 3 4 5 6

(i)

(i)

q ε

Iteration i

Figure 16.1 Graphical representation of convergence in division by repeated multiplications.

Let us now say a few words about computation errors. Note that even if machine
arithmetic is completely error-free, z(m) can be off from q by up to ulp (when z = d ,
both d (i) and z(i) converge to 1− ulp). The maximum error in this case can be reduced
to ulp/2 by simply adding ulp to any quotient with q−1 = 1.

The following approximate analysis captures the effect of errors in machine arith-
metic. We present a more detailed discussion of computation errors in Chapter 19 in
connection with real-number arithmetic.

Suppose that k× k multiplication is performed by simply truncating the exact 2k-bit
product to k bits, thus introducing a negative error that is upper-bounded by ulp. Note
that computing 2− d (i) can be error-free, provided we can represent, and compute with,
numbers that are in [0, 2), or else we scale down such numbers by shifting them to the
right and keeping 1–2 extra bits of precision beyond position −k. We can also ignore
any error in computing d (i+1), since such errors affect both recurrence equations and
thus do not change the ratio z/d .

The worst-case error of ulp, introduced by the multiplication used to compute z in
each iteration, leads to an accumulated error that is bounded by m ulp after m iterations.
If we want to keep this error bound below 2−k , we must perform all intermediate com-
putations with at least log2 m extra bits of precision. Since in practice m is quite small
(say, m ≤ 5), this requirement can be easily satisfied.

16.3 DIVISION BY RECIPROCATION

Another way to compute q = z/d is to first find 1/d and then multiply the result by z. If
several divisions by the same divisor d need to be performed, this method is particularly
efficient, since once 1/d is found for the first division, each subsequent division involves
just one additional multiplication.

The method we use for computing 1/d is based on Newton–Raphson iteration to
determine a root of f (x) = 0. We start with some initial estimate x(0) for the root and

336 Chapter 16 Division by Convergence

Figure 16.2
Convergence to a
root of f (x) = 0
in the
Newton–Raphson
method.

f x()

xx (+1)ix

f x()

Tangent at x ()i

Root α x

()i(+2)i

()i

()i

then iteratively refine the estimate using the recurrence

x(i+1) = x(i) − f (x(i))

f ′(x(i))

where f ′(x) is the derivative of f (x). Figure 16.2 provides a graphical representation of
the refinement process. Let tan α(i) be the slope of the tangent to f (x) at x = x(i). Then,
referring to Fig. 16.2, the preceding iterative process is easily justified by noting that:

tan α(i) = f ′(x(i)) = f (x(i))

x(i) − x(i+1)

To apply the Newton–Raphson method to reciprocation, we use f (x) = 1/x − d which
has a root at x = 1/d . Then, f ′(x) = −1/x2, leading to the recurrence

x(i+1) = x(i)(2− x(i)d) See below for the initial value x(0)

Computationally, two multiplications and a 2’s-complementation step are required per
iteration.

Let δ(i) = 1/d − x(i) be the error at the ith iteration. Then

δ(i+1) = 1/d − x(i+1) = 1/d − x(i)(2− x(i)d)

= d(1/d − x(i))2 = d(δ(i))2

Since d < 1, we have δ(i+1) < (δ(i))2, proving quadratic convergence. If the initial
value x(0) is chosen such that 0 < x(0) < 2/d , leading to |δ(0)| < 1/d , convergence is
guaranteed.

At this point, we are interested only in simple schemes for selecting x(0), with more
accurate table-based methods to be discussed later in this chapter. For d in [1/2, 1),
picking

x(0) = 1.5

Speedup of Convergence Division 337

is quite simple and adequate, since it limits |δ(0)| to the maximum of 0.5. A better
approximation, with a maximum error of about 0.1, is

x(0) = 4(
√

3− 1)− 2d = 2.9282− 2d

which can be obtained easily and quickly from d by shifting and adding.
The effect of inexact multiplications on the final error δ(m) = 1/d − x(m) can be

determined by an analysis similar to that offered at the end of Section 16.2. Here, each
iteration involves two back-to-back multiplications, thus leading to the bound 2m ulp
for the accumulated error and the requirement for an additional bit of precision in the
intermediate computations.

16.4 SPEEDUP OF CONVERGENCE DIVISION

Thus far, we have shown that division can be performed via 2	log2 k
−1 multiplications.
This is not yet very impressive, since with 64-bit numbers and a 5-ns multiplier, division
would need at least 55 ns. Three types of speedup are possible in division by repeated
multiplications or by reciprocation:

Reducing the number of multiplications

Using narrower multiplications

Performing the multiplications faster

Note that convergence is slow in the beginning. For example, in division by repeated
multiplications, it takes six multiplications to get 8 bits of convergence and another five
to go from 8 bits to 64 bits. The role of the first four multiplications is to provide a number
x(2) = 2 − dx(0)x(1) such that when x(2) is multiplied by z(2) and d (2) = dx(0)x(1), we
have 8 bits of convergence in the latter.

d = (0.1xxx xxxx · · ·)two

dx(0) = (0.11xx xxxx · · ·)two

dx(0)x(1) = (0.1111 xxxx · · ·)two

dx(0)x(1)x(2) = (0.1111 1111 · · ·)two

Since x(0)x(1)x(2) is essentially an approximation to 1/d , these four initial multiplications
can be replaced by a table-lookup step that directly supplies x(0+), an approximation to
x(0)x(1)x(2) obtained based on a few high-order bits of d , provided the same convergence
is achieved. Similarly, in division by reciprocation, a better starting approximation can
be obtained via table lookup.

The remaining question is: How many bits of d must be inspected to achieve w bits
of convergence after the first iteration? This is important because it dictates the size of
the lookup table. In fact, we will see that x(0+) need not be a full-width number. If x(0+)

is 8 bits rather than 64 bits wide, say, the lookup table will be one-eighth the size and the

338 Chapter 16 Division by Convergence

1 1 – ulp

d

z

q –

Iterations

After table lookup and first
pair of multiplications,
replacing several iterations

After the second pair
of multiplications

ε

Figure 16.3 Convergence in division by repeated multiplications with initial table lookup.

first iteration can become much faster, since it involves multiplying an 8-bit multiplier
by two 64-bit multiplicands.

We will prove, in Section 16.6, that a 2w×w lookup table is necessary and sufficient
for achieving w bits of convergence after the first pair of multiplications. Here, we make
a useful observation. For division by repeated multiplications, we saw that convergence
to 1 and q occurred from below (Fig. 16.1). This does not have to be the case. If at some
point in our iterations, d (i) overshoots 1 (e.g., becomes 1 + ε), the next multiplicative
factor 2− d (i) = 1− ε will lead to a value smaller than 1, but still closer to 1, for d (i+1)

(Fig. 16.3).
So, in fact, what is important is that |d (i) − 1| decrease quadratically. It does not

matter if x(0+) obtained from the table causes dx(0+) to become greater than 1; all we
need to guarantee that 1−2−16 ≤ dx(0+)x(3) < 1 is to have 1−2−8 ≤ dx(0+) ≤ 1+2−8.
This added flexibility helps us in reducing the table size (both the number of words and
the width).

We noted earlier that the first pair of multiplications following the table lookup
involve a narrow multiplier and may thus be faster than a full-width multiplication. The
same applies to subsequent multiplications if the multiplier is suitably truncated. The
result is that convergence occurs from above or below (Fig. 16.4).

Here is an analysis for the effect of truncating the multiplicative factors to speed up
the multiplications. We begin by noting that

dx(0)x(1) · · · x(i) = 1− y(i)

x(i+1) = 2− (1− y(i)) = 1+ y(i)

Assume that we truncate 1− y(i) to an a-bit fraction, thus obtaining (1− y(i))T with an
error of α < 2−a. With this truncated multiplicative factor, we get

(x(i+1))T = 2− (1− y(i))T where 0 ≤ (x(i+1))T − x(i+1) < 2−a

Speedup of Convergence Division 339

1 1 ± ulp

d

z

q ±

Iterations

ε

Figure 16.4 Convergence in division by repeated multiplications with initial table lookup
and the use of truncated multiplicative factors.

1

Approximate
iteration

Precise
iteration

B

A

i + 1i

Iteration

dx(0)x(1)... x (i)x(i+1)

dx(0)x(1)...x(i)(x(i+1))T

< 2−a

dx(0)x (1)x(i)...

Figure 16.5 One step in convergence division with truncated multiplicative factors.

Thus

dx(0)x(1) · · · x(i)(x(i+1))T = (1− y(i))(1+ y(i) + α) = 1− (y(i))2 + α(1− y(i))

= dx(0)x(1) · · · x(i)x(i+1) + α(1− y(i))

Since (1− y(i)) is less than 1, the last term above is less than α and we have

0 ≤ α(1− y(i)) < 2−a

Hence, if we are aiming to go from l bits to 2l bits of convergence, we can truncate
the next multiplicative factor to 2l bits. To justify this claim, consider Fig. 16.5. Point
A, which is the result of precise iteration, is no more than 2−2l below 1. Thus, with
a = 2l, point B, arrived at by the approximate iteration, will be no more than 2−2l

above 1.

340 Chapter 16 Division by Convergence

Now, putting things together for an example 64-bit multiplication, we need a table
of size 256 × 8 = 2K bits for the lookup step. Then we need pairs of multiplications,
with the multiplier being 9 bits, 17 bits, and 33 bits wide. The final step involves a single
64× 64 multiplication.

16.5 HARDWARE IMPLEMENTATION

The hardware implementation of basic schemes for division by repeated multiplications
or by reciprocation is straightforward. Both methods need two multiplications per iter-
ation and both can use an initial table lookup step and truncation of the intermediate
results to reduce the number of iterations and to speed up the multiplications.

If the hardware multiplier used is based on a digit-recurrence (binary or high-radix)
algorithm, then narrower operands translate directly into fewer steps and correspondingly
higher speed. For the 64-bit example at the end of Section 16.4, the total number of bit-
level iterations to perform the seven multiplications required would be 2(9+17+33)+
64 = 182. This is roughly equivalent to the number of bit-level iterations in three full
64× 64 multiplications.

Convergence division methods are more likely to be implemented when a fast parallel
(tree) multiplier is available. In the case of a full-tree multiplier, the narrower multiplica-
tive factors may not offer any speed advantage. However, if a partial carry-save adder
tree, of the type depicted in Fig. 11.9 is used, a narrower multiplier leads to higher speed.
For example, if the tree can handle h = 9 new inputs at once, the first pair of multipli-
cations in our 64-bit example would require just one pass through the tree, the second
pair would need two passes each (one pass if Booth’s recoding is applied), and so on.

Finally, since two independent multiplications by the same multiplier are performed
in each step of division by repeated multiplications, the two can be pipelined (in both
the full-tree and partial-tree implementations), thus requiring less time than two back-
to-back multiplications. In such a case, the multiplication for d (i) is scheduled first, to
get the result needed for the next iteration quickly and to keep the pipeline as full as
possible. This is best understood for a multiplier that is implemented as a two-stage
pipeline (Fig. 16.6). As the computation of z(i)x(i) moves from the top to the bottom
pipeline stage at the end of time step 2i + 1, iteration i + 1 begins at time step 2i + 2
by computing the top stage of d (i+1)x(i+1). We thus see that with a pipelined multiplier,
the two multiplications needed in each iteration can be fully overlapped.

The pipelining scheme shown in Fig. 16.6 is not applicable to convergence division
through divisor reciprocation, since in the recurrence x(i+1) = x(i)(2−x(i)d), the second
multiplication by x(i) needs the result of the first one. The most promising speedup method
in this case relies on deriving a better starting approximation to 1/d . For example, if
the starting approximation is obtained with an error bound of 2−16, then only three
multiplications would be needed for a 32-bit quotient and five for a 64-bit result. But
16 bits of precision in the starting approximation would imply a large lookup table. The
required lookup table can be made smaller, or totally eliminated, by a variety of methods:

1. Store the reciprocal values for fewer points and use linear (one multiply-add
operation) or higher-order interpolation to compute the starting approximation
(see Section 24.4).

Analysis of Lookup Table Size 341

z x (i)(i)

d x (i)(i)

x (i)z

Time step 2i + 1 Time step 2i + 2 Time step 2i + 3

(i)

d (i +1)

d (i +1)

x (i +1)

z x (i)(i)

d x (i +1)(i +1)

z (i +1)

2's Compl
z (i +1) x (i +1)

z x (i +1)(i +1)

d (i +2)

d x (i +1)(i +1)

Figure 16.6 Two multiplications fully overlapped in a two-stage pipelined multiplier.

2. Formulate the starting approximation as a multioperand addition problem and use
one pass through the multiplier’s carry-save adder tree, suitably augmented, to
compute it [Schw96].

With all the speedup methods discussed so far, the total division time can often be reduced
to that of two to five ordinary multiplications. This has made convergence division a
common choice for high-performance CPUs.

There are other ways to avoid multiple iterations besides starting with a very precise
estimate for 1/d . An interesting scheme has been proposed by Ito, Takagi, and Yajima
[Ito97] and refined by Matula [Matu01]. Let d = D+ 2−if , where D is d truncated to i
fractional bits and f is a fraction. By complementing the bits of d beyond the ith fractional
bit, we get e = D+2−i(1−f). The inverse of de = D2+2−iD+2−2if (1−f) is computed
easily via low-precision table lookup (and with even smaller tables if a bipartite table
scheme is used) because it has a small dependency on f . If the approximate inverse of
de is c, then z/d is obtained by rounding (ze)c for single precision and (ze)c[2− (de)c]
for double precision. This type of scaling of a number so that its inverse is more easily
found has also been used in a method due to Ercegovac et al. [Erce00].

16.6 ANALYSIS OF LOOKUP TABLE SIZE

The required table size, for radix 2 with the goal of w bits of convergence after the first
iteration (i.e., 1− 2−w ≤ dx(0+) ≤ 1+ 2−w), is given in the following theorem.

THEOREM 16.1 To get w ≥ 5 bits of convergence in the first iteration of divi-
sion by repeated multiplications, w bits of d (beyond the mandatory 1) must be
inspected. The factor x(0+) read out from the table is of the form (1. xxxx · · ·
xxxx)two, with w bits after the radix point [Parh87].

342 Chapter 16 Division by Convergence

Based on Theorem 16.1, the required table size is 2w × w and the first pair of
multiplications involve a (w + 1)-bit multiplier x(0+).

Aproof sketch for Theorem 16.1 begins as follows. Ageneral analysis for an arbitrary
radix r as well as a complete derivation of special cases that allow smaller tables (in
number of words and/or width) can be found elsewhere [Parh87]. These special cases
(r = 3 and w = 1, or r = 2 with w ≤ 4) almost never arise in practice, and we can
safely ignore them here.

Recall that our objective is to have 1− 2−w ≤ dx(0+) ≤ 1+ 2−w. Let

d = (0.1d−2d−3 · · · d−(w+1)d−(w+2) · · · d−l)two
−−−−−−−−−−

w bits to be inspected

Theorem 16.1 postulates the existence of x(0+) = (1.x+−1x+−2 · · · x+−w)two satisfying the
objective inequality. Let u = (1d−2d−3 · · · d−(w+1))two, satisfying 2w ≤ u < 2w+1, be
the integer composed of the first w + 1 bits of d . We have:

2−(w+1)u ≤ d < 2−(w+1)(u + 1)

Similarly, let v = (1x+−1x+2 · · · x+−w)two be obtained from x(0+) by removing its radix
point (multiplying it by 2w). From the preceding inequalities for d and because the
objective inequality can be rewritten as 2w − 1 ≤ dv ≤ 2w + 1, we derive the following
sufficient conditions:

2w − 1 ≤ 2−(w+1)uv and 2−(w+1)(u + 1)v ≤ 2w + 1

These conditions lead to the following restrictions on v:

2w+1(2w − 1)

u
≤ v ≤ 2w+1(2w + 1)

u + 1

The existence of x(0+), as postulated, is thus contingent upon the preceding inequalities
yielding an integer solution for v. This latter condition is equivalent to

⌈
2w+1(2w − 1)

u

⌉
≤

⌊
2w+1(2w + 1)

u + 1

⌋

Showing that this last inequality always holds is left as an exercise and completes the
“sufficiency” part of the proof. The “necessity” part—namely, that at least w bits of d
must be inspected and that x(0+) must have at least w bits after the radix point—is also
left as an exercise.

Thus, to achieve 8 bits of convergence after the initial pair of multiplications, we
need to look at 8 bits of d (beyond the mandatory 1) and read out an 8-bit fractional part
f for x(0+) = 1+ .f . Table 16.2 shows three sample entries in the required lookup table.
The first entry in this table has been determined as follows. Since d begins with the bit
pattern 0.1001 1011 1, its value is in the range

311/512 ≤ d < 312/512

Problems 343

Table 16.2 Sample entries in the lookup
table replacing the first four multiplications
in division by repeated multiplications

Address d = 0.1 xxxx xxxx x(0+) = 1.xxxx xxxx

55 0011 0111 1010 0101

64 0100 0000 1001 1001

189 1011 1101 0010 0110

Given the requirement for 8 bits of convergence after the first pair of multiplications,
the table entry f must be chosen such that

311/512(1+ .f) ≥ 1− 2−8

312/512(1+ .f) ≤ 1+ 2−8

From the preceding restrictions, we conclude that 199/311 ≤ .f ≤ 101/156, or for the
integer f = 256 × .f , 163.81 ≤ f ≤ 165.74. Hence, the table entry f can be either of
the integers 164 = (1010 0100)two or 165 = (1010 0101)two.

For the purpose of understanding and applying convergence division methods, it is
sufficient for the reader to follow the preceding derivation and to be able to duplicate
the computation for other table entries. As noted earlier, Theorem 16.1 assures us of the
existence of a valid table entry in all cases and, as part of the proof, provides closed-form
formulas for the lower and upper bounds of any given entry. So, the derivation of lookup
table entries can be completely automated.

PROBLEMS 16.1 Division by repeated multiplications

a. Perform the division z/d , with unsigned fractional dividend z =
(.0101 0110)two and divisor d = (.1011 1001)two, through repeated
multiplications.

b. Construct a table that provides the initial factor leading to 4 bits of conver-
gence after the first multiplication. Note that w = 4 is a special case that
leads to a smaller table compared with the one suggested by Theorem 16.1.

c. Perform the division of part a using the table of part b at the outset.

16.2 Division by repeated multiplications

a. Perform the division z/d , with unsigned fractional dividend z = (.4321)ten
and divisor d = (.4456)ten, through repeated multiplications.

b. Suggest a simple final correction to improve the accuracy of the result in
part a.

c. Construct a table that provides the initial multiplicative factor leading to one
decimal digit of convergence after the first multiplication.

d. Perform the division of part a using the table of part b at the outset.

344 Chapter 16 Division by Convergence

16.3 Iterative reciprocation

Using Newton–Raphson iterations and decimal arithmetic with six digits of
precision after the radix point throughout:

a. Compute the reciprocal of d = (.823 456)ten.
b. Compute the reciprocal of d = (.512 345)ten.
c. Construct a segment of the initial lookup table with 10 two-digit entries

(corresponding to d = .50, .51, · · · , .59, with an entry ij representing 1.ij) to
provide the best possible initial approximation to 1/d .

d. Repeat part b, this time using the table of part c at the outset.

16.4 Iterative reciprocation

a. Compute the reciprocal of d = (.318 310)ten ≈ 1/π using x(i+1) =
x(i)(2− x(i)d) and arithmetic with six digits after the decimal point through-
out. Keep track of the difference between x(i) and π to determine the number
of iterations needed.

b. Repeat part a, using the expansion 1/d = 1/(1− y) ≈ (1+ y)(1+ y2)(1+
y4) · · · , where y = 1 − d , instead of the Newton–Raphson iteration. Each
term 1+ y2i+1

is computed by squaring y2i
and adding 1.

c. Compare the methods of parts a and b and discuss.

16.5 Division by reciprocation

a. Perform the division z/d , with unsigned fractional dividend z =
(.0101 0110)two and divisor d = (.1010 1100)two, through reciprocation.

b. Construct a table of approximate reciprocals providing 4 bits of convergence
(i.e., the product of the approximate reciprocal and d should have four leading
0s or 1s).

c. Perform the division of part a using the table of part b at the outset.
d. Based on the example of part b, formulate and prove a theorem, similar to

Theorem 16.1, for the initial reciprocal approximation.

16.6 Division by reciprocation

An alternative Newton–Raphson iterative method for computing the reciprocal
of d uses f (x) = (x−1+1/d)/(x−1), which has a root at the complement of 1/d .

a. Find the alternative iteration formula.
b. Compute the error term and prove quadratic convergence.
c. Use this alternative method to compute the reciprocal of d = (.823 456)ten.
d. Use this alternative method to compute the reciprocal of d = (.512 345)ten.
e. Comment on this new algorithm compared with the original one.

16.7 Division by reciprocation

a. Derive the maximum error for the starting approximation x(0) = 4(
√

3− 1)

−2d in division by reciprocation.
b. Find the best linear approximation involving a multiply-add operation and

compare its worst-case error to the error of part a.

Problems 345

16.8 Table lookup for convergence division

a. Complete the “sufficiency” proof of Theorem 16.1 by showing that the
inequality 	2w+1(2w−1)/u
 ≤ �2w+1(2w+1)/(u+1)� always holds. Hint:
Let q and s (s ≤ u) be the quotient and remainder of dividing 2w+1(2w + 1)

by u+ 1. The right-hand side of the inequality is thus q. Try simplifying the
left-hand side.

b. Construct the “necessity” part of the proof of Theorem 16.1 by showing that
x(0+) satisfying 1 − 2−w ≤ dx(0+) ≤ 1 + 2−w cannot have fewer than w
bits after the radix point and cannot be obtained by inspecting fewer than w
bits of d .

16.9 Convergence division with truncated multipliers

a. Prove that in division through repeated multiplications, a truncated denomi-
nator d (i), with a identical leading bits and b extra bits (b ≤ a), will lead to
a new denominator d (i+1) with at least a + b identical leading bits.

b. Briefly discuss the implications of the result of part a for an arithmetic unit that
uses an initial table lookup to obtain 8 bits of convergence and can perform
18×64 multiplications about 2.5 times as fast as full 64×64 multiplications.

16.10 Cubic convergence method

Consider the following iterative formula for finding an approximate root
of a nonlinear function f [Pozr98]: x(i+1) = x(i) − [f (x(i))/f ′(x(i))][1 +
f (x(i))f ′′(x(i))/(2f ′2(x(i)))].
a. Show that this iterative scheme exhibits cubic convergence.
b. Discuss the practical use of this method for function evaluation.

16.11 Cubic convergence method

Consider the following iterative formula for finding an approximate root of a non-
linear function f : x(i+1) = x(i) − 2f (x(i))f ′(x(i))/[2(f ′(x(i)))2 − f (x(i))f ′′(x(i))].
a. Show that this iterative scheme exhibits cubic convergence.
b. Try out the iterative formula for a nonlinear function of your choosing.
c. Discuss the practicality of the formula for function evaluation in digital

computers.

16.12 Table lookup for convergence division

Justify the second entry in Table 16.2 in the same manner as was done for the
first entry in Section 16.6. Then, supply the entries for the addresses 5, 158,
and 236.

16.13 Mystery convergence method

The following two iterative formulas are applied to a bit-normalized binary frac-
tion z in [1/2, 1): u(i+1) = u(i)(x(i))2 with u(0) = z and v(i+1) = v(i)x(i) with
v(0) = z.

a. Determine the function v = g(z) that is computed if x(i) = 1+ (1− u(i))/2.

346 Chapter 16 Division by Convergence

b. Discuss the number of iterations that are needed and the operations that are
executed in each iteration.

c. Suggest how the multiplicative term x(i) might be calculated.
d. Estimate the error in the final result.
e. Suggest ways to speed up the calculation.
f. Calculate the 8-bit result v = g(z) using the procedure above and compare

it with the correct result, given z = (.1110 0001)two.

16.14 Table lookup for reciprocal approximation

Inspecting w bits of the divisor in the initial table lookup for division by reci-
procation divides the divisor range into 2w equal-width intervals [a(i), b(i)).

a. Show that a table entry equal to the average of 1/a(i) and 1/b(i) minimizes
the worst-case error.

b. Show that a table entry equal to 2/(a(i) + b(i)), that is, the reciprocal of the
midpoint of the interval, minimizes the average-case error, assuming uniform
distribution of divisor values.

16.15 Table lookup for reciprocal approximation

Inspecting w bits of the divisor in the initial table lookup for division by reciproca-
tion divides the divisor range into 2w equal-width intervals. Prove that rounding
the reciprocals of the midpoints of these intervals provides minimal worst-case
relative errors in a w-bits-in, (w + b)-bits-out table [DasS94].

16.16 Division by convergence

Consider the recurrences s(j) = rs(j−1) − q−jd and q(j) = rq(j−1) + q−j, dis-
cussed in Section 16.1. We can take a somewhat more general view of these
recurrences by rewriting q−j as γj, an estimate for the rest of the quotient rather
than its next digit. The estimate is obtained by table lookup based on a few high-
order bits in rs(j−1). With this more general view, the second recurrence must be
evaluated through addition rather than by concatenation (shifting the next digit
into a register). Evaluate the suitability of this method for division via repeated
multiplications [Wong92].

16.17 Sequential versus convergence division

Suppose multiplication and addition take 5 and 1 time units, respectively, and
that all support and control functions (counting, conditionals, register transfers,
etc.) take negligible time due to overlapped processing. Be brief and state all
your assumptions clearly.

a. Express the time needed for simple binary restoring division as a function of
the word width k.

b. Express the time needed for division by repeated multiplications (without an
initial table lookup or other speedup methods) as a function of k.

Problems 347

c. Compare the results of parts a and b. Comment on the speed/cost tradeoffs
for different word widths.

16.18 Iterative reciprocation

a. Compute the reciprocal of d = (.1100 0000)two using x(i+1) = x(i)(2−x(i)d)

and arithmetic with 12 bits after the radix point throughout.
b. Repeat part a, using the expansion 1/d = 1/(1− y) ≈ (1+ y)(1+ y2)(1+

y4) · · · , where y = 1 − d , instead of the Newton-Raphson iteration. Each
term 1+ y2i+1

is computed by squaring y2i
and adding 1.

c. Compare the results of parts a and b and discuss.

16.19 Newton-Raphson method

a. Develop an iterative scheme based on the Newton-Raphson method for
finding a root of sin x = 0.

b. Use the method of part a to find a root of sin x = 0 beginning with the initial
value 3.

c. Show that the method of part a has cubic convergence.
d. What is the convergence rate in finding a root of tan x = 0?

16.20 Newton-Raphson method

Show that the inverse of a square matrix A can be computed by an extension of
the Newton-Raphson method as the limit of the sequence of matrices X (i), where
X (i+1) = X (i)(2I − X (i)), for a reasonable initial guess X (0).

16.21 Division through multiplication

In one scheme to perform division through multiplication, the divisor y, assumed
to be a floating-point significand with a hidden 1, is divided into the high part h
and the low part l, with y = h+ l and l � h.

a. Show that x/y ≈ x(h− l)/h2.
b. Discuss how the approximate equality of part a can be used to perform

division via a table lookup, one subtraction, and two multiplications.
c. Show that the subtraction in part b can be avoided via a modified form of

Booth’s recoding in the first multiplication.
d. Supply the design details, including table size and data-path widths, for

a divider based on parts a-c. Assume 24-bit operands (hidden 1, plus 23
fractional bits) and a 13-bit h part.

16.22 Convergence in division by reciprocation

Here is an alternate method of proving that division by reciprocation converges
quadratically. Let the ith estimate x(i) of the reciprocal 1/d have a relative error
ε, that is, x(i) = (1 + ε)(1/d). By plugging this expression for x(i) into the
recurrence equation x(i+1) = x(i)(2 − x(i)d), derive the relative error of x(i+1).
Discuss the consequences of a positive or negative value for ε.

348 Chapter 16 Division by Convergence

REFERENCES AND FURTHER READINGS

[Alve91] Alverson, R., “Integer Division Using Reciprocals,” Proc. 10th Symp. Computer
Arithmetic, pp. 186–190, 1991.

[Ande67] Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers, “The IBM
System/360 Model 91: Floating-Point Execution Unit,” IBM J. Research and
Development, Vol. 11, No. 1, pp. 34–53, 1967.

[DasS94] DasSarma, D., and D. W. Matula, “Measuring the Accuracy of ROM Reciprocal
Tables,” IEEE Trans. Computers, Vol. 43, No. 8, pp. 932–940, 1994.

[Erce00] Ercegovac, M. D., T. Lang, J.-M. Muller, and A. Tisserand, “Reciprocation, Square
Root, Inverse Square Root, and Some Elementary Functions Using Small
Multipliers,” IEEE Trans. Computers, Vol. 49, No. 7, pp. 628–637, 2000.

[Ferr67] Ferrari, D., “A Division Method Using a Parallel Multiplier,” IEEE Trans. Electronic
Computers, Vol. 16, pp. 224–226, 1967

[Flyn70] Flynn, M. J., “On Division by Functional Iteration,” IEEE Trans. Computers, Vol. 19,
pp. 702–706, 1970.

[Ito97] Ito, M., N. Takagi, and S. Yajima, “Efficient Initial Approximation for Multiplicative
Division and Square Root by a Multiplication with Operand Modification,” IEEE
Trans. Computers, Vol. 46, No. 4, pp. 495–498, 1997.

[Kris70] Krishnamurthy, E. V., “On Optimal Iterative Schemes for High Speed Division,”
IEEE Trans. Computers, Vol. 19, No. 3, pp. 227–231, 1970.

[Mand95] Mandelbaum, D. M., “Division Using a Logarithmic-Exponential Transform to Form
a Short Reciprocal,” IEEE Trans. Computers, Vol. 44, No. 11, pp. 1326–1330, 1995.

[Matu01] Matula, D. W., “Improved Table Lookup Algorithms for Postscaled Division,” Proc.
15th Symp. Computer Arithmetic, pp. 101–108, 2001.

[Nann06] Nannarelli, A., M. S. Rasmussen, and M. B. Stuart, “A 1.5 GFLOPS Reciprocal Unit
for Computer Graphics,” Proc. 40th Asilomar Conf. Signals, Systems, and
Computers, 2006, pp. 1682–1686.

[Ober97] Oberman, S. F., and M. J. Flynn, “Division Algorithms and Implementations,” IEEE
Trans. Computers, Vol. 46, No. 8, pp. 833–854, 1997.

[Ober99] Oberman, S. F., “Floating-Point Division and Square Root Algorithms and
Implementation in the AMD-K7 Microprocessor,” Proc. 14th IEEE Symp. Computer
Arithmetic, pp. 106–115, 1999.

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture and
Implementation, Prentice-Hall, 1994.

[Parh87] Parhami, B., “On the Complexity of Table Look-Up for Iterative Division,” IEEE
Trans. Computers, Vol. 36, No. 10, pp. 1233–1236, 1987.

[Pozr98] Pozrikidis, C., Numerical Computation in Science and Engineering, Oxford, 1998,
p. 203.

[Schw96] Schwarz, E. M., and M. J. Flynn, “Hardware Starting Approximation Method and Its
Application to the Square Root Operation,” IEEE Trans. Computers, Vol. 45, No. 12,
pp. 1356–1369, 1996.

[Wong92] Wong, D., and M. Flynn, “Fast Division Using Accurate Quotient Approximations to
Reduce the Number of Iterations,” IEEE Trans. Computers, Vol. 41, No. 8, pp.
981–995, 1992.

VREAL ARITHMETIC

■ ■ ■

“It is the mark of an educated man to look for precision in each class of things just so far as
the nature of the subject admits.”

A R I S T O T L E

“All exact science is dominated by the idea of approximation.”
B E R T R A N D A . R U S S E L L

■ ■ ■

I N MANY SCIENTIFIC AND ENGINEERING COMPUTATIONS, NUMBERS IN A WIDE RANGE,

from very small to extremely large, are processed. Fixed-point

number representations and arithmetic are ill-suited to such

applications. For example, a fixed-point decimal number system

capable of representing both 10−20 and 1020 would require at

least 40 decimal digits and even then, would not offer much pre-

cision with numbers close to 10−20.Thus, we need special number

representations that possess both a wide range and acceptable

precision. Floating-point numbers constitute the primary mode of

real arithmetic in most digital systems. In this part, we discuss key

topics in floating-point number representation, arithmetic, and

computational errors. Additionally, we cover alternative represen-

tations, such as logarithmic and rational number systems, that can

offer certain advantages in range and/or accuracy. This part is

composed of the following four chapters:

C H A P T E R 17
Floating-Point Representations

C H A P T E R 18
Floating-Point Operations

C H A P T E R 19
Errors and Error Control

C H A P T E R 20
Precise and Certifiable Arithmetic

349

17 Floating-Point
Representations

■ ■ ■

“I shall speak in round numbers, not absolutely accurate, yet not so wide from truth
as to vary the result materially.”

T H O M A S J E F F E R S O N

■ ■ ■

I n Chapters 1–3, we dealt with various methods for representing fixed-point

numbers. Such representations suffer from limited range and/or precision, in the

sense that they can provide high precision only by sacrificing the dynamic range, and

vice versa. By contrast, a floating-point number system offers both a wide dynamic

range for accommodating extremely large numbers (e.g., astronomical distances)

and high precision for very small numbers (e.g., atomic distances). Chapter topics

include:

17.1 Floating-Point Numbers

17.2 The IEEE Floating-Point Standard

17.3 Basic Floating-Point Algorithms

17.4 Conversions and Exceptions

17.5 Rounding Schemes

17.6 Logarithmic Number Systems

17.1 FLOATING-POINT NUMBERS

Clearly, no finite representation method is capable of representing all real numbers, even
within a small range. Thus, most real values will have to be represented in an approximate
manner. Various methods of representation can be used:

351

352 Chapter 17 Floating-Point Representations

Fixed-point number systems: offer limited range and/or precision. Computations
must be “scaled” to ensure that values remain representable and that they do not lose
too much precision.

Rational number systems: approximate a real value by the ratio of two integers. Lead
to difficult arithmetic operations (see Section 20.2).

Floating-point number systems: the most common approach; discussed in Chapters
17–20.

Logarithmic number systems: represent numbers by their signs and logarithms.
Attractive for applications needing low precision and wide dynamic range. Can
be viewed as a limiting special case of floating-point representation (see Sections
17.6 and 18.6).

Fixed-point representation leads to equal spacing in the set of representable numbers.
Thus the maximum absolute error is the same throughout (ulp with truncation and
ulp/2 with rounding). The problem with fixed-point representation is illustrated by the
following examples:

x = (0000 0000. 0000 1001)two Small number
y = (1001 0000. 0000 0000)two Large number

The relative representation error due to truncation or rounding is quite significant for x
while it is much less severe for y. On the other hand, both x2 and y2 are unrepresentable,
because their computations lead to underflow (number too small) and overflow (too
large), respectively.

The other three representation methods listed lead to denser codes for smaller values
and sparser codes for larger values. However, the code assignment patterns are different,
leading to different ranges and error characteristics. For the same range of representable
values, these representations tend to be better than fixed-point systems in terms of average
relative representation error, even though the absolute representation error increases as
the values get larger.

The numbers x and y in the preceding examples can be represented as (1.001)two×2−5

and (1.001)two×2+7, respectively. The exponent−5 or+7 essentially indicates the direc-
tion and amount by which the radix point must be moved to produce the corresponding
fixed-point representation shown above. Hence the designation floating-point numbers.

Afloating-point number has four components: the sign, the significand s, the exponent
base b, and the exponent e. The exponent base b is usually implied (not explicitly
represented) and is usually a power of 2, except, for decimal arithmetic, where it is 10.
Together, these four components represent the number

x = ±s× be or ± significand × baseexponent

A typical floating-point representation format is shown in Fig. 17.1. A key point to
observe is that two signs are involved in a floating-point number.

1. The significand or number sign indicates a positive or negative floating-point
number and is usually represented by a separate sign bit (signed-magnitude
convention).

Floating-Point Numbers 353

E x p o n e n t
Signed integer,
often represented
as unsigned value
by adding a bias.

Range with h bits:
[–bias, 2 – 1 – bias].h

S i g n i f i c a n d
Represented as a fixed-point number

Usually normalized by shifting,
so that the MSB becomes nonzero.
In radix 2, the fixed leading 1
can be removed to save 1 bit;
this bit is known as “hidden 1.”

Sign

0 : +
1 : –

± e s

Figure 17.1 Typical floating-point number format.

–� + �0
FLP– FLP+

Underflow
 regions

Overflow
 region

Overflow
 region

maxmin

Denser Sparser

Positive
numbers

Negative
numbers

–max –min

DenserSparser

.

Figure 17.2 Subranges and special values in floating-point number representations.

2. The exponent sign, roughly speaking, indicates a large or small number and is
usually embedded in the biased exponent (Section 2.2). When the bias is a power
of 2 (e.g., 128 with an 8-bit exponent), the exponent sign is the complement of
its most-significant bit (MSB).

The use of a biased exponent format has virtually no effect on the speed or cost of
exponent arithmetic (addition/subtraction), given the small number of bits involved. It
does, however, facilitate zero detection (zero can be represented with the smallest biased
exponent of 0 and an all-zero significand) and magnitude comparison (we can compare
normalized floating-point numbers as if they were integers).

The range of values in a floating-point number representation format is composed of
the intervals [−max,−min] and [min, max], where

max = largest significand× blargest exponent

min = smallest significand× bsmallest exponent

Figure 17.2 shows the number distribution pattern and the various subranges in floating-
point (FLP) representations. In particular, it includes the three special or singular values
−∞, 0, and +∞ (0 is special because it cannot be represented with a normalized
significand) and depicts the meanings of overflow and underflow. Overflow occurs when
a result is less than −max or greater than max. Underflow, on the other hand, occurs for
results in the range (−min, 0) or (0, min).

Within the preceding framework, many alternative floating-point representation
formats can be devised. In fact, before the Institute of Electrical and Electronics Engi-
neers (IEEE) standard format (see Section 17.2) was adopted, numerous competing,
and incompatible, floating-point formats existed in digital computers. Even now that

354 Chapter 17 Floating-Point Representations

the IEEE standard format is dominant, on certain occasions in the design of special-
purpose systems, the designer might choose a different format for performance or cost
reasons.

The equation x = ±s × be for the value of a floating-point number suggests that
the range [−max, max] increases if we choose a larger exponent base b. A larger b
also simplifies arithmetic operations on the exponents, since for a given range, smaller
exponents must be dealt with. However, if the significand is to be kept in normalized
form, effective precision decreases for larger b. In the past, machines with b = 2, 8, 16,
or 256 were built. But the modern trend is to use b = 2 to maximize the precision with
normalized significands.

The exponent sign is almost always encoded in a biased format, for reasons given
earlier in this section. As for the sign of a floating-point number, alternatives to the
currently dominant signed-magnitude format include the use of 1’s- or 2’s-complement
representation. Several variations have been tried in the past, including the comple-
mentation of the significand part only and the complementation of the entire number
(including the exponent part) when the number to be represented is negative.

Once we have fixed b and assigned 1 bit to the number sign, the next question is the
allocation of the remaining bits to the exponent and significand parts. Devoting more bits
to the exponent part widens the number representation range but reduces the precision.
So, the designer’s choice is dictated by the range and precision requirements of the
application(s) at hand.

The final question, given the allocation of a total of m bits for the binary fixed-
point significand s, is the choice of k, the number of whole bits to the left of the radix
point in s. Again, many variations appeared in the past. The choice k = 0 leads to
a fractional significand in the range [0, 1), sometimes referred to as the mantissa. At
the other extreme, choosing k = m leads to an integer significand that increases both
max and min (see Fig. 17.2), thus narrowing the overflow region and widening the
underflow region. The same effect can be achieved by choosing an off-center bias for the
exponent.

The only other common choice for the number of whole bits in the significand of
a floating-point number, and the one used in the IEEE standard, is k = 1, leading to
significands in the range [1, 2). With normalized binary significands, this single whole
bit, which is always 1, can be dropped and the significand represented by its fractional
part alone.

Virtually all digital computers have separate formats for integers and floating-point
numbers, even though, in principle, k-digit integers can be represented in a floating-point
format that has a k-digit significand. One reason is that integer arithmetic is both simpler
and faster; thus there is no point in subjecting integers to unnecessary complications.
Another reason is that with a separate integer format, which has no exponent part, larger
numbers can be represented exactly.

If one chooses to have a common format for integers and floating-point numbers, it
is a good idea to include an “inexact flag” in the representation. For numbers that have
exact representations in the floating-point format, the inexact flag may be set to 0. When
the result of a computation with exact operands is too small or too large to be represented
exactly, the inexact flag of the result can be set to 1. Note that dealing with this inexact
flag is another source of complexity.

The ANSI/IEEE Floating-Point Standard 355

17.2 THE IEEE FLOATING-POINT STANDARD

In the early days of digital computers, it was quite common for machines from various
vendors to have different word widths and unique floating-point formats. Word widths
were standardized at powers of 2 early on, with nonconforming word widths such as 24,
36, 48, and 60 bits all but disappearing. However, even after 32- and 64-bit words became
the norm, different floating-point formats persisted. A main objective in developing a
standard floating-point representation is to make numerical programs predictable and
completely portable, in the sense of producing the same results when run on different
machines.

The IEEE floating-point standard [IEEE85] was finalized in 1984, following several
years of discussion in committees and through technical publications. This standard is
often referred to as “IEEE 754,” although its complete name is “ANSI/IEEE Standard
754-1985” (ANSI is American National Standards Institute). By the time IEEE 754
was formally approved and published, it had already been adopted by several computer
manufacturers. Adoptions grew steadily over the years, although implementations have
differed widely on details that were not explicitly, or clearly, spelled out in the standard.
In mid 2008, following some 8 years of spirited discussions, a revised version of the
standard, initially known as “IEEE 754R,” was approved. The IEEE 754-2008 stan-
dard contains several clarifications, changes, and additions, with decimal floating-point
formats and arithmetic, inclusion of 16- and 128-bit binary formats, precisely speci-
fied base conversions for input/output, and provision of a fused-multiply-add (FMA)
operation being the most notable new features. We will not cover decimal formats here,
but encourage interested readers to explore them through the end-of-chapter problems.
Unless explicitly stated, we use IEEE 754-2008 formats, terminology, and interpreta-
tions. In particular, we use “subnormal numbers” or “subnormals” to refer to what were
denormalized numbers or denormals in IEEE 754-1985.

The four binary representation formats in IEEE 754-2008 are depicted in Fig. 17.3.
The short, or single-precision, format is 32 bits wide, whereas the long, or double-
precision, version requires 64 bits. These two most common formats have 8- and 11-bit
exponent fields and use exponent biases of 127 and 1023, respectively. The significand
is in the range [1, 2), with its single whole bit, which is always 1, removed and only the
fractional part shown. The notation “23+ 1” or “52+ 1” for the width of the significand
is meant to explicate the role of the hidden bit, which does contribute to the precision
without taking up space.

Sign

 8 bits, bias = 127

 5 bits, bias = 15

11 bits, bias = 1023

15 bits, bias = 16 383

Biased exponent Significand s = 1.f (the 1 is hidden)

+ 1 bits, single-precision or short format

+ 1 bits, half precision format

+ 1 bits, double-precision or long format

+ 1 bits, quadruple-precision format

32-bit:

16-bit:

64-bit:

128-bit:

± e + bias f

112

52

23

10

Figure 17.3 The IEEE 754-2008 binary floating-point number representation formats.

356 Chapter 17 Floating-Point Representations

Table 17.1 Some features of the IEEE 754-2008 short and long
floating-point formats

Feature Single/Short Double/Long

Word width, bits 32 64

Significand bits 23+ 1 hidden 52 + 1 hidden

Significand range [1, 2 −2−23] [1, 2 −2−52]

Exponent bits 8 11

Exponent bias 127 1023

Zero (±0) e + bias = 0, f = 0 e + bias = 0, f = 0

Subnormal e + bias = 0, f �= 0 e + bias = 0, f �= 0

represents ±0.f × 2−126 represents ±0.f × 2−1022

Infinity (±∞) e + bias = 255, f = 0 e + bias = 2047, f = 0

Not-a-number (NaN) e + bias = 255, f �= 0 e + bias = 2047, f �= 0

Ordinary number e + bias ∈ [1, 254] e + bias ∈ [1, 2046]
e ∈ [−126, 127] e ∈ [−1022, 1023]
represents 1.f × 2e represents 1.f × 2e

min 2−126 ≈ 1.2× 10−38 2−1022 ≈ 2.2× 10−308

max ≈ 2128 ≈ 3.4× 1038 ≈ 21024 ≈ 1.8× 10308

Table 17.1 summarizes the most important features of the IEEE 754-2008 short and
long formats. The other two binary floating-point formats of IEEE 754-2008 are not
included in Table 17.1. The 16-bit, half-precision format is suitable for cost-sensitive
(and energy-limited) designs in gaming, entertainment, and certain control and automa-
tion applications that do not need much precision. The 128-bit format is intended to
serve the precision requirements of a limited number of scientific computations and to
provide added precision for systems that are already using extended-precision formats
for intermediate results during short- or long-format calculations. Most importantly, the
128-bit, quadruple-precision format is a forward-looking feature that may find more
applications, as computing moves into new domains.

Regarding the decimal formats, we only mention that they come in 32-, 64-, and
128-bit varieties and use a dense encoding that packs three decimal digits (000 to 999)
into 10 bits (1024 possible values), instead of binary-coded decimal encoding, which
would have required 12 bits for three decimal digits.

Since 0 cannot be represented with a normalized significand, a special code must
be assigned to it. In IEEE 754-2008, zero has the all-0s representation, with positive
or negative sign. Special codes are also needed for representing ±∞ and NaN (not-a-
number). The NaN special value is useful for representing undefined results such as 0/0.
When one of these special values appears as an operand in an arithmetic operation, the
result of the operation is specified according to defined rules that are part of the standard.
For example:

Ordinary number÷ (+∞) = ±0

(+∞)× Ordinary number = ±∞
NaN + Ordinary number = NaN

The ANSI/IEEE Floating-Point Standard 357

0 2
–126Subnormals 2

–125

.

min

. . .

Figure 17.4 Subnormals in the IEEE single-precision format.

The special codes thus allow exceptions to be propagated to the end of a computation
rather than bringing it to a halt. More on this later.

Subnormals, or subnormal values, are defined as numbers without a hidden 1 and
with the smallest possible exponent. They are provided to make the effect of underflow
less abrupt. In other words, certain small values that are not representable as normalized
numbers, hence must be rounded to 0 if encountered in the course of computations,
can be represented more precisely as subnormals. For example, (0.0001)two × 2−126

is a subnormal that does not have a normalized representation in the IEEE single/short
format. Because this “graceful underflow” provision can lead to cost and speed overhead
in hardware, many implementations of the standard do not support subnormals, opting
instead for the faster “flush to zero” mode. Figure 17.4 shows the role of subnormals in
providing representation points in the otherwise empty interval (0, min).

The IEEE 754-2008 standard also defines the four basic arithmetic operations (add,
subtract, multiply, divide), as well as FMA and square-root, with regard to the expected
precision in their results. Basically, the results of these operations must match the results
that would be obtained if all intermediate computations were carried out with infinite
precision. Thus, it is up to the designers of floating-point hardware units adhering
to IEEE 754-2008 to carry sufficient precision in intermediate results to satisfy this
requirement.

Finally, IEEE 754-2008 defines extended formats that allow implementations to carry
higher precisions internally to reduce the effect of accumulated errors. Two extended
binary formats are defined:

Single-extended: ≥ 11 bits for exponent, ≥ 32 bits for significand
(Bias unspecified, but exponent range must include [−1022, 1023].)

Double-extended: ≥ 15 bits for exponent, ≥ 64 bits for significand
(Bias unspecified, but exponent range must include [−16 382, 16 383].)

The use of an extended format does not, in and of itself, guarantee that the precision
requirements of floating-point operations will be satisfied. Rather, extended formats
are useful for controlling error propagation in a sequence of arithmetic operations.
For example, when adding a list of floating-point numbers, a more precise result is
obtained if positive and negative values are added separately, with the two subtotals
combined in a final addition (we discuss computation errors in Chapter 19). Now if
the list of numbers has thousands of elements, it is quite possible that computing one
or both subtotals will lead to overflow. If an extended format is used (single-extended
with short operands, double-extended for long operands), overflow becomes much less
likely.

358 Chapter 17 Floating-Point Representations

17.3 BASIC FLOATING-POINT ALGORITHMS

Basic arithmetic on floating-point numbers is conceptually simple. However, care must
be taken in hardware implementations for ensuring correctness and avoiding undue loss
of precision; moreover, it must be possible to handle any exceptions.

Addition and subtraction are the most difficult of the elementary operations for
floating-point operands. Here, we deal only with addition, since subtraction can be
converted to addition by flipping the sign of the subtrahend. Consider the addition

(±s1× be1)+ (±s2× be2) = ±s× be

Assuming e1 ≥ e2, we begin by aligning the two operands through right-shifting of the
significand s2 of the number with the smaller exponent:

±s2× be2 = ±s2

be1−e2
× be1

If the exponent base b and the number representation radix r are the same, we simply
shift s2 to the right by e1− e2 digits. When b = ra, the shift amount, which is computed
through direct subtraction of the biased exponents, is multiplied by a. In either case, this
step is referred to as alignment shift, or preshift (in contrast to normalization shift or
postshift, which is needed when the resulting significand s is unnormalized). We then
perform the addition as follows:

(±s1× be1)+ (±s2× be2) = (±s1× be1)+
(±s2

be1−e2
× be1

)

=
(
±s1± s2

be1−e2

)
× be1 = ±s× be

When the operand signs are alike, a 1-digit normalizing shift is always enough. For
example, with the IEEE format, we have 1 ≤ s < 4, which may have to be reduced by
a factor of 2 through a 1-bit right shift (and adding 1 to the exponent to compensate).
However, when the operands have different signs, the resulting significand may be
very close to 0 and left shifting by many positions may be needed for normalization.
Overflow/underflow can occur during the addition step as well as due to normalization.

Floating-point multiplication is simpler than floating-point addition; it is performed
by multiplying the significands and adding the exponents:

(±s1× be1)× (±s2× be2) = ±(s1× s2)× be1+e2

Postshifting may be needed, since the product s1 × s2 of the two significands can be
unnormalized. For example, with the IEEE format, we have 1 ≤ s1× s2 < 4, leading to
the possible need for a 1-bit right shift. Also, the computed exponent needs adjustment
if the exponents are biased or if a normalization shift is performed. Overflow/underflow
is possible during multiplication if e1 and e2 have like signs; overflow is also possible
due to normalization.

Conversions and Exceptions 359

Similarly, floating-point division is performed by dividing the significands and
subtracting the exponents:

±s1× be1

±s2× be2
= ± s1

s2
× be1−e2

Here, problems to be dealt with are similar to those of multiplication. The ratio
s1/s2 of the significands may have to be normalized. With the IEEE format, we have
1/2 < s1/s2 < 2 and a 1-bit left shift is always adequate. The computed exponent
needs adjustment if the exponents are biased or if a normalizing shift is performed. Over-
flow/underflow is possible during division if e1 and e2 have unlike signs; underflow due
to normalization is also possible.

Fused-multiply-add is basically a floating-point multiplication followed by an addi-
tion, with a single rounding operation occurring at the very end. In other words,
FMA(a, x, b) = ax + b will have no overflow/underflow or precision loss during its
multiplication portion, with exceptions or rounding errors, if any, occurring only during
the addition phase. Thus, the result of FMA(a, x, b) may be different from the result
obtained if separate floating-point multiplication and addition are performed. Many pro-
cessors already offer instructions for FMA. Defining this operation as part of IEEE
754-2008 allows more applications to benefit from its enhanced error characteristics, in
portable and reproducible computations.

To extract the square root of a positive floating-point number, we first make its
exponent even. This may require subtracting 1 from the exponent and multiplying the
significand by b. We then use the following:

√
s× be = √

s× be/2

In the case of IEEE floating-point numbers, the adjusted significand will be in the range
1 ≤ s < 4, which leads directly to a normalized significand for the result. Square-rooting
never produces overflow or underflow.

In the preceding discussion, we ignored the need for rounding. The product s1×s2 of
two significands, for example, may have more digits than can be accommodated. When
such a value is rounded so that it is representable with the available number of digits,
the result may have to be normalized and the exponent adjusted again. Thus, though the
event is quite unlikely, rounding can potentially lead to overflow as well.

17.4 CONVERSIONS AND EXCEPTIONS

An important requirement for the utility of a floating-point system is the ability to convert
decimal or binary numbers from/to the format for input/output purposes. Also, at times
we need to convert numbers from one floating-point format to another (say from double-
to single-precision, or from single-precision to extended-single). These conversions, and
their error characteristics, are also spelled out as part of the IEEE 754-2008 standard.

Whenever a number with higher precision is to be converted to a format offering
lower precision (e.g., double-precision or extended-single to single-precision), rounding

360 Chapter 17 Floating-Point Representations

is required as part of the conversion process. The same applies to conversions between
integer and floating-point formats. Because of their importance, rounding methods, are
discussed separately in Section 17.5. Here, we just mention that IEEE 754-2008 includes
five rounding modes, two round-to-nearest modes, with different rules for breaking ties,
and three directed rounding modes:

Round to nearest, ties to even (rtne)

Round to nearest, ties away from zero (rtna)

Round toward zero (inward).

Round toward +∞ (upward).

Round toward −∞ (downward).

The first of these is the default rounding mode. The latter two rounding modes find
applications in performing interval arithmetic (see Section 19.5). To use a rounding mode
other than the default “rtne,” the rounding mode must be set by assigning appropriate
values to mode variables. These modes define how rounding is to be performed and will
remain at their assigned values until explicitly modified.

Another important requirement for any number representation system is defining the
order of values in comparisons that yield true/false results. Such comparisons are needed
for conditional computations such as “if x > y then. . ..” The IEEE 754-2008 standard
defines comparison results in a manner that is consistent with mathematical laws and
intuition. Clearly comparisons of ordered values (ordinary floating-point numbers, ±0,
and ±∞) should yield the expected results (e.g., −∞ < +0 should yield “true”). The
two representations of 0 are considered to be the same number, so +0 > −0 yields
“false.” It is somewhat less clear what the results of comparisons such as NaN �= NaN
(true) or NaN ≤ +∞ (false) should be. The general rule is that NaN is considered
unordered with everything, including itself. For detailed rules concerning comparison
predicates, including whether, and if so, how, they signal exceptions, the reader is invited
to consult the IEEE 754-2008 standard document [IEEE08].

When the values being compared have different formats (e.g., single vs. single-
extended or single vs. double), the result of comparison is defined based on infinitely
precise versions of the two numbers being compared.

Besides the exception signaled when certain comparisons between unordered values
are performed, IEEE 754-2008 also defines exceptions associated with divide-by-0,
overflow, underflow, inexact result, and invalid operation. The first three conditions are
obvious. The inexact exception is signaled when the rounded result of an operation or
conversion is not exactly representable in the destination format. The invalid operation
exception occurs in the following situations, among others:

Addition: (+∞)+ (−∞)

Multiplication: 0×∞
Division: 0/0 or ∞/∞
Square-root: Operand < 0

The foregoing discussion of conversions and exceptions in IEEE 754-2008 is adequate for
our purposes in this book. For a more complete description, refer to the IEEE 754-2008
standard document [IEEE08].

Rounding Schemes 361

17.5 ROUNDING SCHEMES

Rounding is needed to convert higher-precision values, or intermediate computation
results with additional digits, to lower-precision formats for storage and/or output. In the
discussion that follows, we assume that an unsigned number with integer and fractional
digits is to be rounded to an integer.

xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l
round−→ yk−1yk−2 · · · y1y0.

Rounding to a destination format that has l′ fractional digits, with 0 < l′ < l, is
equivalent to the above, with the radix point moved to the left by l′ positions on both
sides.

The simplest rounding method is truncation or chopping, which is accomplished by
dropping the extra bits:

xk−1xk−2 · · · x1x0.x−1x−2 · · · x−l
chop−→ xk−1xk−2 · · · x1x0.

The effect of chopping is different for signed-magnitude and 2’s-complement num-
bers. Figure 17.5 shows the effect of chopping on a signed-magnitude number. The
magnitude of the result y = chop(x) is always smaller than the magnitude of x. Thus,
this is sometimes referred to as “round toward 0.” Figure 17.6 shows that chopping a
2’s-complement number always reduces its value. This is known as “downward-directed
rounding” or “rounding toward −∞.”

With the rtna scheme, depicted in Fig. 17.7 for signed-magnitude numbers, a frac-
tional part of less than 1/2 is dropped, while a fractional part of 1/2 or more (.1xxx · · ·
in binary) leads to rounding to the next higher integer, or away from zero. The only
difference when this rule is applied to 2’s-complement numbers is that in Fig. 17.7, the

Figure 17.5
Truncation or
chopping of a
signed-magnitude
number (same as
round toward 0).

chop(x)

–4

–3

–2

–1

x
–4 –3 –2 –1 4 32 1

4

3

2

1

362 Chapter 17 Floating-Point Representations

Figure 17.6
Truncation or
chopping of a
2’s-complement
number (same as
downward-directed
rounding, or
rounding
toward−∞).

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

chop(x) = down(x)

Figure 17.7
Rounding of a
signed-magnitude
value to the nearest
number.

–4

–3

–2

–1

x
–4 –3 –2 –1 4 3 2 1

4

3

2

1

rtna(x)

heavy dots for negative values of x move to the left end of the respective heavy lines.
Thus, a slight upward bias is created. Such a bias exists for signed-magnitude numbers
as well if we consider only positive or negative values.

To understand the effect of this slight bias on computations, assume that a number
(xk−1 · · · x1x0.x−1x−2)two is to be rounded to an integer yk−1 · · · y1y0. The four possible
cases, and their representation errors are

x−1x−2 = 00 Round down error = 0
x−1x−2 = 01 Round down error = −0.25
x−1x−2 = 10 Round up error = 0.5
x−1x−2 = 11 Round up error = 0.25

Rounding Schemes 363

If these four cases occur with equal probability, the average error is 0.125. The resulting
bias may create problems owing to error accumulation. In practice, the situation may
be somewhat worse in that for certain calculations, the probability of getting a midpoint
value can be much higher than the 2−l probability of encountering the midpoint case
with l random bits.

One way to deal with the preceding problem is to always round to an even (or
odd) integer, thus causing the “midpoint” values (x−1x−2 = 10 in our example) to be
rounded up or down with equal probabilities. Rounding to the nearest even (rather than
odd) value has the additional benefit that it leads to “rounder” values and, thus, lesser
errors downstream in the computation. Figure 17.8 shows the effect of the rtne scheme
on signed-magnitude numbers. The diagram for 2’s-complement numbers is the same
(since, e.g., −1.5 will be rounded to −2 in either case). Round-to-nearest-even is the
default rounding scheme of IEEE 754-2008.

Another scheme, known as R* rounding, is similar to the preceding methods except
that for midpoint values (e.g., when x−1x−2 = 10), the fractional part is chopped and
the least-significant bit of the rounded result is forced to 1. Thus, in midpoint cases, we
round up if the least-significant bit happens to be 0 and round down when it is 1. This is
clearly the same as the “round-to-nearest-odd” scheme. Figure 17.9 contains a graphical
representation of R* rounding.

In all the rounding schemes discussed thus far, full carry-propagation over the k
integer positions is needed in the worst case. This requirement imposes an undesirable
overhead on floating-point arithmetic operations, especially since the final rounding is
always on the critical path. The next two methods, which eliminate this overhead, are
not used in practice because they are accompanied by other problems.

Jamming, or von Neumann rounding, is simply truncation with the least-significant
bit forced to 1. As shown in Fig. 17.10, this method combines the simplicity of chopping
with the symmetrical error characteristics of ordinary rounding (not rounding to nearest
even). However, its worst-case error is twice that of rounding to the nearest integer.

Figure 17.8
Rounding to the
nearest even number.

–4

–3

–2

–1

x
–4 –3 –2 –1 4 32 1

4

3

2

1

rtne(x)

364 Chapter 17 Floating-Point Representations

Figure 17.9 R∗
rounding or
rounding to the
nearest odd number.

–4

–3

–2

–1

x
–4 –3 –2 –1 4 32 1

4

3

2

1

R*(x)

Figure 17.10
Jamming or von
Neumann rounding.

–4

–3

–2

–1

x
–4 –3 –2 –1 4 32 1

4

3

2

1

jam(x)

The ROM rounding process is based on directly reading a few of the least-significant
bits of the rounded result from a table, using the affected bits, plus the most significant
(leftmost) dropped bit, as the address. For example, if the 4 bits y3y2y1y0 of the rounded
result are to be determined, a 32× 4 ROM table can be used that takes x3x2x1x0x−1 as
the address and supplies 4 bits of data:

xk−1 · · · x4x3x2x1x0.x−1 · · · x−l
32×4-ROM-round−→ xk−1 · · · x4y3y2y1y0.

|————–| |———–|
ROM address ROM data

Rounding Schemes 365

Thus, in the preceding example, the fractional bits of x are dropped, the 4 bits read
out from the table replace the 4 least-significant integral bits of x, and the higher-order
bits of x do not change. The ROM output bits y3y2y1y0 are related to the address bits
x3x2x1x0x−1 as follows:

(y3y2y1y0)two = (x3x2x1x0)two when x−1 = 0 or x3 = x2 = x1 = x0 = 1
(y3y2y1y0)two = (x3x2x1x0)two + 1 otherwise

Thus, the rounding result is the same as that of the round to nearest scheme in 15 of
the 16 possible cases, but a larger error is introduced when x3 = x2 = x1 = x0 = 1.
Figure 17.11 depicts the results of ROM rounding for a smaller 8× 2 table.

Figure 17.11 ROM
rounding with an
8× 2 table.

–4

–3

–2

–1

x
–4 –3 –2 –1 4 32 1

4

3

2

1

ROM(x)

Figure 17.12
Upward-directed
rounding, or
rounding toward
+∞ (see Fig. 17.6 for
downward-directed
rounding, or
rounding
toward−∞).

–4

–3

–2

–1

x
–4 –3 –2 –1 4 321

4

3

2

1

up(x)

366 Chapter 17 Floating-Point Representations

Finally, we sometimes need to force computational errors to be in a certain known
direction. For example, if we are computing an upper bound for some quantity, larger
results are acceptable, since the derived upper bound will still be valid, but results
that are smaller than correct values could invalidate the upper bound. This leads to the
definition of upward-directed rounding (round toward +∞) and downward-directed
rounding (round toward −∞) schemes depicted in Figs. 17.12 and 17.6, respec-
tively. Upward- and downward-directed rounding schemes are required features of IEEE
754-2008.

17.6 LOGARITHMIC NUMBER SYSTEMS

Fixed-point representations can be viewed as extreme special cases of floating-point
numbers with the exponent equal to 0, thus making the exponent field unnecessary.
The other extreme of removing the significand field, and assuming that the significand
is always 1, is known as logarithmic number representation. With the IEEE 754-2008
terminology, the significand of a logarithmic number system consists only of the hidden
1 and has no fractional part.

The components of a logarithmic number are its sign, exponent base b (not explic-
itly shown), and exponent e, together representing the number x = ±be. Since the
relationship between x and e can be written as

e = logb |x|

we often refer to b as the logarithm base, rather than the exponent base, and to the number
system as the sign-and-logarithm representation. Of course, if e were an integer, as is
the case in floating-point representations, only powers of b would be representable. So
we allow e to have a fractional part (Fig. 17.13). Since numbers between 0 and 1 have
negative logarithms, the logarithm must be viewed as a signed number or all numbers
scaled up by a constant factor (the logarithm part biased by the logarithm of that constant)
if numbers less than 1 are to be representable. The base b of the logarithm is usually
taken to be 2.

In what follows, we will assume that the logarithm part is a 2’s-complement number.
A number x is thus represented by a pair:

(Sx, Lx) = (sign(x), log2 |x|)

Sign

Implied radix point

e±

Fixed-point exponent

Figure 17.13 Logarithmic number representation with sign and fixed-point exponent.

Problems 367

■ EXAMPLE 17.1 Consider a 12-bit, base-2, logarithmic number system in which the 2’s-
complement logarithm field contains 5 whole and 6 fractional bits. The exponent range is thus
[−16, 16 − 2−6], leading to a number representation range of approximately [−216, 216],
with min = 2−16. The bit pattern

1 1 0 1 1 0 0 0 1 0 1 1
�

Sign Radix point

represents the number −2−9.828125 ≈ −(0.0011)ten.

Multiplication and division of logarithmic numbers are quite simple, and this consti-
tutes the main advantage of logarithmic representations. To multiply, we XOR the signs
and add the logarithms:

(±2e1)× (±e2) = ±2e1+e2

To divide, we XOR the signs and subtract the logarithms:

±2e1

±2e2
= ±2e1−e2

Addition/subtraction of logarithmic numbers is equivalent to solving the following prob-
lem: given log x and log y, find log(x ± y). This is somewhat more difficult than
multiplication or division. Straightforward table lookup requires a table of size 22k × k
with k-bit representations (including the sign bit), so it is impractical unless the word
width k is fairly small (say, 8–12 bits). A more practical hardware realization scheme is
presented in Section 18.6.

Number conversions from binary to logarithmic, and from logarithmic to binary,
representation involve computing the logarithm and inverse logarithm (exponential)
functions. These are covered in Chapters 22 and 23, which deal with methods of function
evaluation.

PROBLEMS 17.1 Unnormalized floating-point numbers

In an unnormalized floating-point representation format, a significand of 0 with
any exponent can be used to represent 0, since 0 × 2e = 0. Argue that even in
this case, it is beneficial to represent 0 with the smallest possible exponent. Hint:
Consider floating-point addition.

17.2 Spacing of floating-point numbers

a. In Fig. 17.4, three of the vertical tick marks have been labeled with the
numbers 0, 2−126, and 2−125. Supply the labels for the remaining 13 tick
marks shown.

368 Chapter 17 Floating-Point Representations

b. Draw a similar diagram for the double-precision format and label its tick
marks.

17.3 Floating-point puzzle

You are given a bit string xk−1xk−2 · · · x1x0 and told that it is a floating-point
number. You can make no assumption about the format except that it consists of
a sign bit, an exponent field, and a significand field with their usual meanings
(i.e., you cannot assume that the sign is the leftmost bit, that 1 means negative,
or that the exponent is to the left of the significand). Your goal is to decode the
format and find the number being represented by asking a minimal number of
questions in the worst case. Questions must be about the format, not the number
itself, and must be posed so that they can be answered yes/no or with an integer
(e.g., How many bits are there in the exponent field?). Present your strategy in
the form of a decision tree.

17.4 Floating-point representations

Consider the IEEE 32-bit standard floating-point format.

a. Ignoring ±∞, subnormals, and other special values, how many distinct real
numbers are representable?

b. What is the smallest number of bits needed to represent this many distinct
values? What is the encoding or representation efficiency of this format?

c. Discuss the consequences (in terms of range and precision) of shortening the
exponent field by 2 bits, adding 2 bits to the significand field, and using the
exponent base of 16 instead of 2.

17.5 Fixed- and floating-point representations

Find the largest value of n for which n! can be represented exactly in the following
two formats. Explain the results.

a. 32-bit, 2’s-complement integer format.
b. 32-bit IEEE 754-2008 binary format.

17.6 Fixed- versus floating-point systems

Digital signal processor chips are special-purpose processors that have been tai-
lored to the need of signal processing applications. They come in both fixed-point
and floating-point versions. Discuss the issues involved in choosing a fixed-
versus floating-point digital signal processor chip for such applications [Inac96].

17.7 Floating-point arithmetic operations

Represent each of the following floating-point operands in 32-bit IEEE 754-2008
binary format. Then perform the specified operations, normalizing the results if
necessary.

a. (+41× 2+0)× (+0.875× 2−16)

Problems 369

b. (−4.5× 2−1)÷ (+0.0625× 2+12)

c.
√+1.125× 2+11

d. (+1.25× 2−10)+ (+0.5× 2+11)

e. (−1.5× 2−11)+ (+0.625× 2−10)

17.8 Floating-point exceptions

Give examples of IEEE 754-2008 32-bit binary floating-point numbers x and y
such that they produce overflow in the rounding stage of computing x+y. Repeat
for computing the product x×y. Then show that rounding overflow is impossible
in the normalization phase of floating-point division.

17.9 Conversion of floating-point numbers

The conversion problem for floating-point numbers involves changing represen-
tations from radix r with exponent base b to radix R with exponent base B.

a. Describe the conversion process for the special case of r = b and R = B.
b. Apply the method of part a to convert (0.2313 0130)four × 4(−0211)four from

r = 4 to R = 10.
c. Describe a shortcut method for the conversion when r = βg and R = βG for

some β.
d. Apply the shortcut method of part c to convert the radix-4 floating-point

number of part b to radix R = 8.

17.10 Subnormal floating-point numbers

The IEEE 754-2008 standard allows subnormal numbers to be used when the
results obtained are too small for normalized representation.

a. Can floating-point numbers be compared as integers even when subnormals
are considered?

b. Is it possible for an operation involving one or two subnormals to yield a
normalized result?

c. Prove or disprove: the sum of two subnormals is always exactly representable.

17.11 Errors in floating-point representations

Only some real numbers are exactly representable in the IEEE 754-2008 standard
floating-point format (or any finite number representation method for that matter).

a. Plot the absolute representation error of the IEEE 754-2008 single binary
format for a number x in [1, 16), as a function of x, using logarithmic scales
for both x and the error value.

b. Repeat part a for the relative representation error in [1, 16).
c. What are the worst-case relative and absolute representation errors in [1,16)?
d. Does the relative (absolute) error get better or worse for numbers greater than

16? What about for numbers less than 1?

370 Chapter 17 Floating-Point Representations

17.12 Round-to-nearest-even

The following example shows the advantage of rtne over ordinary rounding, rtna.
All numbers are decimal. Consider the floating-point numbers u = .100×100 and
v = −.555×10−1. Let u(0) = u and use the recurrence u(i+1) = (u(i)−fp v)+fp v
to compute u(1), u(2), · · · . With ordinary rounding, we get the sequence of
values .101, .102, . . . , an occurrence known as drift [Knut81, p. 222]. Verify
that drift does not occur in the preceding example if rtne is used. Then prove the
general result (((u+fp v)−fp v)+fp v)−fp v = (u+fp v)−fp v when floating-point
operations are exactly rounded using the rtne rule.

17.13 ROM rounding

a. In ROM rounding, only the most-significant one of the bits to be dropped
is used as part of the ROM address. Is there any benefit to using the other
dropped bits as part of the address?

b. Discuss the feasibility of compensating for the downward bias of ROM
rounding (because of using truncation in the one special case) through the
introduction of upward bias in some cases.

17.14 Logarithmic number systems

Consider a 16-bit sign-and-logarithm number system, using k = 6 whole and
l = 9 fractional bits for the logarithm. Assume that the logarithm base is 2 and
that 2’s-complement representation is used for negative logarithms.

a. Find the smallest and largest positive numbers that can be represented.
b. Calculate the maximum relative representation error.
c. Find the representations of x = 2.5 and y = 3.7 in this number system.
d. Perform the operations x × y, x/y, 1/x, x2, and

√
x, in this number system.

e. Find the representations of x + y, x − y, and xy, using a calculator where
needed.

f. Repeat part b, this time assuming that the logarithm base is 10.

17.15 Logarithmic number systems

Compare a sign-and-logarithm number system with 8 whole bits, 23 fractional
bits, and a bias of 127, to the 32-bit IEEE 754-2008 format with regard to
range and precision. Devise methods for converting numbers between the two
formats.

17.16 Semilogarithmic number systems

Consider a floating-point system in which the exponent is a multiple of 2−h (i.e.,
it is a fixed-point number with h fractional bits) and the k-bit significand is in [1,
1 + 2−h) with h + 1 hidden bits 1.00 · · · 0. The extremes of h = 0 and h = k
in such a semilogarithmic number system [Mull98] correspond to floating-point
and logarithmic number systems.

a. What are possible advantages of such a number system?

Problems 371

b. Describe basic arithmetic algorithms for semilogarithmic numbers.
c. Develop algorithms for conversion of such numbers to/from floating-point.
d. Compare a semilogarithmic number system to floating-point and logarithmic

number systems with regard to representation error.

17.17 Number representations

Relate the number representation schemes on the right to the properties on the
left by drawing lines that connect their letter codes. Make all the connections
that might apply.

Biased B a Stored-carry numbers
Carry-free C b Generalized signed-digit numbers
Fixed-radix F c Residue number systems
Limited-carry L d Significand of IEEE 754-2008 numbers
Positional P e Exponent of IEEE 754-2008 numbers
Redundant R f Sign-and-logarithm numbers

17.18 IEEE 754-2008 subnormals

a. Express the number of subnormal values that are representable in the IEEE
754-2008 single or short binary format, both as an absolute number and as a
fraction of the total number of representable values.

b. Consider the addition of two floating-point numbers. Three cases can be
distinguished according to the operand types: subnormal/subnormal, nor-
malized/subnormal, and normalized/normalized. Thus, taking the type of the
result into account (normalized or subnormal), a total of six cases can be
distinguished. Do all of these six cases make sense? Explain.

17.19 Logarithmic number systems

Consider an 8-bit unsigned logarithmic number system in which the base-2
logarithm is represented with k = 3 whole and l = 5 fractional bits.

a. What is the range of this number system?
b. What is the maximum relative representation error for numbers within the

above range?
c. Represent the numbers x = 7 and y = 11 as accurately as possible in this

number system.

17.20 Comparing floating-point formats

Compile a table similar to Table 17.1 listing various floating-point formats that
were in use before the adoption of IEEE standard format. Your table should
include at least the following five columns: IBM System/360-370 (single and
double, in two columns), Cray-1, and Digital VAX (single and double, in two
columns). Note that a few rows may have to be added to the table due to different
conventions used for the location of the radix point, representation of negative
significands, etc. Briefly discuss advantages and disadvantages of the various
formats relative to the IEEE 754-2008 formats.

372 Chapter 17 Floating-Point Representations

17.21 Level-index numbers and arithmetic

Any nonnegative real number x can be represented uniquely by an integer
level l and an index f in [0, 1), where x = exp(exp(. . . exp(f) . . .)) with the
exponentiation performed l times [Clen84]. Study level-index number repre-
sentation and the associated arithmetic algorithms. Compare these numbers to
floating-point numbers in terms of advantages and disadvantages.

17.22 Floating-point formats

Given an exponent base of r, argue that in a floating-point system with the signif-
icand in [1, r) a power-of-2 exponent bias is better whereas with the signficand
in [1/r, 1), a power-of-2-minus-1 bias would be preferable. Hint: The two biases
differ in the number of positive and negative exponent values that can be repre-
sented, with or without one value at each end being set aside for special operands.

17.23 Directed rounding

a. Show that providing either upward- or downward-directed rounding in hard-
ware is adequate and the other mode can be synthesized with some speed
penalty. Hint: relate ∇(x) to �(−x).

b. Show that directed rounding can be simulated through multiplication by
floating-point values that are very close to 1.

17.24 Two-dimensional logarithmic number systems

Double-base number systems have been found to be useful for certain applica-
tions. Study two-dimensional logarithmic number systems [Dimi03] in which a
number x is represented by a pair of logarithms (say, log2 x and log3 x), using a
small number of bits for each.

17.25 IEEE 754-2008 16- and 128-bit binary formats

Complete Table 17.1 by adding two columns for the half-precision (16-bit) and
quadruple-precision (128-bit) binary floating-point formats of IEEE 754-2008.

17.26 IEEE 754-2008 decimal floating-point formats

Study the IEEE 754-2008 standard 32-, 64-, and 128-bit decimal floating-point
formats.

a. Present your findings in forms similar to Fig. 17.3 and Table 17.1, where
possible.

b. Describe the details of the binary encoding used to represent decimal digits
comprising the significand.

c. Describe the encoding used for the exponent.
d. Outline the rounding modes available for the decimal formats.
e. List features and considerations for decimal floating-point arithmetic that

have no counterpart in the binary case.

References and Further Readings 373

17.27 IEEE 754-2008 binary floating-point formats

a. For the IEEE 754-2008 16-bit binary floating-point format, find the minimum
and maximum absolute difference between two successive floating-point
numbers. Also, determine the minimum and maximum relative difference,
defined as δ/x, where x and x + δ are consecutive representable numbers.

b. Repeat part a for the 32-bit format.
c. Repeat part a for the 64-bit format.
d. Repeat part a for the 128-bit format.

REFERENCES AND FURTHER READINGS

[Camp62] Campbell, S. G., “Floating-Point Operation,” in Planning a Computer System: Project
Stretch, W. Buchholz (ed.), pp. 92–121, McGraw-Hill, 1992.

[Clen84] Clenshaw, C. W., and F. W. J. Olver, “Beyond Floating Point,” J. ACM, Vol. 31,
pp. 319–328, 1984.

[Dimi03] Dimitrov, V. S., and G. A. Jullien, “Loading the Bases: A New Number Representation
with Applications,” IEEE Circuits and Systems, Vol. 3, No. 2, pp. 6–23, 2003.

[Holm97] Holmes, W. N., “Composite Arithmetic: Proposal for a New Standard,” IEEE
Computer, Vol. 30, No. 3, pp. 65–73, 1997.

[IEEE85] IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985),
IEEE Press, 1985.

[IEEE08] IEEE Standard for Floating-Point Arithmetic P754, Std 754™-2008, approved 12
June 2008, IEEE Press.

[Inac96] Inacio, C., and D. Ombres, “The DSP Decision: Fixed Point or Floating?” IEEE
Spectrum, Vol. 33, No. 9, pp. 72–74, 1996.

[Kaha97] Kahan, W., “Lecture Notes on the Status of IEEE Standard 754 for Binary
Floating-Point Arithmetic,” available at http://www.cs.berkeley.edu/∼wkahan/
ieee754status/IEEE754.PDF (note that the URL is case-sensitive), 30 pp.

[Knut81] Knuth, D. E., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
2nd ed., Addison-Wesley, 1981.

[Kuck77] Kuck, D. J., D. S. Parker, and A. H. Sameh, “Analysis of Rounding Methods in
Floating-Point Arithmetic,” IEEE Trans. Computers, Vol. 26, No. 7, pp. 643–650,
1977.

[Mull98] Muller, J.-M., A. Scherbyna, and A. Tisserand, “Semi-Logarithmic Number Systems,”
IEEE Trans. Computers, Vol. 47, No. 2, pp. 145–151, 1998.

[Ster74] Sterbenz, P. H., Floating-Point Computation, Prentice-Hall, 1974.

[Swar75] Swartzlander, E. E., and A. G. Alexopoulos, “The Sign/Logarithm Number System,”
IEEE Trans. Computers, Vol. 24, No. 12, pp. 1238–1242, 1975.

[Yohe73] Yohe, J. M., “Roundings in Floating-Point Arithmetic,” IEEE Trans. Computers,
Vol. 22, No. 6, pp. 577–586, 1973.

[Yoko92] Yokoo, H., “Overflow/Underflow-Free Floating-Point Number Representations with
Self-Delimiting Variable-Length Exponent Field,” IEEE Trans. Computers, Vol. 41,
No. 8, pp. 1033–1039, 1992.

18 Floating-Point Operations

■ ■ ■

“Spurious moral grandeur is generally attached to any formulation
computed to large number of decimal places.”

D AV I D B E R L I N S K I , O N S Y S T E M S A N A LY S I S , 1 9 7 6

■ ■ ■

I n this chapter, we examine hardware implementation issues for the four basic

floating-point arithmetic operations of addition, subtraction, multiplication, and

division, as well as fused multiply-add. Consideration of square-rooting is postponed

to Section 21.6. The bulk of our discussions concern the handling of exponents,

alignment of significands, and normalization and rounding of the results. Arith-

metic operations on significands, which are fixed-point numbers, have already been

covered. Chapter topics include:

18.1 Floating-Point Adders/Subtractors

18.2 Pre- and Postshifting

18.3 Rounding and Exceptions

18.4 Floating-Point Multipliers and Dividers

18.5 Fused-Multiply-Add Units

18.6 Logarithmic Arithmetic Units

18.1 FLOATING-POINT ADDERS/SUBTRACTORS

A floating-point adder/subtractor consists of a fixed-point adder for the aligned signif-
icands, plus support circuitry to deal with the signs, exponents, alignment preshift,
normalization postshift, and special values (±0, ±∞, NaNs, and subnormals).
Figure 18.1 is the block diagram of a floating-point adder. The major components of
this adder are described in Sections 18.1–18.3. Floating-point multipliers and dividers,
which are relatively simpler, are covered in Section 18.4. Implementation of fused-
multiply-add units, which perform a multiplication operation followed by an addition as
a single elementary operation, is discussed in Section 18.5.

374

Floating-Point Adders/Subtractors 375

Figure 18.1 Block
diagram of a
floating-point
adder/subtractor.

Normalize

Add

Align significands

Unpack

Control
& sign
logic

Add/
Sub

Pack

Operands

Sum/Difference

SignificandsExponentsSigns

SignificandExponentSign

x y

s

Sub

Add

Mux

cout cin

Selective complement
and possible swap

Round and
selective complement

Normalize

As shown in Fig. 18.1, the two operands entering the floating-point adder are first
unpacked. Unpacking involves:

Separating the sign, exponent, and significand for each operand and reinstating the
hidden 1.

Converting the operands to the internal format, if different (e.g., single-extended or
double-extended).

Testing for special operands and exceptions (e.g., recognizing not-a-number inputs
and bypassing the adder).

We will ignore subnormals throughout our discussion of floating-point arithmetic
operations. In fact the difficulty of dealing with subnormals in hardware has led to
reliance on software solutions, with their attendant performance penalties. A discussion
of floating-point arithmetic with subnormals can be found elsewhere [Schw03].

The difference of the two exponents is used to determine the amount of alignment
right shift and the operand to which it should be applied. To economize on hardware,

376 Chapter 18 Floating-Point Operations

preshifting capability is often provided for only one of the two operands, with the
operands swapped if the other one needs to be shifted. Since the computed sum or
difference may have to be shifted to the left in the post normalization step, several bits
of the right-shifted operand, which normally would be discarded as they moved off the
right end, may be kept for the addition. Thus, the significand adder is typically wider
than the significands of the input numbers. More on this in Section 18.3.

Similarly, complementation logic may be provided for only one of the two operands
(typically the one that is not preshifted, to shorten the critical path). If both operands have
the same sign, the common sign can be ignored in the addition process and later attached
to the result. If −x is the negative operand and complementation logic is provided only
for y, which is positive, y is complemented and the negative sign of−x ignored, leading
to the result x− y instead of−x+ y. This negation is taken into account by the sign logic
in determining the correct sign of the result.

Selective complementation, and the determination of the sign of the result, are also
affected by the Add/Sub control input of the floating-point adder/subtractor, which
specifies the operation to be performed.

With the Institute of Electrical and Electronics Engineers’ IEEE 754-2008 standard
floating-point format, the sum/difference of the aligned significands has a magnitude in
the range [0, 4). If the result is in [2, 4), then it is too large and must be normalized by
shifting it 1 bit to the right and incrementing the tentative exponent to compensate for
the shift. If the result is in [0, 1), it is too small. In this case, a multibit left shift may be
required, along with a compensatory reduction of the exponent.

Note that a positive (negative) 2’s-complement number (x1x0.x−1x−2 · · ·)2’s-compl
whose magnitude is less than 1 will begin with two or more 0s (1s). Hence, the amount of
left shift needed is determined by a special circuit known as leading zeros/ones counter.
It is also possible, with a somewhat more complex circuit, to predict the number of
leading zeros/ones in parallel with the addition process rather than detecting them after
the addition result becomes known. This removes the leading zeros/ones detector from
the critical path and improves the overall speed. Details are given in Section 18.2.

Rounding the result may necessitate another normalizing shift and exponent adjust-
ment. To improve the speed, adjusted exponent values can be precomputed and the
proper value selected once the normalization results become known. To obtain a properly
rounded floating-point sum or difference, a binary floating-point adder must maintain
at least three extra bits beyond the ulp; these are called guard bit, round bit, and
sticky bit. The roles of these bits, along with the hardware implementation of rounding,
are discussed in Sections 18.3.

The significand adder is almost always a fast logarithmic time 1’s- or 2’s-complement
adder, usually with carry-lookahead design. When the resulting significand is neg-
ative, it must be complemented to form the signed-magnitude output. As usual,
2’s-complementation is done by 1’s-complementation and addition of ulp. The latter
addition can be merged with the addition of ulp, which may be needed for rounding.
Thus, 0, ulp, or 2ulp will be added to the true or complemented output of the significand
adder during the rounding process.

Finally, packing the result involves:

Combining the sign, exponent, and significand for the result and removing the
hidden 1.

Pre- and Postshifting 377

Testing for special outcomes and exceptions (e.g., zero result, overflow, or
underflow).

Note that unlike the unpacking step, conversion between the internal and external formats
is not included in the packing process. This is because converting a wider significand to
a narrower one requires rounding and is best accomplished in the rounding stage, which
produces the result with the desired output precision.

Floating-point adders found in various processors may differ in details from the
generic design depicted in Fig. 18.1. However, the basic principles are the same, and
the differences in implementation relate to clever schemes for speeding up the various
subcomputations through overlapping or merging, or for economizing on hardware cost.
Some of these techniques are covered in Sections 18.2 and 18.3.

18.2 PRE- AND POSTSHIFTING

The preshifter always shifts to the right by an amount equal to the difference of the two
exponents. Note that with the IEEE 754-2008 short format, the difference of the two
exponents can be as large as 127 − (−126) = 253. However, even with extra bits of
precision maintained during addition, the operands and results are much narrower than
253 bits. This allows us to simplify and speed up the exponent subtractor and preshift
logic in Fig. 18.1.

For example, if the adder is 32 bits wide, then any preshift of 32 bits or more will
result in the preshifted input becoming 0. Thus, only the least significant 5 bits of the
exponent difference need to be computed, with the preshifted input forced to 0 when the
difference is 32 or more.

Let us continue with the assumption that right shifts of 0 to 31 bits must be imple-
mented. In principle, this can be done by a set of 32-to-1 multiplexers (muxes), as shown
in Fig. 18.2. The multiplexer producing the bit yi of the shifted operand selects one of the
bits xi through xi+31 of the (sign-extended) 32-bit input that is being aligned based on the
5-bit shift amount. Such a design, however, would lead to fan-in and fan-out problems,
especially for the sign bit, which will have to feed multiple inputs of several multiplexers.

As usual, a multistage design can be used to mitigate the fan-in and fan-out problems.
Figure 18.3 shows a portion of a combinational shifter that can preshift an input operand
x by any amount from 0 to 15 bits. Each circular node is a 2-to-1 multiplexer, with its
output fanned out to two nodes in the level below. The four levels, from top to bottom,
correspond to shifting by 1, 2, 4, and 8 bits, respectively.

Figure 18.2 A 1-bit
slice of a single-stage
preshifter.

y i

x ix i+2 x i+1x i+30x i+31

5
Shift amount 31 30 2 1 0

. . .

32-to-1 Mux
Enable

378 Chapter 18 Floating-Point Operations

4-bit
shift

amount

Figure 18.3 Four-stage combinational shifter for preshifting an operand by 0 to 15 bits.

In practice, designs that fall between the two extremes shown in Figs. 18.2 and 18.3
are used. For example, preshifts of up to 31 bits might be implemented in two stages,
one performing any shift from 0 to 7 bits and the other performing shifts of 0, 8, 16, and
24 bits. The first stage is then controlled by the three least-significant bits (LSBs), and
the second stage by the two most-significant bits (MSBs), of the binary shift amount.

Note that the difference e1− e2 of the two (biased) exponents may be negative. The
sign of the difference indicates which operand is to be preshifted, while the magnitude
provides the shift amount. One way to obtain the shift amount in case of a negative
difference is to complement it. However, this introduces additional delay due to carry
propagation. A second way is to use a ROM table or programmable logic array that
receives the signed difference as input and produces the shift amount as output. A third
way is to compute both e1 − e2 and e2 − e1, choosing the positive value as the shift
amount. Given that only a few bits of the difference need to be computed, duplicating
the exponent subtractor does not have significant cost implications.

The postshifter is similar to the preshifter with one difference: it should be able to
perform either a right shift of 0–1 bit or a left shift of 0–31 bits, say. One hardware imple-
mentation option is to use two separate shifters for right- and left-shifting. Another option
is to combine the two functions into one multistage combinational shifter. Supplying the
details in the latter case is left as an exercise.

For IEEE 754-2008 operands, the need for right-shifting by 1 bit during normal-
ization is indicated by the magnitude of the adder output equaling or exceeding 2.
Suppose the adder output is a 2’s-complement number in the range (−4, 4), repre-
sented as z = (coutz1z0.z−1z−2 · · ·)2’s-compl. The condition for right-shifting in this case
is easily determined as cout �= z1. Assuming that right-shifting is not needed for nor-
malization, we must have cout = z1, with the left-shift amount then determined by the
number of consecutive bits in z that are identical to z1. So, if z1 = 0 (1), we need to
detect the number of consecutive 0s (1s) in z, beginning with z0. As mentioned in Section
18.1, this is done either by applying a leading zeros/ones counter to the adder output or

Pre- and Postshifting 379

Shift amount
Postshifter

Significand

(a) Counting (b) Prediction

 adder

 Adjust
exponent

Count
leading
0s/1s

Postshifter

Significand
 adder

 Adjust
exponent

Predict
leading
0s/1s

Shift amount

Figure 18.4 Leading zeros/ones counting versus prediction.

by predicting the number of leading zeros/ones concurrently with the addition process
(to shorten the critical path). The two schemes are depicted in Fig. 18.4.

Leading zeros/ones counting is quite simple and is thus left as an exercise. Predicting
the number of leading zeros/ones can be accomplished as follows. Note that when the
inputs to a floating-point adder are normalized, normalization left shift is needed only
when the operands, and thus the inputs to the significand adder, have unlike signs.
Leading zeros/ones prediction for unnormalized inputs is somewhat more involved, but
not more difficult conceptually.

Let the inputs to the significand adder be 2’s-complement positive and negative
values (0x0.x−1x−2 · · ·)2’s-compl and (1y0.y−1y−2 · · ·)2’s-compl. Let there be exactly i
consecutive positions, beginning with position 0, that propagate the carry during addi-
tion. Borrowing the carry “generate,” “propagate,” and “annihilate” notation from our
discussions of adders in Section 5.6, we have the following:

p0 = p−1 = p−2 = · · · = p−i+1 = 1

p−i = 0 (i.e., g−i = 1 or a−i = 1)

In case g−i = 1, let j be the smallest index such that:

g−i = a−i−1 = a−i−2 = · · · = a−j+1 = 1

a−j = 0 (i.e., g−j = 1 or p−j = 1)

Then, we will have j or j− 1 leading 0s depending on whether the carry emerging from
position j is 0 or 1, respectively.

In case a−i = 1, let j be the smallest index such that

a−i = g−i−1 = g−i−2 = · · · = g−j+1 = 1

g−j = 0 (i.e., p−j = 1 or a−j = 1)

Then, we will have j− 1 or j leading 1s, depending on whether the carry-out of position
j is 0 or 1, respectively.

380 Chapter 18 Floating-Point Operations

Note that the g, p, a, and carry signals needed for leading zeros/ones pre-
diction can be extracted from the significand adder to save on hardware. Based
on the preceding discussion, given the required signals, the circuit needed to pre-
dict the number of leading zeros/ones can be designed with two stages. The first
stage, which is similar to a carry-lookahead circuit, produces a 1 in the jth posi-
tion and 0s in all positions to its left (this can be formulated as a parallel prefix
computation, since we are essentially interested in detecting one of the four patterns
pp · · · ppgaa · · · aag, pp · · · ppgaa · · · aap, pp · · · ppagg · · · gga, or pp · · · ppagg
· · · ggp). The second stage is an encoder or priority encoder (depending on the design
of the first stage) that yields the index of the leading 1.

Finally, in the preceding discussion, we assumed separate hardware for pre- and
postshifting. This is a desirable choice for higher-speed or pipelined operation. If the
two shifters are to be combined for economy, the unit must be capable of shifting both
to the right and to the left by an arbitrary amount. Modifying the design of Fig. 18.3 to
derive a bidirectional shifter is straightforward.

18.3 ROUNDING AND EXCEPTIONS

If an alignment preshift is performed, the bits that are shifted out should not all be
discarded, since they can potentially affect the rounding of the result. Recall that
proper floating-point addition/subtraction requires that the result matches what would
be obtained if the computation were performed with infinite precision and the result
rounded. It may thus appear that we have to keep all bits that are shifted out in case
left-shifting is later needed for normalization. Keeping all the bits that are shifted out
effectively doubles the width of the significand adder.

We know from earlier discussions that the significand adder must be widened by
1-bit at the left to accommodate the sign bit of its 2’s-complement inputs. It turns out
that widening the adder by 3 bits at the right is adequate for obtaining properly rounded
results. Calling the three extra bits at the right G, R, and S, for reasons to become apparent
shortly, the output of the significand adder can be represented as follows:

Adder output = (coutz1z0.z−1z−2 · · · z−lGRS)2’s-compl

In the preceding equation, z1 is the sign indicator, cout represents significand overflow,
and the extra bits at the right are

G : Guard bit

R : Round bit

S : Sticky bit

We next explain the roles of the G, R, and S bits and why they are adequate for proper
rounding. The explanation is in terms of the IEEE 754-2008 binary floating-point format,
but it is valid in general.

Rounding and Exceptions 381

When an alignment right-shift of 1 bit is performed, G will hold the bit that is shifted
out and no precision is lost (so, G “guards” against loss of precision). For alignment
right shifts of 2 bits or more, the shifted significand will have a magnitude in [0, 1/2).
Since the magnitude of the unshifted significand is in [1, 2), the difference of the aligned
significands will have a magnitude in [1/2, 2). Thus, in this latter case, the normalization
left shift will be by at most 1 bit, and G is still adequate to protect us against loss of
precision.

In case a normalization left shift actually takes place, the “round bit” is needed for
determining whether to round the resulting significand down (R = 0, discarded part <

ulp/2) or up (R = 1, discarded part ≥ ulp/2). All that remains is to establish whether the
discarded part is exactly equal to ulp/2. This information is needed in some rounding
schemes, and providing it is the role of the “sticky bit,” which is set to the logical OR of
all the bits that are shifted through it. Thus, following an alignment right shift of 7 bits,
say, the sticky bit will be set to the logical OR of the 5 bits that move past G and R. This
logical ORing operation can be accommodated in the design of the preshifter (how?).

The effect of 1-bit normalization shifts on the rightmost few bits of the significand
adder output is as follows

Before postshifting (z) · · · z−l+1 z−l | G R S
1-bit normalizing right-shift · · · z−l+2 z−l+1 | z−l G R ∨ S
1-bit normalizing left-shift · · · z−l G | R S 0
After normalization (Z) · · · Z−l+1 Z−l | Z−l−1 Z−l−2 Z−l−3

where the Zh are the final digit values in the various positions, after any normalizing
shift has been applied. Note that during a normalization right shift, the new value of the
sticky bit is set to the logical OR of its old value and the value of R. Given a positive
normalized result Z , we can round it to the nearest even by simply dropping the extra 3
bits and

Doing nothing if Z−l−1 = 0 or Z−l = Z−l−2 = Z−l−3 = 0
Adding ulp = 2−l otherwise

Note than no rounding is necessary in the case of a multibit normalizing left shift, since
full precision is preserved in this case (the sticky bit must be zero). Other rounding
modes can be implemented similarly.

Overflow and underflow exceptions are easily detected by the exponent adjustment
adder near the bottom of Fig. 18.1. Overflow can occur only when we have a normaliz-
ing right shift, while underflow is possible only with normalizing left shifts. Exceptions
involving not-a-numbers and invalid operations are handled by the unpacking and pack-
ing blocks in Fig. 18.1. One remaining issue is the detection of a zero result and encoding
it as the all-zeros word. Note that detection of a zero result is essentially a by-product
of the leading zeros/ones detection discussed earlier. Determining when the “inexact”
exception must be signaled is left as an exercise.

As discussed earlier in this section, a preshift of 2 bits or more rules out the possibility
of requiring a multiple-bit postshift to remove leading 0s or 1s. Very fast floating-
point adder designs take advantage of this property in a dual-path arrangement. When
the exponents differ by no more than 1 (the inputs are close to each other in order of

382 Chapter 18 Floating-Point Operations

Near path Far path

0 or 1 bit preshift

0 or 1 bit postshift

Arbitrary preshift

Arbitrary postshift

Add Add

Figure 18.5 Conceptual view of significand handling in a dual-path floating-point adder.

magnitude), the significands are routed to the “near” data path that contains a leading
0s/1s predictor and a full postshifter; in fact, one can even avoid rounding in this path.
Otherwise, that is, with a preshift of 2 bits or more, the “far” datapath with a full
preshifter and simple postshifter is employed. Note that the 1-bit normalizing right shift
that may be required can be combined with rounding. A block diagram of such a dual-
path floating-point adder is shown in Fig. 18.5. Description of a modern processor that
uses this approach can be found elsewhere [Nain01].

18.4 FLOATING-POINT MULTIPLIERS AND DIVIDERS

A floating-point multiplier consists of a fixed-point multiplier for the significands, plus
peripheral and support circuitry to deal with the exponents and special values (±0,±∞,
NaNs and subnormals). Figure 18.6 depicts a generic block diagram for a floating-point
multiplier. The role of unpacking is exactly as discussed for floating-point adders at
the beginning of Section 18.1. Similarly, the final packing of the result is done as for
floating-point adders. The sign of the product is obtained by XORing the signs of the
two operands.

Atentative exponent is computed by adding the two biased exponents and subtracting
the bias from the sum. With the IEEE 754-2008 short format, subtracting the bias of
127 can be easily accomplished by providing a carry-in of 1 into the exponent adder
and subtracting 128 from the sum. This latter subtraction amounts to simply flipping the
MSB of the result.

The significand multiplier is the slowest and most complex part of the unit shown
in Fig. 18.6. With the IEEE 754-2008 binary format, the product of the two unsigned
significands, each in the range [1, 2), will be in the range [1, 4). Thus, the result may have
to be normalized by shifting it one position to the right and incrementing the tentative
exponent. Rounding the result may necessitate another normalizing shift and exponent

Floating-Point Multipliers and Dividers 383

Figure 18.6 Block
diagram of a
floating-point
multiplier (divider).

XOR Add (Sub)
exponents

Unpack

Normalize
 Adjust
exponent

Round

Normalize

Pack

Multiply (Divide)
significands

Floating-point operands

Product (Quotient)

 Adjust
exponent

adjustment. When each significand has a hidden 1 and l fractional bits, the significand
multiplier is an unsigned (l+1)×(l+1) multiplier that would normally yield a (2l+2)-
bit product. Since this full product must be rounded to l + 1 bits at the output, it may be
possible to discard the extra bits gradually as they are produced, rather than in a single
step at the end. All that is needed is to keep an extra round bit and a sticky bit to be able
to round the final result properly. Keeping a guard bit is not needed here (why?).

To improve the speed, the incremented exponent can be precomputed and the proper
value selected once it is known whether a normalization postshift is required. Since
multiplying the significands is the most complex part of floating-point multiplication,
there is ample time for such computations. Also, rounding need not be a separate step at
the end. With proper design, it may be possible to incorporate the bulk of the rounding
process in the multiplication hardware.

To see how, note that most multipliers produce the least-significant half of the product
earlier than the rest of the bits. So, the bits that will be used for rounding are produced
early in the multiplication cycle. However, the need for normalization right shift becomes
known at or near the end. Since there are only two possibilities (no postshift or a right
shift of 1 bit), we can devise a stepwise rounding scheme by developing two versions
of the rounded product and selecting the correct version in the final step. Alternatively,
rounding can be converted to truncation through the injection of corrective terms during
multiplication [Even00].

384 Chapter 18 Floating-Point Operations

Because floating-point multiplication consists of several sequential stages or sub-
computations, it is quite simple and natural to pipeline it for increased throughput.
Pipeline latches can be inserted across the natural block boundaries in Fig. 18.6 as well
as within the significand multiplier if the latter is of the full-tree or array variety. Chapter
25 presents a detailed discussion of pipelining considerations and design methods.

A floating-point divider has the same overall structure as a floating-point multiplier
(Fig 18.6). The two operands of floating-point division are unpacked, the resulting
components pass through several computation steps, and the final result is packed into the
appropriate format for output. Unpacking and packing have the same roles here as those
discussed for floating-point adders in Section 18.1 (the divide-by-0 exception is detected
during unpacking). The sign of the quotient is obtained by XORing the operand signs.

A tentative exponent is computed by subtracting the divisor’s biased exponent from
the dividend’s biased exponent and adding the bias to the difference. With the IEEE
754-2008 short format, the bias of 127 must be added to the difference of the two
exponents. Since adding 128 is simpler than adding 127, we can compute the difference
less one by holding cin to 0 in a 2’s-complement subtraction (normally, in 2’s-complement
subtraction, cin = 1) and then flipping the MSB of the result.

The significand divider is the slowest and the most complex part of the unit shown
in Fig. 18.6. With the IEEE 754-2008 format, the ratio of two significands in [1, 2) is in
the range (1/2, 2). Thus, the result may have to be normalized by shifting it one position
to the left and decrementing the tentative exponent. Rounding the result may necessitate
another normalizing shift and exponent adjustment.

As in the case of multiplication, speed can be gained by precomputing the adjusted
exponent and selecting the proper value when the need for normalization becomes
known. Since dividing the significands is the most complex part of floating-point divi-
sion, there is ample time for such computations. Considerations for pipelining of the
computations are also quite similar to those of floating-point multiplication.

One main difference between floating-point division and multiplication is in round-
ing. Since the significand divider’s output may have to be left-shifted by 1 bit for
normalization, the quotient must be developed with an extra 2 bits that serve as the guard
and round bits (see the discussion of rounding for floating-point addition in Section 18.3).
In division schemes that produce a remainder, the final remainder is used to derive the
value of the sticky bit (how?). Then, the rounding process discussed at the end of Section
18.3 is applied. Convergence division creates some difficulty for rounding in view of
the absence of a remainder.

As was the case for fixed-point multipliers and dividers, floating-point multipliers
and dividers can share much hardware. In particular, when the significand division is
performed by one of the convergence methods discussed in Chapter 16, little addi-
tional hardware is required to convert a floating-point multiplier into a floating-point
multiply/divide unit.

18.5 FUSED-MULTIPLY-ADD UNITS

Fused-multiply-add (FMA) operation, that is, computing p = ax+b is a natural operation
for direct hardware implementation, once we move beyond the four basic arithmetic

Fused-Multiply-Add Units 385

operations. Fused multiply-add is useful in two very common computation sequences,
namely, polynomial evaluation and vector dot product. Polynomial evaluation, based on
Horner’s rule, uses the iteration

s := sz + c(j) for j from n− 1 down to 0

where c(j) is a coefficient of the polynomial f (z) = c(n−1)zn−1 + c(n−2)zn−2 + · · · +
c(1)z + c(0) and the running total s is initialized to 0. Similarly, the dot product of the
n-vectors u and v, with their elements indexed from 0 to n− 1, can be evaluated via

s := s+ u(j)v(j) for j from 0 upto n− 1

beginning with s = 0.
The simplest way to implement an FMA unit to compute ax + b is to cascade a

floating-point multiplier, that keeps its entire double-width product of the significands
of a and x, with a double-width floating-point adder. However, we can do substantially
better in terms of latency if we opt for an optimized merged implementation. One simple
optimization is to build the multiplier to keep its product in carry-save form, thus avoiding
the final carry-propagate portion of the multiplication algorithm. This makes the addition
process only slightly slower, because it now involves a three-operand addition (a carry-
save adder level, followed by a conventional fast adder).

Figure 18.7 shows the block diagram of an FMA unit with the aforementioned opti-
mization and two other enhancements. The first of these enhancement concerns the

 Significands

. . .

To rounding

Multiples formation

sa sx sb Exponents

Carry-save
adder tree

Alignment
preshift

ea + ex – eb

Preshift may
be to right

or left

ax in
stored-carry

form

Carry-save adder

Leading 0s/1s
predictionAdder

Normalization

Figure 18.7 Block diagram of a fast FMA unit.

386 Chapter 18 Floating-Point Operations

alignment preshift. In floating-point addition, we normally shift the significand of the
operand with the smaller exponent. In the design shown in Fig. 18.7, we always shift the
significand sb of b. When b has a larger exponent than that of ax, it must be preshifted
to the left for proper alignment. The preshifted version of sb is taken to be a triple-width
number, to accommodate the extra positions created by the preshift in either direction.
To understand why the preshifted version of sb need not be more than 3k bits wide,
where k is the precision of the input significands, consider the two cases of right and
left preshifts. If the right-shift amount for sb is more than k bits, all the bits shifted past
the kth extra bit to the right can be summarized into a sticky bit for use in rounding (see
Section 18.3). Similarly, if the left-shift amount for sb is more than k bits, the product
sasx is very small and will only affect the final result via the rounding of sb. So, in either
case, no more than k extra bits are created as a result of right/left preshift.

The second optimization is to perform leading 0s/1s prediction based on the stored-
carry representation of sasx and the preshifted version of sb. Three-input leading 0s/1s
prediction is slightly slower than the two-input version depicted in Fig. 18.4b. However,
this circuit is likely to be faster than the carry-propagate adder anyway. Besides, we
also have a little more leeway here, given the extra carry-save adder level before the
carry-propagate adder.

The resulting design in Fig. 18.7 has a latency comparable to that of a floating-point
multiplier, in either the single-stage version shown or a two-stage pipelined version
with latches inserted after the carry-save adder tree and the alignment preshifter. Thus,
it is quite feasible to forego the inclusion of separate adder and multiplier circuits in a
floating-point arithmetic unit, using instead the FMA unit for these operations (by setting
x = 1 for addition and b = 0 for multiplication).

18.6 LOGARITHMIC ARITHMETIC UNIT

As discussed in Section 17.6, representing numbers by their signs and base-b logarithms
offers the advantage of simple multiplication and division, in as much as these opera-
tions are converted to addition and subtraction of the logarithms, respectively. In this
section, we demonstrate the algorithms and hardware needed for adding and subtracting
logarithmic numbers and present the design of a complete logarithmic arithmetic unit.

We noted, in Section 17.6, that addition and subtraction of logarithmic numbers
can, in principle, be performed by table lookup. One method of reducing the size of
the required table is via converting the two-operand (binary) operation of interest to a
single-operand (unary) operation that needs a smaller table. Consider the add/subtract
operation

(Sx, Lx)± (Sy, Ly) = (Sz, Lz)

for logarithmic operands and assume x > y > 0 (other cases are similar). Then

Lz = log z = log(x ± y) = log(x(1± y/x))

= log x + log(1± y/x)

Problems 387

Add/
Sub

Add/
Sub

ROM for
φ

+, φ
–

Lz

Muxes

0
1

0
1

Control

Data

Sx
Sy

Lx

Ly

Lx > Ly? Add/Sub1

Address

Lm

Add/Sub2

Sz

Figure 18.8 Arithmetic unit for a logarithmic number system.

Note that log x is known and log(y/x) is easily computed as � = −(log x− log y). Given
�, the term

log(1± y/x) = log(1± log−1 �)

is easily obtained by table lookup (two tables, φ+ and φ−, are needed). Hence, addition
and subtraction of logarithmic numbers can be based on the following computations:

log(x + y) = log x + φ+(�)

log(x − y) = log x + φ−(�)

Figure 18.8 depicts a complete arithmetic unit for logarithmic numbers. For addition and
subtraction, Lx and Ly are compared to determine which one is larger. This information
is used by the control box for properly interpreting the result of the subtraction Lx − Ly.
The reader should be able to supply the details.

The design of Fig. 18.8 assumes the use of scaling of all values by a multiplicative
factor m so that numbers between 0 and 1 are also represented with unsigned logarithms.
Because of this scaling, the logarithm of the scale factor m (or the constant bias Lm) must
be subtracted in multiplication and added in division. Thus for addition/subtraction, the
first adder/subtractor performs the subtraction Lx−Ly and the second one adds Lx to the
value read out from the ROM table. In multiplication (division), the first adder computes
Lx + Ly(Lx − Ly) and the second one subtracts (adds) the bias Lm.

PROBLEMS 18.1 Exponent arithmetic in floating-point adder

a. Design the “Subtract exponents” block of the floating-point adder in Fig.
18.1 for the IEEE 754-2008 64-bit floating-point format. Assume that a 6-bit
difference, plus a “force to 0” output, is to be provided.

b. Repeat part a, this time assuming that the output difference is to be forced to
63 if the real difference exceeds 63.

c. Compare the designs of parts a and b and discuss.

388 Chapter 18 Floating-Point Operations

18.2 Sign logic in floating-point adder

Consider the “Sign logic” block in the floating-point adder of Fig. 18.1.

a. Explain the role of the output from this block that is fed to the “Normalize”
and “Adjust exponent” blocks.

b. Supply a complete logic design for this block, assuming the use of a 2’s-
complement significand adder.

18.3 Alignment preshifter

Design an alignment preshifter for IEEE 754-2008 short format that produces a
shifted output with guard, round, and sticky bits.

18.4 Precision in floating-point adders

Referring to the discussion at the beginning of Section 18.3, why would the width
of the significand adder double if we were to keep all the bits that are shifted
out during the alignment preshift? In other words, doesn’t the presence of 0s in
those extra positions of the unshifted operand mean that the addition width will
not change? Of course, the same question applies when we keep only an extra 3
bits of precision. Do we really have to extend the adder width by 3 bits? Hint:
The answer depends on which operand is complemented.

18.5 Leading zeros/ones counter

a. Design a ripple-type leading zeros/ones counter for the normalization stage
of floating-point addition and derive its worst-case delay. Is this a viable
design?

b. Show that the problem of leading zeros/ones detection can be converted to
parallel prefix logical AND.

c. Using the result of part b, design a logarithmic time, leading zeros/ones
counter.

18.6 Leading zeros/ones counter

a. Use a programmable logic array to design an 8-input leading zeros/ones
counter with the following specifications: eight data inputs, two control
inputs, three address (index) outputs, and one “all-zeros/ones” output. One
of the control inputs specifies whether leading 0s or leading 1s should be
counted. The other control input turns the tristate drivers of the address out-
puts on or off, thus allowing the address outputs of several modules to be tied
together. The tristate drivers are also turned off when the “all-zeros/ones”
output is asserted.

b. Show how two leading zeros/ones counters of the type described in part a
can be cascaded to form a 16-bit leading zeros/ones counter.

c. Can the cascading scheme of part b be extended to wider inputs (say 24 or
32 bits)?

Problems 389

18.7 Leading zeros/ones prediction

Extend the results concerning leading zeros/ones prediction, presented at the end
of Section 18.2, to unnormalized inputs. Hint: Consider three separate cases of
positive inputs, negative inputs, and inputs with unlike signs.

18.8 Rounding in floating-point operations

a. Extend the round-to-nearest-even procedure for a positive value, given near
the end of Section 18.3, to a 2’s-complement result Z .

b. Occasionally, when performing double-precision arithmetic, we would like
to be able to specify that the result be rounded as if it were a single-precision
number, with the single-rounded result then output in double-precision
format. Why might such an option be useful, and how can it be implemented?

c. Show how the guard, round, and sticky bits can be used when an “inexact”
exception is to be indicated following the rounding process.

18.9 Rounding in floating-point operations

Given that an intermediate 2’s-complement result for a floating-point operation
with guard, round, and sticky bits is at hand, describe how each of the following
rounding schemes can be implemented:

a. Round to nearest away from 0.
b. Round toward 0.
c. Round toward +∞.
d. Round toward −∞.
e. R* rounding (see Fig. 17.9).

18.10 Floating-point multipliers

In multiplying the significands of two floating-point numbers, the lower half of
the fractional part is not needed, except to properly round the upper half. Discuss
whether, and if so, how, this can lead to simplified hardware for the significand
multiplier. Note that the significand multiplier can have various designs (tree,
array, built of additive multiply modules, etc.).

18.11 Inner-product computation unit

Having an FMA basic operation allows us to speed up an inner-product computa-
tion and to reduce its error. Sketch the design of a hardware unit that is specifically
optimized for computing inner products. The unit should allow several prod-
ucts to be computed in sequence, while maintaining a running sum of greater
precision. Rounding should be postponed to the very end of the inner-product
computation.

18.12 Rounding in floating-point division

a. Explain how the sticky bit needed for properly rounding the quotient of
floating-point division is derived from the final remainder.

390 Chapter 18 Floating-Point Operations

b. Explain how a properly rounded result might be derived with convergence
division.

18.13 On-the-fly rounding in division

To avoid a carry-propagate addition in rounding the quotient of floating-point
division, one can combine the rounding process with the on-the-fly conversion
of the quotient digits from redundant to conventional binary format [Erce92].
Outline the algorithm and hardware requirements for such an on-the-fly rounding
scheme.

18.14 Floating-point operations on subnormals

Based on what you have learned about floating-point add/subtract, multiply, and
divide units in this chapter, briefly discuss design complications if subnormal
numbers of IEEE 754-2008 were to be accepted as inputs and produced as output.

18.15 Logarithmic arithmetic

Consider a 16-bit sign-and-logarithm number system, using k = 6 whole and
l = 9 fractional bits for the logarithm. Assume that the logarithm base is 2 and
that 2’s-complement representation is used for negative logarithms.

a. Find the representations of x = 2.5 and y = 3.7 in this number system.
b. What is the required ROM size for the arithmetic unit of Fig. 18.8?
c. Perform the operations x+y and x−y, supplying the needed table entries φ+

and φ−.

18.16 Flexible floating-point processor

Consider a 64-bit floating-point number representation format where the sign bit
is followed by a 5-bit “exponent width” field. This field specifies the exponent
field as being 0–31 bits wide, the remaining 27–58 bits being a fractional sig-
nificand with no hidden 1. Do not worry about special values such as ±∞ or
not-a-number.

a. Enumerate the advantages and possible drawbacks of this format.
b. Outline the design of a floating-point adder to add two numbers in this format.
c. Draw a block diagram of a multiplier for flexible floating-point numbers.
d. Briefly discuss any complication in the design of a divider for flexible floating-

point numbers.

18.17 Double rounding

Consider the multiplication of two-digit, single-precision decimal values .34
and .78, yielding .2652. If we round this exact result to an internal three-digit,
extended-precision format, we get .265, which when subsequently rounded to
single precision by means of round-to-nearest-even, yields .26. However, if the
exact result were directly rounded to single precision, it would yield .27.

Problems 391

a. Can double rounding lead to a similar problem if we always round up the
halfway cases instead of applying round-to-nearest-even?

b. Prove that for floating-point operands x and y with p-bit significands, if x+ y
is rounded to p′ bits of precision (p′ ≥ 2p + 2), a second rounding to p bits
of precision will yield the same result as direct rounding of the exact sum to
p bits.

c. Show that the claim of part b also holds for multiplication, division, and
square-rooting.

d. Discuss the implications of the preceding results for converting the results of
double-precision IEEE floating-point arithmetic to single precision.

18.18 Rounding in ternary arithmetic

If we had ternary as opposed to binary computers, radix-3 arithmetic would
be in common use today. Discuss the effects of this change on rounding in
floating-point arithmetic.

18.19 Floating-point addition

a. Compute the sum of the two floating-point operands x = +.9988 × 10+09

and y = −.1001×10+10, represented in decimal format, assuming that there
is no guard digit.

b. Repeat part a with a single guard digit.
c. Comment on errors in the results of parts a and b.

18.20 Logarithmic arithmetic unit

In Fig 18.8, the five control signals generated by the control unit are not inde-
pendent, in the sense that some pairs of signals have identical or complementary
values.

a. How many independent control signals is the control unit required to produce?
b. Design a combinational circuit to produce the control signals identified in

part a.

18.21 Floating-point division via reciprocation

We noted in Chapter 16 that performing the division z/d via the multiplica-
tion z × (1/d) is highly beneficial when several numbers must be divided by
the same divisor d . An optimizing compiler may detect this situation and issue
the appropriate instructions to take advantage of the common divisor. Argue
that optimizations are possible even when a single division by d is to be per-
formed. Hint: the two parameters z and d may not become available at the
same time.

18.22 Residue logarithmic number system

It has been suggested that the benefits of logarithmic and residue number rep-
resentation can be combined by representing a discrete version of the logarithm
of a number in residue number system [Arno05]. Study this class of number

392 Chapter 18 Floating-Point Operations

representation systems and present your findings in a two-page report, focusing
on advantages and potential implementation problems.

18.23 Lookup table in logarithmic arithmetic unit

Plot the functions φ+ and φ− on graph paper for values of � in the range [−10, 0].
Based on your graph, comment on simplifications and table size reductions that
might be possible so as to allow the use of wider words in logarithmic arithmetic.

18.24 Rounding in floating-point division

Prove the following theorem about floating-point division, attributed to William
Kahan, after establishing the lemmas that precede it. The width of a floating-
point number is the number of bits in the significand x0.x−1x−2 . . . x−l needed
for its exact representation (one more than the index of the rightmost 1 in the
significand). Assume that the radix r of the representation is a prime number
throughout.

a. Lemma: The product of two floating-point numbers of widths u and v has
width u + v – 1.

b. Lemma: The exact ratio of two floating-point numbers of width w or less
cannot have a width greater than w.

c. Lemma: If the ratio of two positive integers is nonterminating and the divisor
is in [rj−1, rj – 1] for some j > 0, no more than j – 1 consecutive 0 (or r – 1)
digits can appear in the result.

d. Theorem: In binary floating-point with precision p, if a quotient is approxi-
mated to 2p + 2 bits, with an error of less than one unit in position 2p + 2,
the approximation has at least p significant bits.

18.25 Logarithmemic arithmetic

Consider an 8-bit unsigned logarithmic number system in which the base-2
logarithm is represented with k = 3 whole and l = 5 fractional bits.

a. Represent the numbers x = 7 and y = 11 as accurately as possible in this
number system.

b. Compute the representation of the product p = x×y and analyze its accuracy.
c. Compute the representation of the sum s = x + y and analyze its accuracy.

18.26 Leading zeros counter

Show that a leading zeros counter for a word of width k = 2a can be built recur-
sively by using two (k/2)-input leading zeros counters and a two-way multiplexer.
Then, generalize your construction to the case where k is not a power of 2.

18.27 Monotonicity in floating-point arithmetic

This problem is attributed to W. Kahan. Consider a computer that performs
floating-point multiplication by truncating (rather than rounding) the exact
2p-digit product of p-digit normalized fractional significands to p digits; that

References and Further Readings 393

is, it does not develop the lower p digits of the exact product, or simply drops
them.

a. Show that, for a radix r greater than 2, this causes the monotonicity of
multiplication to be violated (i.e., there exist positive floating-point numbers
a, b, and c such that a < b but a×fp c > b×fp c). Hint: when x×fp y < 1/r,
postnormalization causes the least significant digit of the final product to be 0.

b. Show that multiplication remains monotonic in radix 2 (i.e., a ≤ b implies
a ×fp c ≤ b×fp c).

REFERENCES AND FURTHER READINGS

[Ande67] Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers, “The IBM
System/360 Model 91: Floating-Point Execution Unit,” IBM J. Research and
Development, Vol. 11, No. 1, pp. 34–53, 1967.

[Arno05] Arnold, M. G., “The Residue Logarithmic Number System: Theory and
Implementation,” Proc. 17th Symp. Computer Arithmetic, pp. 196–205, 2005.

[Bose87] Bose, B. K., L. Pei, G. S. Taylor, and D. A. Patterson, “Fast Multiply and Divide for a
VLSI Floating-Point Unit,” Proc. 8th Symp. Computer Arithmetic, pp. 87–94, 1987.

[Cole08] Coleman, J. N., et al., “The European Logarithmic Microprocessor,” IEEE Trans.
Computers, Vol. 57, No. 4, pp. 532–546, 2008.

[Coon80] Coonen, J. T., “An Implementation Guide to a Proposed Standard for Floating-Point
Arithmetic,” IEEE Computer, Vol. 13, No. 1, pp. 69–79, 1980.

[Davi74] Davis, R. L., “Uniform Shift Networks,” IEEE Computer, Vol. 7, No. 9, pp. 60–71,
1974.

[Erce92] Ercegovac, M. D., and T. Lang, “On-the-Fly Rounding,” IEEE Trans. Computers,
Vol. 41, No. 12, pp. 1497–1503, 1992.

[Even00] Even, G., and P.-M. Seidel, “A Comparison of Three Rounding Algorithms for IEEE
Floating-Point Multiplication,” IEEE Trans. Computers, Vol. 49, No. 7, pp. 638–650,
2000.

[Gok07] Gok, M., “A Novel IEEE Rounding Algorithm for High-Speed Floating-Point
Multipliers,” Integration, the VLSI Journal, Vol. 40, No. 4, pp. 549–560, 2007.

[Gosl71] Gosling, J. B., “Design of Large High-Speed Floating-Point Arithmetic Units,” Proc.
IEE, Vol. 118, pp. 493–498, 1971.

[Le07] Le, H. Q., et al., “IBM POWER6 Microarchitecture,” IBM J. Research &
Development, Vol. 51, No. 6, pp. 639–662, 2007.

[Mont90] Montoye, R. K., E. Hokonek, and S. L. Runyan, “Design of the Floating-Point
Execution Unit in the IBM RISC System/6000,” IBM J. Research and Development,
Vol. 34, No. 1, pp. 59–70, 1990.

[Nain01] Naini, A., A. Dhablania, W. James, and D. Das Sarma, “1-GHz HAL SPARC64 Dual
Floating Point Unit with RAS Features,” Proc. 15th Symp. Computer Arithmetic,
pp. 173–183, 2001.

[Ober97] Oberman, S. F., and M. J. Flynn, “Design Issues in Division and Other Floating-Point
Operations,” IEEE Trans. Computers, Vol. 46, No. 2, pp. 154–161, 1997.

394 Chapter 18 Floating-Point Operations

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture and
Implementation, Prentice-Hall, 1994.

[Schw03] Schwarz, E. M., M. Schmookler, and S. D. Trong, “Hardware Implementations of
Denormalized Numbers,” Proc. 16th IEEE Symp. Computer Arithmetic, June 2003,
pp. 70–78.

[Schw06] Schwarz, E. M., “Binary Floating-Point Unit Design: The Fused Multiply-Add
Dataflow,” in High-Performance Energy-Efficient Microprocessor Design, V. G.
Oklobdzija and R. K. Krishnamurthy (eds.), pp. 189–208, Springer, 2006.

[Sode96] Soderquist, P., and M. Leeser, “Area and Performance Tradeoffs in Floating-Point
Divide and Square-Root Implementations,” ACM Computing Surveys, Vol. 28, No. 3,
pp. 518–564, 1996.

[Tron07] Trong, S. D., M. S. Schmookler, E. M. Schwarz, and M. Kroener, “P6 Binary
Floating-Point Unit,” Proc. 18th Symp. Computer Arithmetic, pp. 77–86, 2007.

[Wase82] Waser, S., and M. J. Flynn, Introduction to Arithmetic for Digital Systems Designers,
Holt, Rinehart, & Winston, 1982.

[Yu06] Yu, X. Y., et al., “A 5 GHz+ 128-bit Binary Floating-Point Adder for the POWER6
Processor,” Proc. 32nd European Solid-State Circuits Conf., pp. 166–169, 2006.

19 Errors and Error Control

■ ■ ■

“Sometimes it is useful to know how large your zero is.”
A N O N Y M O U S

■ ■ ■

M achine arithmetic is inexact in two ways. First, many numbers of interest,

such as
√

2 or π , do not have exact representations. Second, floating-point

operations, even when performed on exactly representable numbers, may lead to

errors in the results. It is essential for arithmetic designers and serious computer

users to understand the nature and extent of such errors, as well as how they can

lead to results that are counterintuitive and, occasionally, totally invalid. Chapter

topics include:

19.1 Sources of Computational Errors

19.2 Invalidated Laws of Algebra

19.3 Worst-Case Error Accumulation

19.4 Error Distribution and Expected Errors

19.5 Forward Error Analysis

19.6 Backward Error Analysis

19.1 SOURCES OF COMPUTATIONAL ERRORS

Integer arithmetic is exact and all integer results can be trusted to be correct as long as
overflow does not occur (assuming that the hardware was designed and built correctly
and has not since failed; flaw- and fault-induced errors are dealt with in Chapter 27).
Floating-point arithmetic, on the other hand, only approximates exact computations with
real numbers. There are two sources of errors: (1) representation errors and (2) arithmetic
errors.

Representation errors occur because many real numbers do not have exact machine
representations. Examples include 1/3,

√
2, and π . Arithmetic errors, on the other hand,

395

396 Chapter 19 Errors and Error Control

occur because some results are inherently inexact or need more bits for exact represen-
tation than are available. For example, a given exact operand may not have a finitely
representable square root, and multiplication produces a double-width result that must
be rounded to single-width format.

Thus, familiarity with representation and arithmetic errors, as well as their propaga-
tion and accumulation in the course of computations, is important for the design of arith-
metic algorithms and their realizations in hardware, firmware, or software. Example 19.1
illustrates the effect of representation and computation errors in floating-point arithmetic.

■ EXAMPLE 19.1 Consider the decimal computation 1/99 − 1/100, using a decimal
floating-point format with a four-digit significand in [1, 10) and a single-digit signed
exponent. Given that both 99 and 100 have exact representations in the given format,
the floating-point divider will compute 1/99 and 1/100 accurately to within the machine
precision:

x = 1/99 ≈ 1.010× 10−2 error ≈ 10−6 or 0.01%
y = 1/100 = 1.000× 10−2 error = 0

The precise result is 1/9900, with its floating-point representation 1.010× 10−4 containing
an approximate error of 10−8 or 0.01%. However, the floating-point subtraction z = x−fp
y yields the result

z = 1.010× 10−2 − 1.000× 10−2 = 1.000× 10−4

which has a much larger error of around 10−6 or 1%.

A floating-point number representation system may be characterized by a radix r
(which we assume to be the same as the exponent base b), a precision p in terms of
radix-r digits, and an approximation or “rounding” scheme A. We symbolize such a
floating-point system as

FLP(r, p, A)

where A ∈ {chop, round, rtne, chop(g), …}; “rtne” stands for “round to nearest even”
and chop(g) for a chopping method with g guard digits kept in all intermediate steps.
Rounding schemes were discussed in Section 17.5.

Let x = res be an unsigned real number, normalized such that 1/r ≤ s < 1, and xfp
be its representation in FLP(r, p, A). Then

xfp = resfp = (1+ η)x

where

η = xfp − x

x
= sfp − s

s

Sources of Computational Errors 397

is the relative representation error. One can establish bounds on the value of η:

A= chop −ulp < sfp − s ≤ 0 r × ulp < η ≤ 0

A= round −ulp/2 < sfp − s ≤ ulp/2 |η| ≤ r × ulp/2

where ulp = r−p. We note that the worst-case relative representation error increases
linearly with r; the larger the value of r, the larger the worst-case relative error η and
the greater its variations. As an example, for FLP(r = 16, p = 6, chop), we have
|η| ≤ 16−5 = 2−20. Such a floating-point system uses a 24-bit fractional significand. To
achieve the same bound for |η| in FLP(r = 2, p, chop), we need p = 21.

Arithmetic in FLP(r, p, A) assumes that an infinite-precision result is obtained and
then chopped, rounded, …, to the available precision. Some real machines approximate
this process by keeping g > 0 guard digits, thus doing arithmetic in FLP(r, p, chop(g)).
In either case, the result of a floating-point arithmetic operation is obtained with a relative
error that is bounded by some constant η, which depends on the parameters r and p and the
approximation scheme A. Consider multiplication, division, addition, and subtraction of
the positive operands

xfp = (1+ σ)x and yfp = (1+ τ)y

with relative representation errors σ and τ , respectively, in FLP(r, p, A). Note that the
relative errors σ and τ can be positive or negative.

For the multiplication operation x × y, we can write

xfp ×fp yfp = (1+ η)xfpyfp = (1+ η)(1+ σ)(1+ τ)xy

= (1+ η + σ + τ + ησ + ητ + στ + ηστ)xy

≈ (1+ η + σ + τ)xy

where the last expression is obtained by ignoring second- and third-order error terms.
We see that in multiplication, relative errors add up in the worst case.

Similarly, for the division operation x/y, we have

xfp /fp yfp = (1+ η)xfp

yfp
= (1+ η)(1+ σ)x

(1+ τ)y

= (1+ η)(1+ σ)(1− τ)(1+ τ 2)(1+ τ 4)(· · ·) x

y

≈ (1+ η + σ − τ)
x

y

So, relative errors add up in division just as they do in multiplication. Note that the
negative sign of τ in the last expression above is of no consequence, given that each of
the three relative error terms can be positive or negative.

398 Chapter 19 Errors and Error Control

Now, let’s consider the addition operation x + y:

xfp +fp yfp = (1+ η)(xfp + yfp) = (1+ η)(x + σx + y + τy)

=
[
(1+ η)

(
1+ σx + τy

x + y

)]
(x + y)

Since |σx + τy| ≤ max(|σ |, |τ |)(x + y), the magnitude of the worst-case relative error
in the computed sum is upper-bounded by |η|+max(|σ |, |τ |).

Finally, for the subtraction operation x − y, we have

xfp −fp yfp = (1+ η)(xfp − yfp) = (1+ η)(x + σx − y − τy)

=
[
(1+ η)

(
1+ σx − τy

x − y

)]
(x − y)

Unfortunately, (σx− τy)/(x− y) can be very large if x and y are both large but x− y is
relatively small (recall that τ can be negative). The arithmetic error η is also unbounded
for subtraction without guard digits, as we will see shortly. Thus, unlike the three pre-
ceding operations, no bound can be placed on the relative error when numbers with like
signs are being subtracted (or numbers with different signs are added). This situation is
known as cancellation or loss of significance.

The part of the problem that is due to η being large can be fixed by using guard digits,
as suggested by the following result.

THEOREM 19.1 In FLP(r, p, chop(g)) with g ≥ 1 and−x < y < 0 < x, we have

x +fp y = (1+ η)(x + y) with − r−p+1 < η < r−p−g+2

Proof: The left-hand side of the inequality is just the worst-case effect of chopping
that makes the result smaller than the exact value. The only way that the result can
be larger than x+ y is if we right-shift y by more than g digits, thus losing some
of its digits and, hence, subtracting a smaller magnitude from x. The maximum
absolute error in this case is less than rp+g . The right-hand side follows by noting
that x+ y is greater than 1/r2 : x is in [1/r, 1) and the shifted y has a magnitude
of at most 1/r2, given that it has been shifted by at least two digits.

COROLLA R Y : In FLP(r, p, chop(1))

x +fp y = (1+ η)(x + y) with |η| < r−p+1

So, a single guard digit is sufficient to make the relative arithmetic error in floating-point
addition or subtraction comparable to the representation error with truncation.

Invalidated Laws of Algebra 399

■ EXAMPLE 19.2 Consider a decimal floating-point number system (r = 10) with p = 6
and no guard digit. The exact operands x and y are shown below along with their floating-
point representations in the given system:

x = −0.100 000 000× 103 xfp = −.100 000× 103

y = −0.999 999 456× 102 yfp = −.999 999× 102

Then, x + y = 0.544× 10−4 and xfp + yfp = 10−4, but

xfp +fp yfp = .100 000× 103 −fp .099 999× 103 = .100 000× 10−2

The relative error of the result is thus [10−3 − (0.544× 10−4)]/(0.544× 10−4) ≈ 17.38;
that is, the result is 1638% larger than the correct sum! With 1 guard digit, we get

xfp +fp yfp = .100 000 0× 103 −fp .099 999 9× 103 = .100 000× 10−3

The result still has a large relative error of 80.5% compared with the exact sum x + y; but
the error is 0% with respect to the correct sum of xfp and yfp (i.e., what we were given to
work with).

19.2 INVALIDATED LAWS OF ALGEBRA

Many laws of algebra do not hold for floating-point arithmetic (some don’t even
hold approximately). Such areas of inapplicability can be a source of confusion and
incompatibility. For example, take the associative law of addition

a + (b+ c) = (a + b)+ c

If the associative law of addition does not hold, as we will see shortly, then an
optimizing compiler that changes the order of operations in an attempt to reduce the
delays resulting from data dependencies may inadvertently change the result of the
computation.

The following example shows that the associative law of addition does not hold for
floating-point computations, even in an approximate sense:

a = 0.123 41× 105 b = −0.123 40× 105 c = 0.143 21× 101

a +fp (b+fp c) = (0.123 41× 105)+fp
[
(−0.123 40× 105)+fp (0.143 21× 101)

]

= (0.123 41× 105)−fp (0.123 39× 105) = 0.200 00× 101

(a +fp b)+fp c = [
(0.123 41× 105)−fp (0.123 40× 105)

]+fp (0.143 21× 101)

= (0.100 00× 101)+fp (0.143 21× 101) = 0.243 21× 101

400 Chapter 19 Errors and Error Control

The two results 0.200 00 × 101 and 0.243 21 × 101 differ by about 20%. So the
associative law of addition does not hold.

One way of dealing with the preceding problem is to use unnormalized arithmetic.
With unnormalized arithmetic, intermediate results are kept in their original form (except
as needed to avoid overflow). So normalizing left shifts are not performed. Let us redo
the two computations using unnormalized arithmetic:

a +fp (b+fp c) = (0.123 41× 105)+fp
[
(−0.123 40× 105)+fp (0.143 21× 101)

]

= (0.123 41× 105)−fp (0.123 39× 105) = 0.000 02× 105

(a +fp b)+fp c = [
(0.123 41× 105)−fp (0.123 40× 105)

]+fp (0.143 21× 101)

= (0.000 01× 105)+fp (0.143 21× 101) = 0.000 02× 105

Not only are the two results the same but they carry with them a kind of warning
about the extent of potential error in the result. In other words, here we know that our
result is correct to only one significant digit, whereas the earlier result (0.243 21× 101)

conveys five digits of accuracy without actually possessing it. Of course the results will
not be identical in all cases (i.e., the associative law still does not hold), but the user is
warned about potential loss of significance.

The preceding example, with normalized arithmetic and two guard digits, becomes

a +fp (b+fp c) = (0.123 41× 105)+fp
[
(−0.123 40× 105)+fp (0.143 21× 101)

]

= (0.123 41× 105)−fp (0.123 385 7× 105) = 0.243 00× 101

(a +fp b)+fp c = [
(0.123 41× 105)−fp 0.123 40× 105)

]+fp (0.143 21× 101)

= (0.100 00× 101)+fp (0.143 21× 101) = 0.243 21× 101

The difference has now been reduced to about 0.1%; the error is much better but still too
high to be acceptable in practice.

Using more guard digits will improve the situation but the associative law of addition
still cannot be assumed to hold in floating-point arithmetic. Here are some other laws of
algebra that do not hold in floating-point arithmetic:

Associative law of multiplication a × (b× c) = (a × b)× c
Cancellation law (for a > 0) a × b = a × c implies b = c
Distributive law a × (b+ c) = (a × b)+ (a × c)
Multiplication canceling division a × (b/a) = b

Before the IEEE 754-1985 floating-point standard became available and widely
adopted, the preceding problem was exacerbated by different ranges and precisions
in the floating-point representation formats of various computers. Now, with standard
representation, one of the sources of difficulties has been removed, but the fundamental
problems persist.

Because laws of algebra do not hold for floating-point computations, it is desirable
to determine, if possible, which of several algebraically equivalent computations yields

Worst-Case Error Accumulation 401

the most accurate result. Even though no general procedure exists for selecting the best
alternative, numerous empirical and theoretical results have been developed over the
years that help us in organizing or rearranging the computation steps to improve the
accuracy of the results. We present three examples that are indicative of the methods
used. Additional examples can be found in the problems at the end of the chapter.

■ EXAMPLE 19.3 The formula x = −b ± d , with d =
√

b2 − c, yields the two roots of
the quadratic equation x2 + 2bx+ c = 0. The formula can be rewritten as x = −c/(b± d).
When b2 >> c, the value of d is close to |b|. Thus, if b > 0, the first formula results in
cancellation or loss of significance in computing the first root (−b + d), whereas no such
cancellation occurs with the second formula. The second root (−b − d), however, is more
accurately computed based on the first formula. The roles of the two formulas are reversed
for b < 0.

■ EXAMPLE 19.4 The area of a triangle with sides of length a, b, and c is given by the
formula A = √

s(s− a)(s− b)(s− c), where s = (a+ b+ c)/2. For ease of discussion, let
a ≥ b ≥ c. When the triangle is very flat, such that a ≈ b+ c, we have s ≈ a and the term
s− a in the preceding formula causes precision loss. The following version of the formula
returns accurate results, even for flat triangles:

A = 1

4

√
(a + (b+ c))(c − (a − b))(c + (a − b))(a + (b− c))

W. Kahan offers a thorough discussion of this problem [Kaha00].

■ EXAMPLE 19.5 Consider f (x) = (1 − cos x)/x2, which has a value in the range
0 ≤ f (x) < 1/2 for all x �= 0. For x = 1.2× 10−5, the value of cos x, rounded to 10 signif-
icant digits, is 0.999 999 999 9, yielding f (x) = (1 − 0.999 999 999 9)/(1.44 × 10−10) =
0.694 444 444 4, which is clearly a wrong answer. The source of the problem is magnifi-
cation of the small error in cos x when its difference with 1 is divided by a very small
number. Cancellation in this example can be avoided by rewriting our function as f (x) =
[sin(x/2)/(x/2)]2/2. Using the latter formula yields f (1.2 × 10−5) = 0.500 000 000 0,
which is correct to 10 significant digits.

19.3 WORST-CASE ERROR ACCUMULATION

In a sequence of computations, arithmetic or round-off errors may accumulate. The larger
the number of cascaded computation steps (that depend on results from earlier steps),
the greater the chance for, and the magnitude of, accumulated errors. With rounding,
errors of opposite signs tend to cancel each other out in the long run, thus leading to
smaller average error in the final result. Yet one cannot count on such cancellations.

402 Chapter 19 Errors and Error Control

For example, in computing the inner product

z =
1023∑
i=0

x(i)y(i)

if each multiply-add step introduces an absolute error of ulp/2+ ulp/2 = ulp, the total
absolute error will be 1024 ulp in the worst case. This is equivalent to losing 10 bits of
precision. If we perform the inner-product computation by means of a fused-multiply-
add operation, the upper bound on absolute error per iteration is reduced from ulp to
ulp/2, which is only slightly better (losing 9 bits of precision instead of 10). As for the
relative error, the situation may be worse. This is because in computing the sum of signed
values, cancellations, or loss of precision, can occur in one or more intermediate steps.

The kind of worst-case analysis carried out for the preceding example is very rough,
and its results are expressed in terms of the number of significant digits in the computation
results. When cascading of computations leads to the worst-case accumulation of an
absolute error of m ulp, the effect is equivalent to losing log2 m bits of precision.

For our inner-product example, if we begin with 24 bits of precision, say, the result
is only guaranteed to have 24 − 10 = 14 significant digits (15, if we fused multiply-
add). For more complicated computations, the worth of such a worst-case estimate
decreases. At the extreme, the analysis might indicate that the result has no significant
digit remaining.

An obvious cure for our inner-product example is to keep the double-width products
in their entirety and add them to compute a double-width result, which is then rounded to
single-width at the very last step. Now, the multiplications do not introduce any round-off
error and each addition introduces a worst-case absolute error of ulp2/2. Thus, the total
error is bounded by 1024× ulp2/2 (or n× ulp2/2 when n product terms are involved).
Therefore, provided overflow is not a problem, a highly accurate result is obtained. In
fact, if n is smaller than rp = 1/ulp, the result can be guaranteed accurate to within ulp
(error of n× ulp2/2 < ulp/2 as described previously, plus ulp/2 for the final rounding).
This is as good as one would get with infinitely precise computation and final truncation.

The preceding discussion explains the need for performing the intermediate compu-
tations with a higher precision than is required in the final result. Carrying more precision
in intermediate results is in fact very common in practice; even inexpensive calculators
use several “guard digits” to protect against serious error accumulation (see Section
1.2). As mentioned in Section 17.2, IEEE 754-2008 defines extended formats associated
with single- and double-precision numbers for precisely this reason. Virtually all digital
signal processors, which are essentially microprocessor chips designed with the goal of
efficiently performing the computations commonly required in signal processing appli-
cations, have the built-in capability to compute inner products with very high precision.

Clearly, reducing the number of cascaded arithmetic operations counteracts the effect
of error accumulation. So, using computationally more efficient algorithms has the dou-
ble benefit of reducing both execution time and accumulated errors. However, in some
cases, simplifying the arithmetic leads to problems elsewhere. A good example is found
in numerical computations whose inherent accuracy is a function of a step size or grid
resolution (numerical integration is a case in point). Since a smaller step size or finer
grid leads to more computation steps, and thus greater accumulation of round-off errors,

Error Distribution and Expected Errors 403

there may be an optimal choice that yields the best result with regard to the worst-case
total error.

Since summation of a large number of terms is a frequent cause of error accumulation
in software floating-point computations, Kahan’s summation algorithm or formula is
worth mentioning here. To compute s = ∑n−1

i=0 x(i), proceed as follows (justifying this
algorithm is left as an exercise):

s ← x(0)

c ← 0 {c is a correction term}
for i = 1 to n− 1 do

y ← x(i) − c {subtract correction term}
z ← s+ y
c ← (z − s)− y {find next correction term}
s ← z

endfor

We will see, at the end of Section 20.3, that similar techniques can be applied to achieve
greater precision in computations, using numbers represented as pairs of floating-point
values.

19.4 ERROR DISTRIBUTION AND EXPECTED ERRORS

Analyzing worst-case errors and their accumulation (as was done in Section 19.3) is an
overly pessimistic approach, but it is necessary if guarantees are to be provided for the
precision of the results. From a practical standpoint, however, the distribution of errors
and their expected values may be more important. In this section, we review some results
concerning average representation errors with chopping and rounding.

Denoting the magnitude of the worst-case or maximum relative representation error
by MRRE, we recall that in Section 19.1 we established

MRRE(FLP(r, p, chop)) = r−p+1

MRRE(FLP(r, p, round)) = r−p+1

2

In the analysis of the magnitude of average relative representation error (ARRE), we
limit our attention to positive significands and begin by defining

ARRE(FLP(r, p, A)) =
∫ 1

1/r

|xfp − x|
x

dx

x ln r

where “ln” stands for the natural logarithm (loge) and |xfp− x|/x is the magnitude of the
relative representation error for x. Multiplying this relative error by the probability den-
sity function 1/(x ln r) is a consequence of the logarithmic law for the distribution of nor-
malized significands [Tsao74]. Recall that a density function must be integrated to obtain
the cumulative distribution function, prob(ε ≤ z), and that the area underneath it is 1.

404 Chapter 19 Errors and Error Control

Figure 19.1
Probability density
function for the
distribution of
normalized
significands in
FLP(r = 2, p, A).

3

2

1

0
1/2 3/4 1

Significand x

x ln 2
1

Figure 19.1 plots the probability density function 1/(x ln r) for r = 2. The density
function 1/(x ln r) essentially tells us that the probability of having a significand value
in the range [x, x+ dx] is dx/(x ln r), thus leading to the integral above for ARRE. Note
that smaller significand values are more probable than larger values.

For a first-cut approximate analysis, we can take |xfp − x| to be equal to r−p/2 for
FLP(r, p, chop) and r−p/4 for FLP(r, p, round): that is, half of the respective maximum
absolute errors. Then the definite integral defining ARRE can be evaluated to yield the
expected errors in the two cases

ARRE(FLP(r, p, chop)) ≈
∫ 1

1/r

r−p

2x

dx

x ln r
= (r − 1)r−p

2 ln r

ARRE(FLP(r, p, round)) ≈ (r − 1)r−p

4 ln r

More detailed analyses can be carried out to derive probability density functions for the
relative error |xfp − x|/x with various rounding schemes, which are then integrated to
provide accurate estimates for the expected errors.

One such study [Tsao74] has yielded the following probability density functions for
the relative error ε being equal to z with chopping and rounding:

pdfchop(z) =

rp−1(r − 1)

ln r
for 0 ≤ z < r−p

1/z − rp−1

ln r
for r−p ≤ z < r−p+1

pdfround(z) =

rp−1(r − 1)

ln r
for |z| ≤ r−p

2
1/(2z)− rp−1

ln r
for

r−p

2
≤ |z| < r−p+1

2

Forward Error Analysis 405

Note the uniform distribution of the relative error at the low end and the reciprocal
distribution for larger values of the relative error z. From the preceding probability
density functions, the expected error can be easily derived:

ARRE(FLP(r, p, chop)) =
∫ r−p+1

0
[pdfchop(z)]z dz = (r − 1)r−p

2 ln r

ARRE(FLP(r, p, round)) =
∫ r−p+1/2

−rp+1/2
[pdfround(z)]z dz = (r − 1)r−p

4 ln r

(
1+ 1

r

)

We thus see that the more rigorous analysis yields the same result as the approximate
analysis in the case of chopping and a somewhat larger average error for rounding.
In particular, for r = 2, the expected error of rounding is 3/4 (not 1/2, as the worst-
case values and the approximate analysis indicate) that of chopping. These analytical
observations are in good agreement with experimental results.

19.5 FORWARD ERROR ANALYSIS

Consider the simple computation y = ax + b and its floating-point version

yfp = (afp ×fp xfp)+fp bfp

Assuming that yfp = (1+η)y and given the relative errors in the input operands afp, bfp,
and xfp can we establish any useful bound on the magnitude of the relative error η in the
computation result? The answer is that we cannot establish a bound on η in general, but
we may be able to do it with specific constraints on the input operand ranges. The reason
for the impossibility of error-bounding in general is that if the two numbers afp ×fp xfp
and bfp are comparable in magnitude but different in sign, loss of significance may occur
in the final addition, making the result quite sensitive to even small errors in the inputs.
Example 19.2 of Section 19.1 illustrates this point.

Estimating or bounding η, the relative error in the computation result, is known as
“forward error analysis”: that is, finding out how far yfp can be from ax + b, or at least
from afpxfp + bfp, in the worst case. In the remainder of this section, we briefly review
four methods for forward error analysis.

Automatic error analysis

For an arithmetic-intensive computation whose accuracy is suspect, one might run
selected test cases with higher precision and observe the differences between the new,
more precise, results and the original ones. If the computation under study is single
precision, for example, one might use double-precision arithmetic, or execute on a mul-
tiprecision software package in lieu of double precision. If test cases are selected carefully
and the differences resulting from automatic error analysis turn out to be insignificant,
the computation is probably safe, although nothing can be guaranteed.

406 Chapter 19 Errors and Error Control

For an interesting example showing that the statement “using greater precision
reduces computation errors or at least exposes them by producing different results”
is a myth, see Problem 19.26.

Significance arithmetic

Roughly speaking, significance arithmetic is the same as unnormalized floating-point
arithmetic, although there are some fine distinctions [Ashe59], [Metr63]. By not nor-
malizing the intermediate computation results, except as needed to correct a significand
spill, we at least get a warning when precision is lost. For example, the result of the
unnormalized decimal addition

(.1234× 105)+fp (.0000× 1010) = .0000× 1010

tells us that precision has been lost. Had we normalized the second intermediate result
to true zero, we would have arrived at the misleading answer .1234 × 105. The former
answer gives us a much better feel for the potential errors.

Note that if 0.0000 × 1010 is a rounded intermediate decimal result, its infinitely
precise version can be any value in [−0.5×106, 0.5×106]. Thus, the true magnitude of the
second operand can be several times larger than that of the first operand. Normalization
would hide this information.

Noisy-mode computation

In noisy-mode computation, (pseudo)random digits, rather than 0s, are inserted during
left shifts that are performed for normalization of floating-point results. Noisy-mode
computation can be either performed with special hardware support or programmed; in
the latter case, significant software overhead is involved.

If several runs of the computation in noisy mode produce comparable results, loss
of significance is probably not serious enough to cause problems. This is true because
in various runs, different digits will be inserted during each normalization postshift.
Getting comparable results from these runs is an indication that the computation is more
or less insensitive to the random digits, and thus to the original digits that were lost as a
result of cancellation or alignment right shifts.

Interval arithmetic

One can represent real values by intervals: an interval [xlo, xhi] representing the real
value x means that xlo ≤ x ≤ xhi. So, xlo and xhi are lower and upper bounds on the true
value of x. To find z = x/y, say, we compute

[zlo, zhi] = [xlo/∇fp yhi, xhi/�fp ylo] assuming xlo, xhi, ylo, yhi > 0

with downward-directed rounding used in the first division (/∇fp), and upward-directed
rounding in the second one (/�fp), to ensure that the interval [zlo, zhi] truly bounds the
value of z.

Backward Error Analysis 407

Interval arithmetic [Alef83], [Moor09] is one the earliest methods for the automatic
tracking of computational errors. It is quite intuitive, efficient, and theoretically appeal-
ing. Unfortunately, however, the intervals obtained in the course of long computations
tend to widen until, after many steps, they become so wide as to be virtually worthless.
Note that the span, zhi−zlo, of an interval is an indicator of the precision in the final result.
So, an interval such as [.8365×10−3, .2093×10−2] tells us little about the correct result.

It is sometimes possible to reformulate a computation to make the resulting output
intervals narrower. Multiple computations also may help. If, using two different compu-
tation schemes (e.g., different formulas, as in Examples 19.3–19.5 at the end of Section
19.2) we find the intervals containing the result to be [ulo, uhi] and [vlo, vhi], we can use
the potentially narrower interval

[wlo, whi] = [max(ulo, vlo), min(uhi, vhi)]
for continuing the computation or for output. We revisit interval arithmetic in Section
20.5 in connection with certifiable arithmetic computations.

19.6 BACKWARD ERROR ANALYSIS

In the absence of a general formula to bound the relative error η = (yfp − y)/y of the
computation yfp = (afp ×fp xfp)+fp bfp, alternative methods of error analysis may be
sought. Backward error analysis replaces the original question:

How much does the result yfp deviate from the correct result y?

with another question:

What changes in the inputs would produce the same deviation in the result?

In other words, if the exact identity yfp = aaltxalt + balt holds for alternate input
parameter values aalt , balt , and xalt , we want to find out how far aalt , balt , and xalt can be
from afp, bfp, and xfp. Thus, computation errors are, in effect, converted to or compared
with additional input errors.

We can easily accomplish this goal for our example computation y = (a × x)+ b:

yfp = (afp ×fp xfp)+fp bfp

= (1+ µ)
[
(afp ×fp xfp)+ bfp

]
with |µ| < r−p+1 = r × ulp

= (1+ µ)
[
(1+ ν)afpxfp + bfp

]
with |ν| < r−p+1 = r × ulp

= (1+ µ)afp (1+ ν)xfp + (1+ µ)bfp

= (1+ µ)(1+ σ)a (1+ ν)(1+ δ)x + (1+ µ)(1+ γ)b

≈ (1+ σ + µ)a (1+ δ + ν)x + (1+ γ + µ)b

So the approximate solution of the original problem is viewed as the exact solution of a
problem close to the original one (i.e., with each input having an additional relative error
of µ or ν). According to the preceding analysis, we can assure the user that the effect of
arithmetic errors on the result yfp is no more severe than that of r × ulp additional error

408 Chapter 19 Errors and Error Control

in each of the inputs a, b, and x. If the inputs are not precise to this level anyway, then
arithmetic errors should not be a concern.

More generally, we do the computation yfp = ffp(x
(1)
fp , x(2)

fp , . . . , x(n)
fp), where the

subscripts “fp” indicate approximate operands and computation. Instead of trying to
characterize the difference between y (the exact result) and yfp (the result obtained),

we try to characterize the difference between x(i)
fp and x(i)

alt such that the identity yfp =
f (x(1)

alt , x(2)
alt , . . . , x(n)

alt) holds exactly, with f being the exact computation. When it is
applicable, this method is very powerful and useful.

PROBLEMS 19.1 Representation errors

In Section 19.1, MRRE was related to ulp using the assumption 1/r ≤ s < 1.
Repeat the analysis, this time assuming 1 ≤ s < r (as in IEEE 754-2008).
Explain your results.

19.2 Variations in rounding

a. Show that in FLP(r, p, A) with even r, choosing round-to-nearest-even for
r/2 odd, and round-to-nearest-odd for r/2 even, can reduce the errors. Hint:
Successively round the decimal fraction 4.4445, each time removing one
digit [Knut81].

b. What about FLP(r, p, A) with an odd radix r?

19.3 Addition errors with guard digits

a. Is the error derived in Example 19.1 consistent with Theorem 19.1?
b. Redo the computation of Example 19.2 with two guard digits.
c. Is it beneficial to have more than one guard digit as far as the worst-case error

in floating-point addition is concerned?

19.4 Errors with guard digits

a. Show that in FLP(r, p, chop) with no guard digit, the relative error in addition
or subtraction of exactly represented numbers can be as large as r − 1.

b. Show that if x − y is computed with one guard digit and y/2 ≤ x ≤ 2y, the
result is exact.

c. Modify Example 19.2 such that the relative arithmetic error is as close as
possible to the bound given in the corollary to Theorem 19.1.

19.5 Optimal exponent base in a floating-point system

Consider two floating-point systems FLP(r = 2a, p, A) and FLP(r = 2b, q, A)
with comparable ranges, and the same total number w of bits.

a. Derive a relationship between a, b, p, and q. Hint: Assume that x and y bits
are used for the exponent parts and use the identity x+ap = y+bq = w−1.

b. Using the relationship of part a, show that FLP(r = 2, p, A) provides the low-
est worst-case relative representation error among all floating-point systems
with comparable ranges and power-of-2 radices.

Problems 409

19.6 Laws of algebra

In Section 19.2, examples were given to show that the associative law of addition
may be violated in floating-point arithmetic. Provide examples that show the
violation of the other laws of algebra listed in Section 19.2.

19.7 Laws of algebra for inequalities

a. Show that with floating-point arithmetic, if a < b, then a +fp c ≤ b +fp c
holds for all c; that is, adding the same value to both sides of a strict inequal-
ity cannot affect its direction but may change the strict “<” relationship
to “≤.”

b. Show that if a < b and c < d , then a +fp c ≤ b+fp d .
c. Show that if c > 0 and a < b, then a ×fp c ≤ b×fp c.

19.8 Equivalent computations

Evaluating expressions of the form (1+ g)n, where g << 1, is quite common in
financial calculations. For example, g might be the daily interest rate (0.06/365 ≈
0.000 164 383 6 with a 6% annual rate) for a savings account that compounds
interest daily. In calculating 1 +fp g, many bits of g are lost as a result of the
alignment right shift. This error is then amplified when the result is raised to a
large power n. The preceding expression can be rewritten as en ln(1+g). Even if
an accurate natural logarithm function LN is available such that LN(x) is within
ulp/2 of ln x, our problem is still not quite solved since LN(1 +fp g) may not
be close to ln(1 + g). Show that, for g << 1, computing ln(1 + g) as g when
1+fp g = g and as [g ×fp LN(1+fp g)]/fp [(1+fp g)−fp 1] when 1+fp g �= 1
provides good relative error.

19.9 Equivalent computations

Assume that x and y are numbers in FLP(r, p, chop(g)), g ≥ 1.

a. Show that the midpoint of the interval [x, y], obtained from (x +fp y)/fp 2
may not be within the interval but that x +fp ((y −fp x)/fp 2) always is.

b. Show that the relative error in the floating-point calculation (x ×fp x) −fp
(y ×fp y) can be quite large but that (x −fp y) ×fp (x +fp y) yields good
relative error.

c. Assume that the library program SQRT has good relative error. Show that
calculating 1−fp SQRT(1 −fp x) may lead to bad worst-case relative error
but that x/fp[1+ SQRT(1−fp x)] is safe.

19.10 Errors in radix conversion

a. Show that when an IEEE 754-2008 binary single-precision number is con-
verted to the closest eight-digit decimal number, the original binary number
may not be uniquely recoverable from the resulting decimal version.

b. Would nine decimal digits be adequate to remedy the problem stated in part a?
Fully justify your answer.

410 Chapter 19 Errors and Error Control

19.11 Kahan’s summation algorithm

a. Apply Kahan’s summation algorithm, presented at the end of Section 19.3,
to the example computations in Section 19.2 showing that the associative
law of addition does not hold in floating-point arithmetic. Explain the results
obtained.

b. Provide an intuitive justification for the use of the correction term c in Kahan’s
summation algorithm.

19.12 Distribution of significand values

a. Verify that Fig. 19.1 does in fact represent a probability density function.
b. Find the average value of a normalized binary significand x based on Fig.

19.1 and comment on the result.

19.13 Error distribution and expected errors

a. Verify that pdf chop(z) and pdf round(z), introduced near the end of Section
19.4, do in fact represent probability density functions.

b. Verify that the probability density functions of part a lead to the ARRE values
derived near the end of Section 19.4.

c. Provide an intuitive explanation for the expected error in rounding being
somewhat more than half that of truncation.

19.14 Noisy-mode computation

Perform the computation (a +fp b) +fp c, where a = .123 41 × 105, b =
−.123 40× 105, and c = .143 21× 101 four times in noisy mode, using pseudo-
random digits during normalization left shifts. Compare and discuss the results.

19.15 Interval arithmetic

You are given the decimal floating-point numbers x = .100 × 100 and y =
.555× 10−1.

a. Use interval arithmetic to compute the mean of x and y via the arithmetic
expression (x +fp y)/fp 2.

b. Repeat part a, this time using the arithmetic expression x+fp [(y−fp x)/fp 2].
c. Combine the results of parts a and b into a more precise resulting interval.

Discuss the result.
d. Repeat parts a, b, and c with the equivalent computations (x×fp x)−fp (y×fp y)

and (x −fp y)×fp (x +fp y).
e. Repeat parts a, b, and c with the equivalent computations 1−fp SQRT(1−fp x)

and x/fp [1 + SQRT(1 −fp x)], assuming that the library program SQRT
provides precisely rounded results.

19.16 Backward error analysis

An (n− 1)th-degree polynomial in x, with the coefficient of the ith-degree term
denoted as c(i), is evaluated with at least one guard digit by using Horner’s
rule (i.e., n computation steps, each involving a floating-point multiplication by

Problems 411

x followed by a floating-point addition). Using backward error analysis, show
that this procedure, has allowed us to compute a polynomial with coefficients
(1+ η(i))c(i), and find a bound for η(i). Then, show that if c(i) ≥ 0 for all i and
x > 0, a useful bound can be placed on the relative error of the final result.

19.17 Computational errors

a. Armed with what you have learned from this chapter, reexamine the sources
of computation errors in Problem 1.1 of Chapter 1. Describe your findings
using the terminology introduced in this chapter.

b. Repeat part a for Problem 1.2.
c. Repeat part a for Problem 1.3.
d. Repeat part a for Problem 1.28.

19.18 Errors in incomplete multipliers

Unsigned i-bit and j-bit bit-normalized binary fractions f and g (j ≤ i and
0.5 ≤ f , g < 1) are multiplied by means of an i × j multiplier that produces a
k-bit result (k < i + j).

a. What can you say about the maximum absolute and relative errors in the
resulting k-bit product? Assume that all i+ j bits of the product are produced
and the result is then truncated to k bits.

b. What should the value of k be if the relative error due to incomplete
multiplication is to be no larger than that of either input operand?

c. How would you answer the question of part b if the multiplier did not produce
all i + j product bits but rather ignored all bits beyond position −k in the
partial product bit-matrix at the outset?

19.19 Associative law of addition

Show that in FLP(r, p, rtna), we have x+fp (y+fp z) = (1+ ρ)[(x+fp y)+fp z],
where |ρ| ≤ r−(p−1), provided that the three operands x, y, and z have like signs
(i.e., the associative law of addition holds approximately in this case). Note that a
looser bound |ρ| ≤ 2r−(p−1) is relatively easy to prove by relating each of the two
parenthesized expressions above to x+y+z, but this is not what is required here.

19.20 Backward error analysis

Suppose we compute x4 by squaring x and again squaring the result. Each squar-
ing operation is done via a floating-point multiplication. Show that the computed
result is z = [(1+ ρ)x]4 and establish a bound on the magnitude of ρ.

19.21 Errors in floating-point arithmetic

Within a program, the function f (t) = c+eat×e−bt is evaluated by two calls to a
built-in exponential function, a floating-point multiplication, and a floating-point
addition. Even though the function f(t) is continuous, the program results yield
the following plot for f(t). Explain the observed discontinuity and suggest how
the “bug” might be fixed.

412 Chapter 19 Errors and Error Control

c
t

f(t)

19.22 Algorithms for statistical calculations

Given a sample x(0), x(1), . . . , x(n−1) of size n, its mean and standard deviation
are defined as µ = �x(i)/n and σ = [�(x(i)−µ)2/(n−1)]1/2. Study the deriva-
tion of σ from the viewpoint of computation errors when using floating-point
arithmetic [Chan79].

19.23 Microsoft Excel 2007 flaw

According to news stories published in the last week of September 2007, the then
newest version of Microsoft Excel spreadsheet program contained a flaw that led
to incorrect values in rare cases. For example, when multiplying 77.1 by 850,
10.2 by 6425, or 20.4 by 3212.5, the number 100 000 was displayed instead of the
correct result 65 535. Similar errors were observed for calculations that produced
results close to 65 536. Study this problem using Internet sources and discuss,
in one single-spaced typed page, the nature of the flaw, why it went undetected,
exactly what caused the errors, and how Microsoft dealt with the problem.

19.24 Computing the value of e

The value of e is the limit of E = (1 + 1/n)n, when n goes to infinity. If we
compute E with larger and larger values of n, we obtain the value of e with better
and better accuracy. However, if we use too large a value of n in floating-point
arithmetic, 1 + 1/n evaluates to 1, leading to very poor accuracy. Derive the
optimal value of n so that E provides the best approximation to e.

19.25 Avoiding catastrophic cancellation

Each of the following functions, when evaluated near the point indicated based
on expression supplied, leads to catastrophic cancellation. In each case, derive
an equivalent expression for the function that does not lead to a large error.

a. f (x) = ex − sin x − cos x, near x = 0
b. g(x) = ln x − ln(1/x), near x = 1
c. h(x) = ln x − 1, near x = e

19.26 More precision doesn’t always help

The following example, courtesy of W. Kahan, is offered to dispel the myth
that if you repeat a computation with more and more precision and keep getting
the same result, then your result must be correct. Let f (z) = (ez − 1)/z, with
f (0) = 1, g(x) = |x− (x2 + 1)1/2| − 1/(x+ (x2 + 1)1/2), and h(x) = f (g(x)2).

References and Further Readings 413

Compute h(x) for x = 15.0, 16.0, 17.0, . . . , 9999.0. Repeat the computation with
more precision and discuss the results.

REFERENCES AND FURTHER READINGS

[Alef83] Alefeld, G., and J. Herzberger, An Introduction to Interval Computations, Academic
Press, 1983.

[Ashe59] Ashenhurst, R. L., and N. Metropolis, “Unnormalized Floating-Point Arithmetic,”
J. ACM, Vol. 6, pp. 415–428, 1959.

[Chan79] Chan, T. F., and J. G. Lewis, “Computing Standard Deviations: Accuracy,”
Communications of the ACM, Vol. 22, No. 9, pp. 526–531, 1979.

[Cody73] Cody, W. J., “Static and Dynamic Numerical Characteristics of Floating-Point
Arithmetic,” IEEE Trans. Computers, Vol. 22, No. 6, pp. 598–601, 1973.

[Gold91] Goldberg, D., “What Every Computer Scientist Should Know About Floating-Point
Arithmetic,” ACM Computing Surveys, Vol. 23, No. 1, pp. 5–48, 1991.

[High02] Higham, N. J., Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM,
2002.

[Kaha00] Kahan, W., “Miscalculating Area and Angles of a Needle-like Triangle,” available at
http://www.cs.berkeley.edu/∼wkahan/Triangle.pdf, 22 pp., March 24, 2000.

[Kaha04] Kahan, W., “Applications of IEEE 754’s Rounding Modes,” August 4, 2004.
http://754r.ucbtest.org/roundingmode.txt

[Kaha04a] Kahan, W., “How Futile Are Mindless Assessments of Roundoff in Floating-Point
Computation,” November 1, 2004. http://www.cs.berkeley.edu/∼wkahan/
Mindless.pdf

[Knut81] Knuth, D. E., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
2nd ed., Addison-Wesley, 1981.

[Kuck77] Kuck, D. J., D. S. Parker, and A. H. Sameh, “Analysis of Rounding Methods in
Floating-Point Arithmetic,” IEEE Trans. Computers, Vol. 26, No. 7, pp. 643–650,
1977.

[Kuli02] Kulisch, U. W., Advanced Arithmetic for the Digital Computer, Springer, 2002.

[McKe67] McKeenan, W. M., “Representation Error for Real Numbers in Binary Computer
Arithmetic,” IEEE Trans. Computers, Vol. 16, pp. 682–683, 1967.

[Metr63] Metropolis, N., and R. L. Ashenhurst, “Basic Operations in an Unnormalized
Arithmetic System,” IEEE Trans. Electronic Computers, Vol. 12, pp. 896–904, 1963.

[Moor09] Moore, R. E., R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis,
SIAM, 2009.

[Ogit05] Ogita, T., S. M. Rump, and S. Oishi, “Accurate Sums and Dot Product,” SIAM J.
Scientific Computing, Vol. 26, No. 6, pp. 1955–1988, 2005.

[Over01] Overton, M. L., Numerical Computing with IEEE Floating Point Arithmetic, SIAM,
2001.

[Rump05] Rump, S. M., T. Ogita, and S. Oishi, “Accurate Floating-Point Summation,”
Technical Report 05.12, Information and Communication Science, Hamburg
University of Technology, 2005.

[Ster74] Sterbenz, P. H., Floating-Point Computation, Prentice-Hall, 1974.

[Tsao74] Tsao, N., “On the Distribution of Significant Digits and Roundoff Errors,” Commun.
ACM, Vol. 17, No. 5, pp. 269–271, 1974.

20 Precise and Certifiable
Arithmetic

■ ■ ■

“Thus it appears that whatever may be the number of digits the Analytical Engine is
capable of holding, if it is required to make all the computations with k times that number

of digits, then it can be executed by the same Engine, but in the amount of time equal to
k2 times the former.”

C H A R L E S B A B B A G E , PA S S A G E S F R O M T H E L I F E O F A P H I L O S O P H E R , 1 8 6 4

■ ■ ■

I n certain application contexts, where wrong answers might jeopardize operational

safety, or even endanger human lives, all system functions must be certifiable. In

the case of arithmetic, this means either doing exact calculations or the ability to put

strict upper bounds on error magnitudes (fail-safe mode) and/or on the probability

of intolerable errors (probabilistic certification). In this chapter, we review methods

for performing arithmetic operations with greater precision or with guaranteed error

bounds. Chapter topics include:

20.1 High Precision and Certifiability

20.2 Exact Arithmetic

20.3 Multiprecision Arithmetic

20.4 Variable-Precision Arithmetic

20.5 Error-Bounding via Interval Arithmetic

20.6 Adaptive and Lazy Arithmetic

20.1 HIGH PRECISION AND CERTIFIABILITY

Numerical computations performed with short or long floating-point formats are remark-
ably accurate in most cases. Errors resulting from the finiteness of representation
and imprecise calculations (e.g., approximation or convergence schemes) are by now
reasonably well understood and can be kept under control by algorithmic methods.

414

Exact Arithmetic 415

In some situations, however, ordinary floating-point arithmetic is inadequate, either
because it is not precise enough or because of our inability to establish useful bounds on
the errors. In such cases, the results may well possess adequate precision but there is a
“credibility-gap problem …[as] we don’t know how much of the computer’s answers to
believe” [Knut81].

We will discuss three distinct approaches for coping with the aforementioned
credibility gap:

1. Obtaining completely trustworthy results by performing arithmetic calculations
exactly (Section 20.2). Of course, if this approach were always possible and
cost-effective, we wouldn’t need any of the following alternatives.

2. Making the arithmetic highly precise in order to raise our confidence in the validity
of the results. This pragmatic goal can be accomplished by multiprecision calcu-
lations (Section 20.3) or via a more flexible variable-precision arithmetic system
(Section 20.4). The two approaches correspond to static and dynamic precision
enhancement, respectively. Both methods make irrelevant results less likely but
provide no guarantee, except in a probabilistic sense.

3. Performing ordinary or high-precision calculations while keeping track of poten-
tial error accumulation (Section 20.5). Then, based on the worst-case suspected
error in the result, we can either certify the result as carrying adequate precision
or produce a warning that would prevent incorrect conclusions or actions that
might have catastrophic consequences (fail-safe operation).

After studying the preceding approaches, we devote Section 20.6 to techniques that
render precise and/or certifiable arithmetic more efficient.

Besides problems with precision, the finite range of machine arithmetic can also
become problematic. Thus provisions for exact or highly precise arithmetic are often
accompanied by methods for extending the range. A common way is via number rep-
resentation systems in which the range can grow dynamically. Usually, numbers are
represented in a single word. However, 1 or 2 bits are assigned special meanings and
allow the number to extend into subsequent words. The price we pay for this flexibility is
loss of the aforementioned bit(s) and more complex arithmetic algorithms, including the
overhead of the special checks needed to establish whether the range must be extended.

Certifiability in computer arithmetic is concerned not only with precision, or lack
thereof, but also spans algorithm and hardware verification as well as fault detection
and tolerance. Modern digital systems tend to be extremely complex. Thus, unless full
attention is paid to correctness issues during the design, there is little hope of catch-
ing all problems afterward. The already difficult hardware/software verification process
is exacerbated by complex interrelationships between advanced design features such
as parallelism, pipelining, and power-saving mechanisms. The Pentium floating-point
division flaw aptly illustrates this point. As for fault-induced errors, we deal with them
in Chapter 27.

20.2 EXACT ARITHMETIC

The ultimate in error control is exact (error-free) arithmetic. This ideal has been pursued
by many arithmetic designers and researchers, leading to proposals for using continued

416 Chapter 20 Precise and Certifiable Arithmetic

fractions, rational numbers, and p-adic representations, among others. In this section,
we introduce a few of the proposed methods and briefly discuss their implementation
aspects, advantages, and drawbacks.

Continued fractions

Any unsigned rational number x = p/q has a unique continued-fraction expansion

x = p

q
= a0 + 1

a1 + 1

a2 + 1
... 1

am−1 + 1

am

with a0 ≥ 0, am ≥ 2, and ai ≥ 1 for 1 ≤ i ≤ m − 1. For example, 277/642 has the
following continued-fraction representation:

277

642
= 0+ 1

2+ 1

3+ 1

6+ 1

1+ 1

3+ 1/3

= [0/2/3/6/1/3/3]

Representation of −277/642 is obtained by simply attaching a sign bit or negating all
the digits in the representation of 277/642.

Note that the continued-fraction representation of x is obtained by writing x = s(0)

as �s(0)� + 1/s(1), and then repeating the process for representing each s(i) in turn (i.e.,
s(1) = �s(1)� + 1/s(2), . . .). Thus, for s(0) = 277/642, we get s(1) = 642/277, s(2) =
277/88, s(3) = 88/13, s(4) = 13/10, s(5) = 10/3, and s(6) = 3.

Approximations for finite representation can be obtained by limiting the number
of “digits” in the continued-fraction representation. For example, the following are
successively better approximations to the exact value x = [0/2/3/6/1/3/3] = 277/642:

[0] = 0
[0/2] = 1/2
[0/2/3] = 3/7
[0/2/3/6] = 19/44
[0/2/3/6/1] = 22/51
[0/2/3/6/1/3]= 85/197

Vuillemin [Vuil90] has suggested that continued fractions be used in the following
way for performing exact arithmetic. Each potentially infinite, continued fraction is
represented by a finite number of digits, plus a continuation, which is, in effect, a
procedure for obtaining the next digit as well as a new continuation. Notationally, we
can write the digits as before (i.e., separated by /), following them with a semicolon and
a description of the continuation.

Exact Arithmetic 417

When the representation is periodic, the continuation can simply be specified by a
sequence of one or more digits. This is what we do in decimal arithmetic when we write
8/3 as (2.66; 6)ten and 1/7 as (0.1; 428571)ten. When additional digits can be derived as
a simple function of an index i ≥ 0, the relevant expression is given. Here are some
examples:

(1+√5)/2= [1/1/1/1/ · · ·] = [; 1]√
2 = [1/2/2/2/ · · ·] = [1; 2]

e = [2/1/2/1/1/4/1/1/6/1/ · · ·] = [2; 1/2i + 2/1]
∞ = [1/0/1/0/1/0 · · ·] = [; 1/0] = [; 2/0] = · · ·
aN = [0/0/0/0/ · · ·] = [; 0] {any number}

Unfortunately, arithmetic operations on continued fractions are quite complicated. So,
we will not pursue this representation further.

Fixed-slash number systems

In a fixed-slash number system, a rational number is represented as the ratio of a pair of
integers p and q, each with a fixed range. Representation of numbers as finite-precision
rationals is related to the continued-fraction expansion discussed earlier in the sense that
when a number is not exactly representable, the best continued-fraction approximation
that fits the format is used as its “rounded” version. For example, suppose we want to
represent the rational number 277/642 in a 2 + 2 decimal fixed-slash number system
(2 digits each for the numerator and the denominator). From the continued-fraction
representation given earlier, we find the best approximation to be 22/51, which has a
relative error slightly exceeding 2%.

A possible fixed-slash format for representing rational numbers consists of a sign bit,
followed by an “inexact” flag, a k-bit numerator, and an m-bit denominator, for a total
of k+m+2 bits (Fig. 20.1). The inexact flag is useful for denoting a value that has been
rounded off because the precise result did not fit within the available format. Note that
integers are a subclass of representable numbers (with q = 1). The representation of a
rational number is normalized if gcd(p, q) = 1. Special values can also be represented
by appropriate conventions. Here is one way to do it:

Rational number if p > 0, q > 0
±0 if p = 0, q odd
±∞ if p odd, q = 0
NaN (not a number) otherwise

Sign
Implied slash position

± p q

Inexact

k bits m bits

Figure 20.1 Example fixed-slash number representation format.

418 Chapter 20 Precise and Certifiable Arithmetic

When a number is not representable exactly, it is rounded to the closest representable
value. On overflow (underflow), the number is rounded to±∞ (±0) and the inexact bit
is set.

The following mathematical result, attributed to Dirichlet, shows that the space waste
due to multiple representations such as 3/5 = 6/10 = 9/15 = · · · is no more than 1 bit:

lim
n→∞

|{p/q | 1 ≤ p, q ≤ n, gcd(p, q) = 1}|
n2

= 6

π2
≈ 0.608

This result essentially says that for n sufficiently large, two randomly selected numbers
in [1, n] are relatively prime with probability greater than 0.6. Thus, more than half of
the codes represent unique numbers and the waste is less than 1 bit.

Note that the additive (multiplicative) inverse of a number is easily obtained with
fixed-slash representation by simply flipping the sign bit (switching p and q). Adding
two fixed-slash numbers requires three integer multiplications and one addition, while
multiplying them involves two multiplications. Subtraction (division) can be done as
addition (multiplication) by first forming the additive (multiplicative) inverse of the
subtrahend (divisor).

The results of these operations are exact, unless the numerator or denominator
becomes too large. In such a case, we can avoid overflow through normalization if
p and q have a common factor. The overhead implied by computing gcd(p, q) is often
unacceptably high. Additionally, once the capacity of the number system for exact rep-
resentation of the result has been exceeded, the process of rounding the result to the
nearest representable rational number is fairly complex. For these reasons, fixed-slash
representations have not found widespread use.

Floating-slash number systems

In a fixed-slash number system, a fixed number of bits is allocated to each of the numerator
and denominator parts. These bits sometimes go to waste, as is evident in the case of
q = 1 for representing integers. Afloating-slash format for representing rational numbers
consists of a sign bit, followed by an “inexact” flag, an h-bit field (m) specifying the
explicit slash position, and a k-bit field containing a (k − m)-bit numerator and the
least-significant m bits of an (m+ 1)-bit denominator with a hidden most-significant bit
(MSB) of 1. We obtain integers for m = 0. The set of numbers represented in such a
floating-slash number system (Fig. 20.2) is

{±p/q | p, q ≥ 1, gcd(p, q) = 1, �log2 p� + �log2 q� ≤ k − 2}

Sign

± p q

Inexact

m bitsh bits

m

Floating slash position

k – m bits

Figure 20.2 Example floating-slash representation format.

Multiprecision Arithmetic 419

Special codes for ±0,±∞, and NaN are also needed, as in fixed-slash representations.
For the sake of simplicity, one can replace the preceding condition �log2 p�+�log2 q� ≤
k−2 with the approximate condition pq ≤ 2k . Again the following mathematical result,
attributed to Dirichlet, shows that the space waste is no more than 1 bit:

lim
n→∞

|{±p/q | pq ≤ n, gcd(p, q) = 1}|
|{±p/q | pq ≤ n, p, q ≥ 1}| = 6

π2
≈ 0.608

Floating-slash format removes some of the problems of fixed-slash representations, but
arithmetic operations are complicated even further; hence, applications are limited.

20.3 MULTIPRECISION ARITHMETIC

One could in principle build a highly precise arithmetic unit, say operating on 1024-bit
floating-point numbers instead of the standard 32- or 64-bit varieties. There are several
obvious problems with this approach, including high cost, waste of time and hardware
for computations that do not need such a high precision, and inability to adapt to special
situations that call for even higher precision. Thus, floating-point hardware is provided
for more commonly used 32- and 64-bit numbers, with some recent implementations
also accommodating 128-bit numbers.

When the range or precision of the number representation scheme supported by the
hardware is inadequate for a given application, we are forced to represent numbers as
multiword data structures and to perform arithmetic operations by means of software rou-
tines that manipulate these structures. Examples in the case of integer arithmetic can be
found in cryptography, where large integers are used as keys for the encoding/decoding
processes, and in mathematical research, where properties of large primes are investi-
gated. Extended-precision floating-point numbers may be encountered in some scientific
calculations, where highly precise results are required, or in error analysis efforts, where
the numerical stability of algorithms must be verified by computing certain test cases
with much higher precision.

Multiprecision arithmetic refers to the representation of numbers in multiple machine
words. The number of words used to represent each integer or real number is chosen
a priori; if the number of words can change dynamically, we have variable-precision
arithmetic (see Section 20.4). In the case of integer values, the use of multiple words per
number extends the range; for floating-point numbers, either the range or the precision
parameter or both might be extended, depending on need. All these approaches are
referred to as “multiprecision arithmetic,” even though, strictly speaking, the term makes
no sense for integers.

Multiprecision integer arithmetic is conceptually quite simple. An integer can be
represented by a list of smaller integers, each of which fits within a single machine word
(Fig. 20.3). These extended-precision integers are then viewed as radix-2k numbers,
where k is the word width. As an example, with 32-bit machine words, one can repre-
sent a quadruple-precision 2’s-complement integer x by using the four unsigned words

420 Chapter 20 Precise and Certifiable Arithmetic

Sign ± MSB

LSB

x

x

x

x

(3)

(2)

(1)

(0)

Figure 20.3 Example quadruple-precision integer format, with storage order from
most-significant bit (MSB) to least-significant bit (LSB).

x(3), x(2), x(1), x(0), such that

x = −x(3)
31 2127 + 296

30∑
j=0

x(3)
j 2j + 264x(2) + 232x(1) + x(0)

The radix in this example is 232. With this representation, radix-2k digit-serial
arithmetic algorithms can be applied to the multiprecision numbers in a straightfor-
ward manner to simulate 128-bit, 2’s-complement arithmetic. To perform the addition
z = x + y, for example, we begin by performing z(0) = x(0) + y(0), which leads
to the carry-out c(1) being saved in the carry flag. Next, we perform the addition
z(1) = x(1)+ y(1)+ c(1). Virtually all processors provide a special instruction for adding
with carry-in. The process can thus be repeated in a loop, with special overflow detection
rules applied after the last iteration.

Multiplication can be performed by either implementing a shift/add algorithm
directly or by using the machine’s multiply instruction, if available. For further details,
see [Knut81, Section 4.3, on multiple-precision arithmetic, pp. 250–301].

Performing complicated arithmetic computations on multiprecision numbers can
be quite slow. For this reason, we sometimes prefer to perform such computations
on highly parallel computers, thus speeding up the computation by concurrent oper-
ations on various words of the multiword numbers. Since each word of the resulting
multiword numbers in general depends on all words of the operands, proper data distri-
bution and occasional rearrangement may be required to minimize the communication
overhead that otherwise might nullify much of the speed gain due to concurrency.
Many standard parallel algorithms can be used directly in such arithmetic computa-
tions. For example, parallel prefix can be used for carry prediction (lookahead) and fast
Fourier transform for multiplication [Parh99]. Whether one uses a sequential or parallel
computer for multiprecision arithmetic, the selection of the optimal algorithm depends
strongly on the available hardware features and the width of numbers to be processed
[Zura93].

Software packages or libraries have been developed for performing multiprecision
arithmetic in virtually all popular programming languages. A particularly readable book,
by T. St Denis and G. Rose [StDe06], reviews the basic concepts of arithmetic algorithms
on multiprecision integers and supplies many source code examples in the C program-
ming language. In addition to the four basic arithmetic operations, algorithms and
programming considerations for squaring, exponentiation, finding the greatest common

Multiprecision Arithmetic 421

Figure 20.4
Example
quadruple-precision
floating-point format.

Sign ± MSB x

x

x

x

(3)

(2)

(1)

(0)

Exponent

LSB

e

Signi-
ficand

± x x x x(3) (2) (1) (0)

y y y y(3) (2) (1) (0)

z z z z(3) (2) (1) (0)

Use to derive guard,
round, & sticky bits?

Sign-extend ±

GRS

Figure 20.5 Quadruple-precision significands aligned for the floating-point addition
z = x +fp y.

divisor (gcd) and least common multiple, modular reduction, and modular inversion are
provided.

Multiprecision floating-point arithmetic can be similarly programmed. When preci-
sion is to be extended but a wider range is not needed, a standard floating-point number
can be used to represent the sign, exponent, and part of the significand, with the remain-
ing bits of the high-precision significand extending into one or more additional words.
However, given that modern computers have plenty of register and storage space avail-
able, it is perhaps better to use a separate word for storing the exponent and one or
more words for the extended-precision significand, thus eliminating the overhead for
repeated packing and unpacking. The significand can be represented as an integer using
the format of Fig. 20.3. The separate exponent, which is a 32-bit biased number, say,
provides a very wide range that is adequate for all practical purposes. Figure 20.4 depicts
the resulting format.

Arithmetic operations are performed by programming the required steps for the
floating-point algorithms of Section 17.3, with details in Chapter 18. To perform addition,
for example, the significand of the operand with the smaller exponent is shifted to the
right by an amount equal to the difference of the two exponents, the aligned significands
are added, and the resulting sum is normalized (Fig. 20.5). Floating-point multiplication
and division are similarly performed.

As for rounding of the results, two approaches are possible. One is to simply chop
any bit that is shifted out past the right end of the numbers, hoping that the extended
precision will be adequate to compensate for any extra error. An alternative is to derive
guard, round, and sticky bits from the bits that are shifted out (see Fig. 20.5) in the
manner outlined in Section 18.3.

422 Chapter 20 Precise and Certifiable Arithmetic

An alternative to building a new higher-precision floating-point format, and syn-
thesizing the required operations from scratch using integer arithmetic, is to rely on
multiple standard IEEE 754-2008 numbers to represent values with greater precision.
This approach is particularly suitable for building high-precision software packages
that are to be run on conventional processors with standard floating-point hardware. In
a double-double format, two IEEE 754-2008 long numbers with different exponents,
whose sum is a desired high-precision number, are used. For example, if su and sv are
significands in [1, 2), then the two numbers u = su × 220 and v = sv × 2−33 can be
taken to represent the value

w = u + v = su × 220 + sv × 2−33 = (su + sv × 2−53)× 220

We see that alignment of the two significands causes all the bits of sy to fall to the
right of the bits of sx, effectively doubling the precision of our “virtual” format.

Arithmetic algorithms for such double-double values can be developed using con-
ventional floating-point operations on the component numbers. For example, two
double-double numbers w = u + v and z = x + y can be added to form an accurate
double-double result using procedures that use conventional floating-point operations
on the 64-bit component values.

The quad-double format, which uses four IEEE 754-2008 long floating-point num-
bers to represent highly precise values, can be similarly defined and used. For details of
the quad-double format and references to earlier work in this area, see [Hida01].

20.4 VARIABLE-PRECISION ARITHMETIC

As mentioned in Section 20.3, multiprecision arithmetic suffers both from inefficiency
in the common case (i.e., when high precision is not needed) and from the inability to
adapt to situations that might require even higher precision. Alternatively, a variable-
precision floating-point capability can be implemented to operate on data of various
widths under program control. Variable precision is useful not only for situations calling
for high precision; it may be beneficial, as well, for improving performance when lower
precision would do.

Dispensing precision on demand in different stages of computations, or even at the
level of individual arithmetic operations, has been an elusive goal in the field of computer
arithmetic, except where bit- or digit-serial arithmetic is involved. For our discussion
here, we consider variable precision with machine-word granularity. This is quite similar
to multiprecision arithmetic, as discussed in Section 20.3, except that a “width” field
must be added to each number that specifies how many words are used to represent the
number. Also, if the operand widths are to be modifiable at run time, dynamic storage
allocation and facilities for reclaiming space (garbage collection) are required.

To represent variable-precision (really variable-range) integers, we might use 1 or 2
bytes in the first 32-bit word to hold the width information, 1 bit for the sign, and the
remaining part to hold the low-order 15 or 23 bits of the number. If the number is wider,
additional words will be tacked on as needed to hold the higher-order bits (Fig. 20.6).
Note that this convention, known as “little-endian,” is opposite that of Fig. 20.4, which is

Variable-Precision Arithmetic 423

Figure 20.6
Example
variable-precision
integer format.

Sign

±

MSB

LSBx

x

x

(0)

(1)

(w)

w (no. add'l words)

Figure 20.7
Example
variable-precision
floating-point format.

Sign ±

MSB

x

x

x

(1)

(2)

(w)

Exponent e

LSB

Signi-
ficand

 Width w Flags

x x x(u) (u–h) (1)

h words = hk bits y y(v) (1)

y (v) y (1) Case 2Case 1
g = v + h – u ≥ 0g = v + h – u < 0

y (g+1)
Alignment shift

. . .

.

. . .

.

Figure 20.8 Variable-precision floating-point addition.

referred to as “big-endian.” Storing the low-order bits first leads to a slight simplification
in variable-precision addition, since indexing for both operands and the result starts at 0.

Again to avoid packing and unpacking of values and to remove the need for special
handling of the first chunk of the number, one might assign the number’s width infor-
mation to an entire word, which can then be directly loaded into a counter or register for
processing.

A corresponding variable-precision floating-point format can be similarly devised.
Figure 20.7 depicts one alternative. Here, the first word contains the number’s sign, its
width w, the exponent e, and designations for special operands. The significand then
follows in w subsequent words. Again, we might want to put the exponent in a separate
word, both to reduce the need for packing and unpacking and to provide greatly extended
range.

From an implementation standpoint, addition becomes much simpler if the exponent
base is taken to be 2k instead of 2, since the former case would lead to shift amounts
that are multiples of k bits (bit-level operations are avoided). This will, of course, have
implications in terms of the available precision (see Section 17.1). The effect of shifting
can then be taken into account by indexing rather than actual data movement. For exam-
ple, if the alignment shift amount applied to the v-word operand y before adding it to
the u-word operand x to obtain the u-word sum z is h words, then referring to Fig. 20.8

424 Chapter 20 Precise and Certifiable Arithmetic

and defining g = v + h − u, we can write the main part of the floating-point addition
algorithm as the following three loops:

for i = 1 to −g do {empty loop if g ≥ 0}
c, z(i) ← x(i) + c

endfor
for i = max(1,−g + 1) to u − h do {empty loop if u ≤ h}

c, z(i) ← x(i) + y(g+i) + c
endfor
for i = max(1, u − h+ 1) to u do {empty loop if h = 0}

c, z(i) ← x(i) + c− signbit(y) {must sign-extend y}
endfor

In the complete algorithm, the loops must be preceded by various checks and
initializations and followed by any normalization and rounding required.

20.5 ERROR BOUNDING VIA INTERVAL ARITHMETIC

Interval arithmetic was introduced at the end of Section 19.5 as an error analysis method.
When computation with intervals yields a result z = [zlo, zhi], the width of the interval
w = zhi − zlo ≥ 0 can be interpreted as the extent of uncertainty, and the midpoint
(zlo + zhi)/2 of the interval can be used as an approximate value for z with a worst-case
error of about w/2. Even when a result interval is too wide to be practically useful, at
least a fail-safe mode of operation can be ascertained.

The interval [a, a] represents the real number a, while [a, b], with a > b, can be
viewed as representing the empty interval φ. Intervals can be combined and compared
in a natural way. For example:

[xlo, xhi] ∩ [ylo, yhi] =
[

max(xlo, ylo), min(xhi, yhi)
]

[xlo, xhi] ∪ [ylo, yhi] =
[

min(xlo, ylo), max(xhi, yhi)
]

[xlo, xhi] ⊇ [ylo, yhi] iff xlo ≤ ylo and xhi ≥ yhi

[xlo, xhi] = [ylo, yhi] iff xlo = ylo and xhi = yhi

[xlo, xhi] < [ylo, yhi] iff xhi < ylo

Interval arithmetic operations are quite intuitive and efficient. For example, the additive
inverse −x of an interval x = [xlo, xhi] is derived as follows:

−[xlo, xhi] = [−xhi,−xlo]
The multiplicative inverse of an interval x = [xlo, xhi] is derived as

1

[xlo, xhi] =
[

1

xhi
,

1

xlo

]
provided 0 /∈ [xlo, xhi]

Error Bounding via Interval Arithmetic 425

When 0 ∈ [xlo, xhi]—that is, when xlo and xhi have unlike signs or are both 0s—the
multiplicative inverse is undefined (alternatively, it can be said to be [−∞,+∞]). Note
that with machine arithmetic, 1/xhi must be computed with downward-directed rounding
and 1/xlo with upward-directed rounding.

In what follows, we assume that proper rounding is performed in each case and deal
only with exact intervals for simplicity. Here are the four basic arithmetic operations on
intervals:

[xlo, xhi] + [ylo, yhi] = [xlo + ylo, xhi + yhi]
[xlo, xhi] − [ylo, yhi] = [xlo − yhi, xhi − ylo]
[xlo, xhi] × [ylo, yhi] =

[
min(xloylo, xloyhi, xhiylo, xhiyhi),

max(xloylo, xloyhi, xhiylo, xhiyhi)
]

[xlo, xhi] / [ylo, yhi] = [xlo, xhi] × [1/yhi, 1/ylo]
Several interesting properties of intervals and interval arithmetic are explored in the end-
of-chapter problems. In particular, we will see that multiplication is not as inefficient as
the preceding definition might suggest.

From the viewpoint of arithmetic calculations, a very important property of interval
arithmetic is stated in the following theorem.

THEOREM 20.1 If f (x(1), x(2), · · · , x(n)) is a rational expression in the interval
variables x(1), x(2), · · · , x(n), that is, f is a finite combination of x(1), x(2), · · · , x(n)

and a finite number of constant intervals by means of interval arithmetic
operations, then x(i) ⊃ y(i), i = 1, 2, · · · , n, implies

f (x(1), x(2), · · · , x(n)) ⊃ f (y(1), y(2), · · · , y(n))

Thus, arbitrarily narrow result intervals can be obtained by simply performing arith-
metic with sufficiently high precision. In particular, we can show that with reasonable
assumptions about machine arithmetic, the following theorem holds.

THEOREM 20.2 Consider the execution of an algorithm on real numbers by
means of machine interval arithmetic with precision p in radix r [i.e., in FLP(r,
p, ∇|�)]. If the same algorithm is executed using the precision q, with q > p, the
bounds for both absolute error and relative error are reduced by the factor rq−p.

Note that the absolute or relative error itself may not be reduced by the same
factor; the guaranteed reduction applies only to the upper bound.

Based on Theorem 20.2, one can devise a practical strategy for obtaining results with
a desired bound on the absolute or relative error. For example, let wmax be the maximum
width of a result interval when interval arithmetic is performed with p radix-r digits of
precision and assume that the required bound on the absolute error is ε. If wmax ≤ ε,

426 Chapter 20 Precise and Certifiable Arithmetic

then we are done. Otherwise, interval calculations with the higher precision

q = p+ 	logr wmax − logr ε

is guaranteed to yield the desired accuracy.

In recent years, interval arithmetic has gained many new applications, owing to the
introduction of new tools and the development of a better understanding on how to use
already existing tools. One of the tools in the latter category is the interval Newton
method, which is described in the rest of this section. Recall the convergence method
for computing the function g(d) = 1/d , which is a root of f (x) = 1/x − d :

x(i+1) = x(i)(2− x(i)d)

Beginning with an approximation x(0) to 1/d , this iterative formula converges to 1/d
quadratically. This recurrence was derived in Section 16.3, using the Newton-Raphson
method for finding a root of f (x) = 0:

x(i+1) = x(i) − f (x(i))/f ′(x(i))

Given an interval I (i) = [c(i) − w(i)/2, c(i) + w(i)/2] bounding a root g, the interval
version of the above is used to find another interval guaranteed to contain g:

N (I (i)) = c(i) − f (c(i))/f ′(I (i))

The Newton interval N (I (i)) is computed by finding the interval f ′(I (i)) representing the
set of all values assumed by f ′(y) as y ranges over I (i). In other words, whereas our
original formulation of the recurrence used a point x(i) to evaluate the slope f ′(x(i)) for
obtaining the next approximation, the interval method uses the set of all possible slopes
for y in I (i) to find a set of possible next values. The iteration is completed by setting

I (i+1) = I (i) ∩ N (I (i))

We illustrate the use of the interval Newton method by means of an example. Figure 20.9
plots the function f (x) = 1/x − 1 that we might use to find the inverse of d = 1.
Granted, this is not a very useful computation, but let us keep things simple. Starting
with I (0) = [1/2, 2], say, we proceed as follows to find the next interval I (1) delimiting
the root of f (x) = 0. The derivative of f (x) is f ′(x) = −1/x2. With x in the interval
I (0) having the center point c(0) = 5/4, the derivative, or slope of the tangent line to
the curve of f (x), varies in f ′(I (0)) = [−4,−1/4]. Drawing lines with the two limiting
slopes from the midpoint A, having coordinates (c(0), f (c(0))) = (5/4,−1/5), we find
their intersections with the x axis to be at x = 9/20 and x = 6/5, resulting in the
Newton interval N (I (0)) = [9/20, 6/5]. Finally, we conclude the iteration by setting
I (1) = I (0) ∩ N (I (0)) = [1/2, 2] ∩ [9/20, 6/5] = [1/2, 6/5]. Thus, we have managed to
refine the interval containing the desired root from the initial one of width 2−1/2 = 1.5
to another of width 6/5− 1/2 = 0.7.

The foregoing discussion was simplified to avoid some tricky situations. However,
the interval Newton method does serve to alert the reader to the extreme usefulness of
interval computation methods, which can be pursued in greater depth elsewhere.

Adaptive and Lazy Arithmetic 427

x65432

I (0)

A

2

1/x –d

1

0

–1

Slope = –1/4

Slope = –4

N(I (0))

I (1)

0 1

Figure 20.9 Illustration of the interval Newton method for computing 1/d.

20.6 ADAPTIVE AND LAZY ARITHMETIC

In some applications, arithmetic algorithms and/or hardware structures must adapt to
changing conditions or requirements. For example, not all computations require the
same precision, and using a 64-bit multiplier to multiply 8-bit numbers would be a
waste of hardware resources, and perhaps even time. In this section, we briefly discuss
some ideas for building adaptable arithmetic systems. An aspect of adaptability is fault
tolerance, namely, the capacity for continued operation, perhaps at lower performance,
acquired by reconfiguring around faulty elements. This latter type of adaptability is the
subject of Chapter 27.

One way to provide adaptivity is via built-in multiprecision arithmetic capability. For
example, facilities may be provided to allow the dynamic switching of a computation
from single- to multiprecision according to the precision requirements for the results.
Variable-precision capability can extend the preceding two-way adaptive scheme to an
incremental or multiway scheme.

Interestingly, the opposite of multiprecision arithmetic, which we may call frac-
tional precision arithmetic, is also of some interest. Whereas modern high-performance
microprocessors have arithmetic capability for 32- or 64-bit numbers, many arithmetic-
intensive applications, such as voice compression or image processing for multimedia,
may deal with 8- or 16-bit data representing color or other audiovisual elements. Recent
microprocessor designs have recognized the need for efficient handling of such frac-
tional precision numbers through special hardware extensions. For example, Intel’s
MMX (multimedia extension) for the Pentium processor [Pele97] uses the micropro-
cessor’s eight floating-point registers to store 64-bit packed integer data (8 × 8, 4 ×
16, 2 × 32, in signed/unsigned versions). Special add, multiply, multiply-add, and par-
allel compare instructions are made available that operate on these packed MMX data
types.

428 Chapter 20 Precise and Certifiable Arithmetic

Similarly, floating-point capabilities paralleling those of MMX have been introduced
in microprocessors [Thak99]. These are aimed at three-dimensional and video applica-
tions that involve streaming data: data that is used only once (for geometric rendering)
and then discarded. The parallel processing of fractional-precision data is sometimes
referred to as subword parallelism. For a review of media instruction sets, see [Kuro99].

An alternative approach to adaptive arithmetic is via multiple number representation
formats that are distinguished by tagging. For example, in a simple two-way adaptive
scheme, primary and secondary representation modes may be associated with each num-
ber type; the primary mode is more precise but offers limited range, while the secondary
mode offers a wider range with less precision. Computation is then switched between the
two representations based on need. In this way, overflow can be avoided or postponed.
One proposal along these lines [Holm97] uses four-way tagging to distinguish between
primary and secondary formats for exact and inexact values.

Lazy evaluation is a powerful paradigm that has been and is being used in many
different contexts. For example, in evaluating composite conditionals such as

if cond1 and cond2 then action

the evaluation of cond2 may be totally skipped if cond1 evaluates to “false”. More gen-
erally, lazy evaluation means postponing all computations or actions until they become
irrelevant or unavoidable. In the context of computer hardware architecture, the opposite
of lazy evaluation (viz., speculative or aggressive execution) has been applied exten-
sively, whereas lazy evaluation is found only in certain special-purpose systems with
data- or demand-driven designs.

In the absence of hardware support for lazy arithmetic, all known implementations of
this method rely on software. Schwarz [Schw89] describes a C++ library for arbitrary
precision arithmetic that is based on representing results by a data value corresponding
to the known bits and an expression that can be manipulated to obtain more bits when
needed. Alazy rational arithmetic system [Mich97] uses a triple 〈xlo, xxct, xhi〉 to represent
each number, where xxct is an exact rational value, or a pointer to a procedure for obtaining
it, and [xlo, xhi] represents an interval bounded by the floating-point values xlo and xhi.
Computation normally proceeds with floating-point values using the rules of interval
arithmetic. When this primary mode of computation runs into precision problems, and
only then, exact computation is invoked.

Lazy arithmetic, as already suggested, comes with nontrivial representational and
computational overheads. Thus far, the viability of lazy arithmetic, and its cost-
performance implications, have been investigated only for certain geometric computa-
tions. Even within this limited application domain, some problems remain to be resolved
[Mich97].

It is noteworthy that redundant number representations offer some advantages for
lazy arithmetic. Since arithmetic on redundant numbers can be performed by means
of most-significant-digit-first algorithms, it is possible to produce a small number of
digits of the result by using correspondingly less computational effort. When precision
problems are encountered, one can backtrack and obtain more digits of the results as
needed.

Problems 429

PROBLEMS 20.1 Computing the ith Fibonacci number

The sequence of Fibonacci numbers Fib(i), i = 1, 2, 3, · · · , is defined recursively
as Fib(1) = Fib(2) = 1 and Fib(i) = Fib(i − 1)+ Fib(i − 2) for i ≥ 3. One can
show that Fib(i) = (xi − yi)/

√
5, where x = (1+√5)/2 and y = (1−√5)/2.

a. Devise an exact representation for numbers of the form a + b
√

5, where a
and b are rational numbers.

b. Develop algorithms for addition, subtraction, multiplication, division, and
exponentiation for the numbers in part a.

c. Use your representation and arithmetic algorithms to compute Fib(10) and
Fib(64).

20.2 Converging interval representation

The golden ratio φ = (1+√5)/2 can be represented increasingly accurately by a
sequence of intervals x(j) = [Fib(2j+2)/Fib(2j+1), Fib(2j+1)/Fib(2j)] that get
narrower as j increases. In the preceding description, Fib(i) is the ith Fibonacci
number recursively defined as Fib(1) = Fib(2) = 1 and Fib(i) = Fib(i − 1) +
Fib(i − 2) for i ≥ 3.

a. Using exact rational arithmetic, obtain the first eight intervals in the sequence
defined.

b. Repeat part a, this time using decimal arithmetic with six fractional digits.
From the last result, find an approximation to φ with an associated error
bound.

20.3 Approximating π with exact arithmetic

Using exact rational arithmetic, find an interval that is guaranteed to contain
the exact value of π based on the identity π/4 = tan−1(1/2) + tan−1(1/5) +
tan−1(1/8) and the inequalities x− x3/3+ x5/5− x7/7 < tan−1 x < x− x3/3+
x5/5.

20.4 Fixed-slash number systems

a. Discuss the factors that might affect the choice of the widths k and m in the
fixed-slash format of Fig. 20.1. In what respects is k = m a good choice?

b. Compute the number of different values that can be represented in a 15-bit
signed, fixed-slash number system with 7-bit numerator and denominator
parts, plus a sign bit (no inexact bit), and discuss its representation efficiency
relative to a 15-bit, signed-magnitude, fixed-point binary system.

20.5 Floating-slash number systems

For the floating-slash number system shown in Fig. 20.2:

a. Obtain the parameters max and min (i.e., the largest representable magnitude
and the smallest nonzero magnitude) as functions of h and k.

430 Chapter 20 Precise and Certifiable Arithmetic

b. Calculate the maximum relative representation error for numbers in
[min, max].

c. Obtain a lower bound on the total number of different values that can be
represented as a function of h and k.

20.6 Continued-fraction number representation

In continued-fraction number representation, it is possible to use rounding,
instead of the floor function, namely, ai = round(s(i)) rather than ai = �s(i)�, to
obtain more accurate encodings with a given number of digits. Obtain 10-digit
continued-fraction representations of

√
2, e, and π with the “rounding” rule and

compare the results with the “floor” versions with respect to accuracy.

20.7 Exact representation of certain rationals

Consider rational numbers of the form±2a3b5c, represented in 16 bits by devot-
ing 1 bit to the sign and 5 bits each to the 2’s-complement representation of a, b,
and c.

a. Obtain the parameters max and min (i.e., the largest representable magnitude
and the smallest nonzero magnitude).

b. Calculate the maximum relative representation error for numbers in [min,
max].

c. Find the number of different values represented and the representational
efficiency of this number system.

d. Briefly discuss the feasibility of exact arithmetic operations on such
numbers.

20.8 Multiprecision arithmetic

a. Provide the structure of an assembly-language program (similar to Fig. 9.3)
to perform quadruple-precision integer arithmetic based on the format of
Fig. 20.3.

b. Repeat part a for floating-point arithmetic based on the format of Fig. 20.4.

20.9 Variable-precision arithmetic

a. Show that the three “for” loops in the program fragment given near the end
of Section 20.4 do indeed process all the words of x and y properly.

b. Justify the inclusion of the term −signbit(y) to effect sign extension for y.
c. Modify the three loops for the case of a sum z that is to be of a specified

width w, rather than of the same width u as the operand with the larger
exponent.

20.10 Interval arithmetic

Answer the following questions for interval arithmetic.

a. Would interval arithmetic be of any use if machine arithmetic were exact?
Discuss.

Problems 431

b. How is the requirement q = p+	logr wmax−logr ε
 for extra bits of precision,
given near the end of Section 20.5, derived from Theorem 20.2?

20.11 Archimedes’ interval method

To compute the number π , Archimedes used a sequence of increasing lower
bounds, derived from the perimeters of inscribed polygons in a circle with unit
diameter, and a sequence of decreasing upper bounds, based on circumscribing
polygons.

a. Use the method of Archimedes, with a pair of hexagons and exact calcula-
tions, to derive an interval that is guaranteed to contain π .

b. Repeat part a, this time performing the arithmetic with four fractional decimal
digits and proper rounding.

c. Repeat part a with a pair of octagons.
d. Repeat part b with a pair of octagons.

20.12 Distance between intervals

The distance between two intervals x = [xlo, xhi] and y = [ylo, yhi] can be defined
as δ(x, y) = max(|xlo − ylo|, |xhi − yhi|).
a. Show that δ is a metric in that it satisfies the three conditions δ(x, y) ≥

0, δ(x, y) = 0 if and only if x = y, and δ(x, y)+ δ(y, z) ≥ δ(x, z) (the triangle
inequality).

b. Defining the absolute value |x| of an interval x as |[xlo, xhi]| =
max(|xlo|, |xhi|), prove that δ[(x + y), (x + z)] = δ(y, z) and δ(xy, xz) ≤
|x|δ(y, z).

20.13 Laws of algebra for intervals

a. Show that the commutative laws of addition and multiplication hold for
interval arithmetic; namely, x+ y = y+ x and xy = yx for intervals x and y.

b. Show that the associative laws of addition and multiplication hold for interval
arithmetic; namely, x + (y + z) = (x + y)+ z and x(yz) = (xy)z.

c. Show that the distributive law x(y + z) = xy + xz does not always hold.
d. Show that subdistributivity holds; namely, x(y + z) is contained in xy + xz.

20.14 Interval arithmetic operations

a. Show that by testing the signs of xlo, xhi, ylo, and yhi, the formula for interval
multiplication given in Section 20.5 can be broken down into nine cases, only
one of which requires more than two multiplications.

b. Discuss the square-rooting operation for intervals.

20.15 Multidimensional intervals

A rectangle with sides parallel to the coordinate axes on the two-dimensional
plane can be viewed as a two-dimensional interval. Relate two-dimensional

432 Chapter 20 Precise and Certifiable Arithmetic

intervals to arithmetic on complex numbers and derive the rules for complex
interval arithmetic.

20.16 Lazy arithmetic with intervals

Consider a lazy arithmetic system with interval arithmetic and exact rational
arithmetic as its primary and secondary (fallback) computation modes, respec-
tively. Define rules for comparing numbers in the primary mode such that each
comparison has three possible outcomes: “true,” “false,” and “unknown” (with
the last outcome triggering exact computation to remove the ambiguity).

20.17 Fixed-point iteration

A fixed point of the function f (x) is a value xfxpt such that xfxpt = f (xfxpt).
Geometrically, the fixed point xfxpt corresponds to an intersection of the curve y =
f (x) with the line y = x. A fixed point of f (x) can sometimes be obtained using
the iterative formula x(i+1) = f (x(i)), with a suitably chosen initial value x(0).

a. The function f (x) = 1+x−x2/a has two fixed points at x = ±√a. Assuming
a = 2 and x(0) = 3/2, use exact rational arithmetic to find x(4).

b. Repeat part a using a calculator.
c. Repeat part a using interval arithmetic; round calculations to six fractional

digits.
d. Compare the results of parts a, b, and c. Discuss.

20.18 Fixed-slash number systems

In a fixed-slash number system representing the rational values±u/v with k bits
for each of the u and v components, we take away 1 bit from the v field and
add it to the u field. This effectively moves the implicit slash one position to the
right, while keeping the total number of bits unchanged. Discuss the effect of
this change on the range and the number of different values represented.

20.19 Floating-slash number systems

Compute the number of different values that can be represented in a 12-bit
signed floating-slash number system with a 3-bit field designating the slash posi-
tion or the width of the denominator field, whose MSB is hidden. What is the
representation efficiency of this number representation scheme?

20.20 Interval arithmetic

Consider an interval arithmetic computation of z = √
x2 − y2. Discuss how

[zlo, zhi]might be obtained from the inputs [xlo, xhi] and [ylo, yhi] so as to minimize
the error in z and comment on the handling of any special cases that might arise.

20.21 Interval arithmetic

Compute the reciprocal of a number that is known to be in the interval
[.3456 × 10−6, .3471 × 10−6] using the series expansion method and interval

Problems 433

arithmetic. Perform all arithmetic with 5 digits of precision after the decimal
point (no sticky bit) and properly round each intermediate result to 4 digits.

20.22 Continued fractions

For any a, tan(1/a) has the continued-fraction expansion [0/a/−3a/5a/−7a/

9a/−11a/ . . .]. Use this expansion to derive a sequence of rational approxima-
tions for tan(1/2). Observe the pattern of increase in precision and discuss. For
some applications of continued-fraction representation in signal processing, see
[Menc99].

20.23 Accurate floating-point summation

Show that if n floating-point numbers are sorted in descending order of absolute
values before being added together (largest to the smallest), carrying 2+�log2 n�
extra bits of precision in intermediate results limits the resulting sum’s error to
4.5 ulp, where 0.5 ulp of this is due to the final rounding [Demm02].

20.24 Multiprecision arithmetic on media processors

Media processors, or media processing extensions of general-purpose processors,
allow vector arithmetic on multiple words to be performed with one instruction.
Study how such instructions, combined with packing, unpacking, and rearrange-
ment primitives that are often provided, can lead to efficient implementation of
multiprecision arithmetic [Thor03].

20.25 Equations with interval coefficients

Discuss how the roots of the quadratic equation ax2 + bx + c = 0 can be
determined for the interval coefficients a = [1, 2], b = [2, 3], and c = [3, 4].
Generalize your discussion to arbitrary polynomial equations. Hint: Consider
the two cases of nonnegative and nonpositive roots separately [Hans02].

20.26 Computing π with high precision

The following amazing formula for π is an example of accidental mathematical
discoveries through computer-aided experimentation [Adam97]. Its significance
lies in the fact that it allows the calculation of binary or hexadecimal digits of
π , beginning at any position, without a need for multiprecision arithmetic, using
virtually no memory.

π =
∞∑

k=0

16−k [4/(8k + 1)− 2/(8k + 4)− 1/(8k + 5)− 1/(8k + 6)]

Use the formula to compute the first 8 hex digits of π and verify your result
through conversion to decimal. Write a program to compute the millionth and
the next four hex digits of π .

434 Chapter 20 Precise and Certifiable Arithmetic

20.27 Interval arithmetic

One reason for the growth in the width of intervals during computations is mul-
tiple appearances of the same interval variable in an expression. For example, if
x ∈ [a, b], the expression x− x evaluates to [a− b, b− a], which has double the
width of [a, b], whereas it is easy to see that the exact result is [0, 0]. Consider
the two expressions R1R2/(R1 + R2) and 1/[1/R1 + 1/R2] for computing the
equivalent resistance of two parallel resistors R1 and R2.

a. Which expression do you think would yield a narrower result interval?
b. Verify your answer to part a by performing the requisite computations with

six different pairs of values for R1 and R2.

20.28 The interval Newton method

For the example provided at the end of Section 20.6, supply the details for two
additional iterations to compute I (2) and I (3).

a. Perform exact arithmetic with rational numbers.
b. Perform the calculations in decimal, with appropriate downward and upward

rounding, using 6 fractional digits.

REFERENCES AND FURTHER READINGS

[Adam97] Adamchik, V., and S. Wagon, “A Simple Formula for Pi,” American Mathematical
Monthly, Vol. 104, No. 9, pp. 852–855, 1997.

[Alef83] Alefeld, G., and J. Herzberger, An Introduction to Interval Computations, Academic
Press, 1983.

[Demm02] Demmel, J., and Y. Hida, “Accurate Floating-Point Summation,” Technical Report
CSD-02-1180, University of California, Berkeley, 2002.

[Greg81] Gregory, R. T., “Error-Free Computation with Rational Numbers,” BIT, Vol. 21,
pp. 194–202, 1981.

[Hans02] Hansen, E. R., and G. W. Walster, “Sharp Bounds on Interval Polynomial Roots,”
Reliable Computing, Vol. 8, No. 2, pp. 115–122, 2002.

[Hida01] Hida, Y., X. S. Li, and D. Bailey, “Algorithms for Quad-Double Precision Floating
Point Arithmetic,” Proc. 15th Symp. Computer Arithmetic, pp. 155–162,
2001.

[Holm97] Holmes, W. N., “Composite Arithmetic: Proposal for a New Standard,” IEEE
Computer, Vol. 30, No. 3, pp. 65–73, 1997.

[Knut81] Knuth, D. E., The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,
2nd ed., Addison-Wesley, 1981.

[Kuro99] Kuroda, I., “RISC, Video and Media DSPs,” Chap. 10 in Digital Signal Processing
for Multimedia Systems, ed. by K. K. Parhi and T. Nishitani, pp. 245–272, Marcel
Dekker, 1999.

[Matu85] Matula, D. W., and P. Kornerup, “Finite Precision Rational Arithmetic: Slash
Number Systems,” IEEE Trans. Computers, Vol. 34, No. 1, pp. 3–18, 1985.

References and Further Readings 435

[Menc91] Mencer, O., M. Morf, A. Liddicoat, and M. J. Flynn, “Efficient Digit-Serial Rational
Function Approximation and Digital Filtering Applications,” Proc. 33rd Asilomar
Conf. Signals Systems and Computers, pp. 1336–1339, 1999.

[Mich97] Michelucci, D., and J.-M. Moreau, “Lazy Arithmetic,” IEEE Trans. Computers,
Vol. 46, No. 9, pp. 961–975, 1997.

[Moor09] Moore, R. E., R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis,
SIAM, 2009.

[Parh99] Parhami, B., Introduction to Parallel Processing: Algorithms and Architectures,
Plenum Press, 1999.

[Pele97] Peleg, A., S. Wilkie, and U. Weiser, “Intel MMX for Multimedia PCs,” Commun.
ACM, Vol. 40, No. 1, pp. 25–38, 1997.

[Rokn01] Rokne, J. G., “Interval Arithmetic and Interval Analysis: An Introduction,” in
Granular Computing: An Emerging Paradigm, W. Pedrycz (ed.), pp. 1–22, Springer,
2001.

[Schw89] Schwarz, J., “Implementing Infinite Precision Arithmetic,” Proc. 9th Symp.
Computer Arithmetic, pp. 10–17, 1989.

[StDe06] St Denis, T., and G. Rose, BigNum Math: Implementing Cryptographic Multiple
Precision Arithmetic, Syngress, 2006.

[Thak99] Thakkar, S., and T. Huff, “Internet Streaming SIMD Extensions,” IEEE Computer,
Vol. 32, No. 12, pp. 26–34, 1999.

[Thor03] Thorup, M., “Combinatorial Power in Multimedia Processors,” Computer
Architecture News, Vol. 31, No. 4, pp. 5–11, 2003.

[Vuil90] Vuillemin, J., “Exact Real Computer Arithmetic with Continued Fractions,” IEEE
Trans. Computers, Vol. 39, No. 8, pp. 1087–1105, 1990.

[Zura93] Zuras, D., “On Squaring and Multiplying Large Integers,” Proc. 11th Symp.
Computer Arithmetic, pp. 260–271, 1993.

VI
FUNCTION
EVALUATION

■ ■ ■

“I wrote this book and compiled in it everything that is necessary for the computer,
avoiding both boring verbosity and misleading brevity.”

G H I YAT H A L - D I N J A M S H I D A L - K A S H I , T H E K E Y T O C O M P U T I N G (M I F TA H A L - H I S A B I) , 1 4 2 7

“Someone told me that each equation I included in the book would halve the sales.”
S T E P H E N H AW K I N G , A B R I E F H I S T O R Y O F T I M E , 1 9 8 8

■ ■ ■

O NE WAY OF COMPUTING FUNCTIONS SUCH AS
√

x , SIN x , TANH x , LN x , AND ex IS

to evaluate their series expansions by means of addition,

multiplication, and division operations. Another is through con-

vergence computations of the type used for evaluating the func-

tions z/d and 1/d in Chapter 16. In this part, we introduce several

methods for evaluating elementary and other functions.We begin

by examining the important operation of extracting the square

root of a number, covering both digit-recurrence and conver-

gence square-rooting methods. We then devote two chapters to

coordinate rotation digital computer (CORDIC) algorithms, other

convergence methods, approximations, and merged arithmetic.

We conclude by discussing versatile, and highly flexible, table-

lookup schemes, which are assuming increasingly important roles

as advances in digital technology lead to ever cheaper and denser

memories.This part is composed of the following four chapters:

C H A P T E R 21
Square-Rooting Methods

C H A P T E R 22
The CORDIC Algorithms

C H A P T E R 23
Variations in Function Evaluation

C H A P T E R 24
Arithmetic by Table Lookup

437

21 Square-Rooting Methods

■ ■ ■

“So this is everything that is necessary for men concerning the division and multiplication
with an integer, . . . Having completed this, we now begin to discuss the multiplication of

fractions and their division, and the extraction of roots, if God so wills.”
A B U J A FA R M U H A M M A D A L - K H WA R I Z M I , A R I T H M E T I C , C A . 8 3 0

■ ■ ■

T he function
√

z is the most important elementary function. Since square-rooting

is widely used in many applications, and hardware realization of square-rooting

has quite a lot in common with division, the IEEE 754-2008 floating-point standard

specifies square-rooting as a basic arithmetic operation alongside the usual four

basic operations.This chapter is devoted to square-rooting methods, beginning with

the pencil-and-paper algorithm and proceeding through shift/subtract, high-radix,

and convergence versions. Chapter topics include:

21.1 The Pencil-and-Paper Algorithm

21.2 Restoring Shift/Subtract Algorithm

21.3 Binary Nonrestoring Algorithm

21.4 High-Radix Square-Rooting

21.5 Square-Rooting by Convergence

21.6 Fast Hardware Square-Rooters

21.1 THE PENCIL-AND-PAPER ALGORITHM

Unlike multiplication and division, for which the pencil-and-paper algorithms are widely
taught and used, square-rooting by hand appears to have fallen prey to the five-dollar
calculator. Since shift/subtract methods for computing

√
z are derived directly from the

ancient manual algorithm, we begin by describing the pencil-and-paper algorithm for
square-rooting.

439

440 Chapter 21 Square-Rooting Methods

q2 q 1 q 0 q q (0) 0

9 5 2 4 1 z q 2 3 q (1) 3

9

0 5 2 6q 1 × q1 ≤ 52 q 1 0 q (2) 30

0 0

5 2 4 1 60q 0 × q0 ≤ 5241 q 0 8 q (3) 308

4 8 6 4

0 3 7 7 s (377)ten q (308)ten

Figure 21.1 Using the pencil-and-paper algorithm to extract the square root of a decimal
integer.

Our discussion of integer square-rooting algorithms uses the following notation:

z Radicand z2k−1z2k−2 · · · z1z0
q Square root qk−1qk−2 · · · q1q0

s Remainder (z − q2) sksk−1sk−2 · · · s1s0 (k + 1 digits)

The expression z − q2 for the remainder s is derived from the basic square-rooting
equation z = q2 + s. For integer values, the remainder satisfies s ≤ 2q, leading to the
requirement for k + 1 digits in the representation of s with a 2k-digit radicand z and a
k-digit root q. The reason for the requirement s ≤ 2q is that for s ≥ 2q + 1, we have
z = q2 + s ≥ (q+ 1)2, whereby q cannot be the correct square-root of z.

Consider the decimal square-rooting example depicted in Fig. 21.1. In this example,
the five digits of the decimal number (9 52 41)ten are broken into groups of two digits
starting at the right end. The number k of groups indicates the number of digits in the
square root (k = 3 in this example).

The leftmost two-digit group (09) in the example of Fig. 21.1 indicates that the first
root digit is 3. We subtract the square of 3 (really, the square of 300) from the zeroth
partial remainder z to find the first partial remainder 52. Next, we double the partial root
3 to get 6 and look for a digit q1 such that (6q1)ten × q1 does not exceed the current
partial remainder 52. Even 1 is too large for q1, so q1 = 0 is chosen. In the final iteration,
we double the partial root 30 to get 60 and look for a digit q0 such that (60q0)ten × q0
does not exceed the partial remainder 5241. This condition leads to the choice q0 = 8,
giving the results q = (308)ten for the root and s = (377)ten for the remainder.

The key to understanding the preceding algorithm is the process by which the next
root digit is selected. If the partial root thus far is q(i), then attaching the next digit
qk−i−1 to it will change its value to 10q(i) + qk−i−1. The square of this latter number
is 100(q(i))2 + 20q(i)qk−i−1 + q2

k−i−1. Since the term 100(q(i))2 = (10q(i))2 has been
subtracted from the partial remainder in earlier steps, we need to subtract the last two
terms, or (10(2q(i))+ qk−i−1)× qk−i−1, to obtain the new partial remainder. This is the
reason for doubling the partial root and looking for a digit qk−i−1 to attach to the right
end of the result, yielding 10(2q(i)) + qk−i−1, such that this latter value times qk−i−1
does not exceed the partial remainder.

The Pencil-and-Paper Algorithm 441

q3 q2 q1 q q (0) 	 0

1 1 1 0 1 	z q3 	 1 q (1) 	 1

0 1

q2 	 0 q (2) 	 10

q1 	 1 q (3) 	 101

s 	 (18)ten 	 (ten

q 0	 0 q (4) 	 1010

q0

(118)ten00 1

≥ 101? No

≥ 1001? Yes

≥ 10101? No

0 0 1 1
 0 0 0

 0 1 1 0 1

 1 0 0 1

 0 1 0 0 1 0
 0 0 0 0 0

 1 0 0 1 0 10)q (twoq 	 1010)

Figure 21.2 Extracting the square root of a binary integer using the pencil-and-paper
algorithm.

Figure 21.3 Binary
square-rooting in dot
notation.

• • • • q

• • • • • • • • z
• • –q (q 0q)

• • • –q (q 0q)
 • • • • –q (q 0q)

 • • • • • –q (q 0q)

 • • • • • s

3
2
1
0

6
4
2
0

2
2
2
2

(0)
(1)
(2)
(3)

3
2
1
0

Figure 21.2 shows a binary example for the pencil-and-paper square-rooting algo-
rithm. The root digits are in {0, 1}. In trying to determine the next root digit qk−i−1, we
note that the square of 2q(i)+qk−i−1 is 4(q(i))2+4q(i)qk−i−1+q2

k−i−1. So, qk−i−1 must

be selected such that (4q(i) + qk−i−1) × qk−i−1 does not exceed the partial remainder.
For qk−i−1 = 1, this latter expression becomes 4q(i) + 1 (i.e., q(i) with 01 appended to
its right end). Therefore, to determine whether the next root digit should be 1, we need
to perform the trial subtraction of q(i)01 from the partial remainder; qk−i−1 is 1 if the
trial subtraction yields a positive result.

From the example in Fig. 21.2, we can abstract the dot notation representation of
binary square-rooting (see Fig. 21.3). The radicand z and the root q are shown at the
top. Each of the following four rows of dots corresponds to the product of the next root
digit qk−i−1 and a number obtained by appending 0qk−i−1 to the right end of the partial
root q(i). Thus, since the root digits are in {0, 1}, the problem of binary square-rooting
reduces to subtracting a set of numbers, each being 0 or a shifted version of (q(i)01)two,
from the radicand z.

The preceding discussion and Fig. 21.3 also apply to nonbinary square-rooting,
except that with r > 2, both the selection of the next root digit qk−i−1 and the computation
of the term (2rq(i) + qk−i−1) × qk−i−1 become more difficult. The rest of the process,
however, remains substantially the same.

442 Chapter 21 Square-Rooting Methods

21.2 RESTORING SHIFT/SUBTRACT ALGORITHM

Like division, square-rooting can be formulated as a sequence of shift and subtract oper-
ations. The formulation is somewhat cleaner if we think in terms of fractional operands
rather than integers. In fact, since in practice square-rooting is usually applied to floating-
point numbers, we formulate our shift/subtract algorithms for a radicand in the range
1 ≤ z < 4 corresponding to the significand of a floating-point number in the IEEE 754-
2008 format. Because the exponent must be halved in floating-point square-rooting, we
decrement an odd exponent by 1 to make it even and shift the significand to the left by 1
bit; this accounts for the extended range assumed for z. The notation for our algorithm
is thus as follows:

z Radicand z1z0 . z−1z−2 · · · z−l (1 ≤ z < 4)

q Square root 1 . q−1q−2 · · · q−l (1 ≤ q < 2)

s Scaled remainder s1s0 . s−1s−2 · · · s−l (0 ≤ s < 4)

With these assumptions, binary square-rooting is defined by the recurrence

s(j) = 2s(j−1) − q−j(2q(j−1) + 2−jq−j) with s(0) = z − 1, q(0) = 1, s(l) = s

where, for a binary quotient with digits in {0, 1}, the term subtracted from the shifted
partial remainder 2s(j−1) is 2q(j−1) + 2−j or 0. Here, q(j) stands for the root up to its
(−j)th digit; thus q = q(l) is the desired square root.

Here is a general proof of the preceding square-rooting recurrence. First, we note
that, by definition:

q(j) = q(j−1) + 2−jq−j

During square-rooting iterations, we strive to maintain the invariant:

s(j) = z − [q(j)]2

In particular, q(0) = 1 and s(0) = z − 1. From the preceding invariant, we derive the
requirement:

s(j−1) − s(j) = [q(j)]2 − [q(j−1)]2 = [q(j−1) + 2−jq−j]2 − [q(j−1)]2
= 2−jq−j[2q(j−1) + 2−jq−j]

Multiplying both sides by 2j and rearranging the terms, we get

2j s(j) = 2(2j−1 s(j−1))− q−j[2q(j−1) + 2−jq−j]
Redefining the jth partial remainder to be 2js(j) yields the desired recurrence. Note that
after l iterations, the partial remainder s(l), which is in [0, 4), represents the scaled
remainder s = 2l(z − q2).

To choose the next square-root digit q−j from the set {0, 1}, we perform a trial
subtraction of

2q(j−1) + 2−j = (1q(j−1)

−1 . q(j−1)

−2 · · · q(j−1)

−j+10 1)two

Restoring Shift/Subtract Algorithm 443

==================================
z 0 1 . 1 1 0 1 1 0 (118/64)
==================================
s(0) = z – 1 0 0 0 . 1 1 0 1 1 0 q0 = 1 q(0) = 1.

2s(0) 0 0 1 . 1 0 1 1 0 0
–[2×(1.)+2 –1] 1 0 . 1
––––––––––––––––––––––––––––––––––––
s(1) 1 1 1 . 0 0 1 1 0 0 q–1 = 0 q(1) = 1.0

s(1) = 2s(0) 0 0 1 . 1 0 1 1 0 0 Restore
2s(1) 0 1 1 . 0 1 1 0 0 0
–[2×(1.0)+2 –2] 1 0 . 0 1
––––––––––––––––––––––––––––––––––––
s(2) 0 0 1 . 0 0 1 0 0 0 q–2 = 1 q(2) = 1.01

2s(2) 0 1 0 . 0 1 0 0 0 0
–[2×(1.01)+2 –3] 1 0 . 1 0 1
––––––––––––––––––––––––––––––––––––
s(3) 1 1 1 . 1 0 1 0 0 0 q–3 = 0 q(3) = 1.010

s(3) = 2s(2) 0 1 0 . 0 1 0 0 0 0 Restore
2s(3) 1 0 0 . 1 0 0 0 0 0
–[2×(1.010)+2 –4] 1 0 . 1 0 0 1
––––––––––––––––––––––––––––––––––––
s(4) 0 0 1 . 1 1 1 1 0 0 q–4 = 1 q(4) = 1.0101

2s(4) 0 1 1 . 1 1 1 0 0 0
–[2×(1.0101)+2 –5] 1 0 . 1 0 1 0 1
––––––––––––––––––––––––––––––––––––
s(5) 0 0 1 . 0 0 1 1 1 0 q–5 = 1 q(5) = 1.01011

2s(5) 0 1 0 . 0 1 1 1 0 0
–[2×(1.01011)+2 –6] 1 0 . 1 0 1 1 0 1
––––––––––––––––––––––––––––––––––––
s(6) 1 1 1 . 1 0 1 1 1 1 q–6 = 0 q(6) = 1.010110

s(6) = 2s(5) 0 1 0 . 0 1 1 1 0 0 Restore (156/64)
s (true remainder) 0 . 0 0 0 0 1 0 0 1 1 1 0 0 (156/642)
q 1 . 0 1 0 1 1 0 (86/64)
==================================

Figure 21.4 Example of sequential binary square-rooting by means of the restoring
algorithm.

from the shifted partial remainder 2s(j−1). If the difference is negative, the shifted partial
remainder is not modified and q−j = 0. Otherwise, the difference becomes the new
partial remainder and q−j = 1.

The preceding algorithm, which is similar to restoring division, is quite naturally
called “restoring square-rooting.” An example of binary restoring square-rooting using
the preceding recurrence is shown in Fig. 21.4, where we have provided three whole
digits, plus the required six fractional digits, for representing the partial remainders. Two
whole digits are required given that the partial remainders, as well as the radicand z, are
in [0, 4). The third whole digit is needed to accommodate the extra bit that results from
shifting the partial remainder s(j−1) to the left to form 2s(j−1). This bit also acts as the
sign bit for the trial difference.

The hardware realization of restoring square-rooting is quite similar to restoring
division. Figure 21.5 shows the required components and their connections, assuming

444 Chapter 21 Square-Rooting Methods

Figure 21.5
Sequential
shift/subtract
restoring
square-rooter. Partial remainder

Square root

Load

Sub

(l + 2)-bit
 adder

Trial difference

l + 2

cout c in

q–j

2s
MSB of

Put z – 1 here
 at the outset

Select
root digit

l + 2

(j–1)

Complement

that they will be used only for square-rooting. In practice, square-rooting hardware may
be shared with division (and perhaps even multiplication). To allow such sharing of
hardware, some changes are needed to maximize common parts. Any component or
extension that is specific to one of the operations may then be incorporated into the
unit’s control logic. It is instructive to compare the design in Fig. 21.5 to that of restoring
binary divider in Fig. 13.5.

In fractional square-rooting, the remainder is usually of no interest. To properly
round the square root, we can produce an extra digit q−l−1 and use its value to decide
whether to truncate (q−l−1 = 0) or to round up (q−l−1 = 1). The midway case (i.e.,
q−l−1 = 1 with only 0s to its right) is impossible (why?), so we don’t even have to test
the remainder for 0.

For the example of Fig. 21.4, an extra iteration produces q−7 = 1. So the root must
be rounded up to q = (1.010111)two = 87/64. To check that the rounded-up value is
closer to the actual root than the truncated version, we note that

118/64 = (87/64)2 − 17/642

Thus, the rounded-up value yields a remainder with a smaller magnitude.

21.3 BINARY NONRESTORING ALGORITHM

In a manner similar to binary division, one can formulate a binary nonrestoring square-
rooting algorithm. Figure 21.6 shows the square-rooting example of Fig. 21.4 performed
with the nonrestoring algorithm. As was the case for nonrestoring division, the square
root must be corrected by subtracting ulp from it if the final remainder becomes nega-
tive. Remainder correction, however, is usually not needed, as discussed at the end of
Section 21.2.

Binary Nonrestoring Algorithm 445

==================================
z 0 1 . 1 1 0 1 1 0 (118/64)
==================================
s(0) = z – 1 0 0 0 . 1 1 0 1 1 0 q0 = 1 q(0) = 1.

2s(0) 0 0 1 . 1 0 1 1 0 0 q–1 = 1 q(1) = 1.1

–[2×(1.)+2 –1] 1 0 . 1
––––––––––––––––––––––––––––––––––––
s(1) 1 1 1 . 0 0 1 1 0 0 q–2 = -1 q(2) = 1.01

2s(1) 1 1 0 . 0 1 1 0 0 0
+[2×(1.1)–2 –2] 1 0 . 1 1
––––––––––––––––––––––––––––––––––––
s(2) 0 0 1 . 0 0 1 0 0 0 q–3 = 1 q(3) = 1.011

2s(2) 0 1 0 . 0 1 0 0 0 0
–[2×(1.01)+2 –3] 1 0 . 1 0 1
––––––––––––––––––––––––––––––––––––
s(3) 1 1 1 . 1 0 1 0 0 0 q–4 = -1 q(4) = 1.0101

2s(3) 1 1 1 . 0 1 0 0 0 0
+[2×(1.011)–2 –4] 1 0 . 1 0 1 1
––––––––––––––––––––––––––––––––––––
s(4) 0 0 1 . 1 1 1 1 0 0 q–5 = 1 q(5) = 1.01011

2s(4) 0 1 1 . 1 1 1 0 0 0
–[2×(1.0101)+2 –5] 1 0 . 1 0 1 0 1
––––––––––––––––––––––––––––––––––––
s(5) 0 0 1 . 0 0 1 1 1 0 q–6 = 1 q(6) = 1.010111

2s(5) 0 1 0 . 0 1 1 1 0 0
–[2×(1.01011)+2 –6] 1 0 . 1 0 1 1 0 1
––––––––––––––––––––––––––––––––––––
s(6) 1 1 1 . 1 0 1 1 1 1 Negative; (–17/64)
+[2×(1.01011)+2–6] 1 0 . 1 0 1 1 0 1 Correct
––––––––––––––––––––––––––––––––––––
s(6) (corrected) 0 1 0 . 0 1 1 1 0 0 (156/64)
s (true remainder) 0 . 0 0 0 0 1 0 0 1 1 1 0 0 (156/642)
q (signed-digit) 1 . 1 -1 1 -1 1 1 (87/64)
q (binary) 1 . 0 1 0 1 1 1 (87/64)
q (corrected binary) 1 . 0 1 0 1 1 0 (86/64)
==================================

Figure 21.6 Example of sequential binary square-rooting by means of the nonrestoring
algorithm.

Performing an extra iteration in the binary square-rooting example of Fig. 21.6 yields
q−7 = -1 and q = (1.1 -1 1 -1 1 1 -1)two = (1.0101101)two. This indicates that the root
must be rounded up to q = (1.010111)two.

In nonrestoring square-rooting, root digits are chosen from the set {-1, 1} and the
resulting binary signed-digit root is converted, on the fly, to binary format. The conver-
sion process is identical to that of nonrestoring division, as discussed in Section 13.4.
With regard to updating the partial remainder, the case q−j = 1, corresponding to a
nonnegative partial remainder, is handled as in the restoring algorithm of Section 21.2;
that is, it leads to the subtraction of

q−j[2q(j−1) + 2−jq−j] = 2q(j−1) + 2−j

446 Chapter 21 Square-Rooting Methods

from the partial remainder. For q−j = −1, we must subtract

q−j[2q(j−1) + 2−jq−j] = −[2q(j−1) − 2−j]
which is equivalent to adding 2q(j−1) − 2−j (see Fig. 21.6).

From the standpoint of hardware implementation, computing the term 2q(j−1)− 2−j

is problematic. Recall that 2q(j−1) + 2−j = 2[q(j−1) + 2−j−1] is formed by simply
appending 01 to the right end of q(j−1) and shifting.

The following scheme allows us to form 2q(j−1)−2−j just as easily. Suppose that we
keep q(j−1) and q(j−1) − 2−j+1 in registers Q (partial root) and Q* (diminished partial
root), respectively. Then

q−j = 1 Subtract 2q(j−1) + 2−j formed by shifting Q 01
q−j = -1 Add 2q(j−1) − 2−j formed by shifting Q*11

The updating rules for Q and Q* registers are also easily derived:

q−j = 1 ⇒ Q := Q 1 Q∗ := Q 0
q−j = -1 ⇒ Q := Q∗1 Q∗ := Q∗ 0

The preceding can be easily extended to a square-rooting algorithm in which leading 0s or
1s in the partial remainder are detected and skipped (shifted over) while producing 0s as
root digits. The resulting algorithm is quite similar to the SRT division (of Section 13.6)
and needs the following additional updating rule for Q and Q* registers:

q−j = 0 ⇒ Q := Q 0 Q∗ := Q∗1

As in the carry-save version of SRT division with quotient digit set [−1, 1], discussed
in Section 14.2, we can keep the partial remainder in stored-carry form and choose
the next root digit by inspecting a few most-significant bits (MSBs) of the sum and
carry components. The preceding modifications in the algorithm, and the corresponding
hardware realizations, are left to the reader.

21.4 HIGH-RADIX SQUARE-ROOTING

Square-rooting can be performed in higher radices using techniques that are quite
similar to those of high-radix division. The basic recurrence for fractional radix-r
square-rooting is

s(j) = rs(j−1) − q−j(2q(j−1) + r−jq−j)

As in the case of radix-2 nonrestoring algorithm in Section 21.3, we can use two registers
Q and Q* to hold q(j−1) and q(j−1) − r−j+1, respectively, suitably updating them in
each step.

For example, with r = 4 and the root digit set [−2, 2], Q* will hold q(j−1)−4−j+1 =
q(j−1)−2−2j+2. Then, it is easy to see that one of the following values must be subtracted
from or added to the shifted partial remainder rs(j−1):

High-Radix Square-Rooting 447

q−j = 2 Subtract 4q(j−1) + 2−2j+2 formed by double-shifting Q 010
q−j = 1 Subtract 2q(j−1) + 2−2j formed by shifting Q 001
q−j = -1 Add 2q(j−1) − 2−2j formed by shifting Q* 111
q−j = -2 Add 4q(j−1) − 2−2j+2 formed by double-shifting Q* 110

For IEEE 754-2008 standard floating-point numbers, a radicand in the range [1, 4)
yields a root in [1, 2). As a radix-4 number with the digit set [−2, 2], the root will have
a single whole digit. This is more than adequate to represent the root that is in [1, 2).
In fact, the first root digit can be restricted to [0, 2], though not to [0, 1], which at first
thought might appear to be adequate (why not?).

The updating rules for Q and Q* registers are again easily derived:

q−j = 2 ⇒ Q := Q 10 Q∗ := Q 01
q−j = 1 ⇒ Q := Q 01 Q∗ := Q 00
q−j = 0 ⇒ Q := Q 00 Q∗ := Q∗11
q−j = -1 ⇒ Q := Q∗11 Q∗ := Q∗10
q−j = -2 ⇒ Q := Q∗10 Q∗ := Q∗01

In this way, the root is obtained in standard binary form without a need for a final
conversion step (conversion takes place on the fly).

As in division, root digit selection can be based on examining a few bits of the partial
remainder and of the partial root. Since only a few high-order bits are needed to estimate
the next root digit, s can be kept in carry-save form to speed up the iterations. One
extra bit of each component of s (sum and carry) must then be examined for root digit
estimation.

In fact, with proper care, the same lookup table can be used for quotient digit selection
in division and root digit selection in square-rooting. To see how, let us compare the
recurrences for radix-4 division and square-rooting:

Division: s(j) = 4s(j−1) − q−j d
Square-rooting: s(j) = 4s(j−1) − q−j(2q(j−1) + 4−jq−j)

To keep the magnitudes of the partial remainders for division and square-rooting com-
parable, thus allowing the use of the same tables, we can perform radix-4 square-rooting
using the digit set {−1,−1/2, 0, 1/2, 1}. A radix-4 number with the latter digit set can
be converted to a radix-4 number with the digit set [−2, 2], or directly to binary, with
no extra computation (how?). For details of the resulting square-rooting scheme, see
[Omon94, pp. 387–389].

One complication for high-radix square-rooting, compared with division, is that a
uniform root digit selection rule cannot be used for all iterations. This is because the
root is completely unknown, or is known with very low precision, in the early iterations,
whereas the corresponding entity in division (the divisor) is fully known at the outset.
This problem can be overcome either by using a lookup table (programmable logic
array) to develop a few initial digits of the root at start-up, or to modify the algorithm
to use slightly different selection rules in the first few iterations [Erce90], [Erce94,
pp. 156–169].

448 Chapter 21 Square-Rooting Methods

21.5 SQUARE-ROOTING BY CONVERGENCE

In Section 16.3, we used the Newton–Raphson method for computing the reciprocal of
the divisor d , thus allowing division to be performed by means of multiplications with
more rapid convergence. To use the Newton–Raphson method for computing

√
z, we

choose f (x) = x2 − z, which has a root at x = √
z. Recall that the Newton–Raphson

iteration is

x(i+1) = x(i) − f (x(i))

f ′(x(i))

Thus, the function f (x) = x2− z leads to the following convergence scheme for square-
rooting:

x(i+1) = 0.5(x(i) + z/x(i))

Each iteration involves a division, an addition, and a 1-bit shift. As was the case for
reciprocation, it is easy to prove quadratic convergence of x to

√
z. Let δi = √

z − x(i).
Then

δi+1 =
√

z − x(i+1) = √
z − x(i) + z/x(i)

2

= −(
√

z − x(i))2

2x(i)
= −δ2

i

2x(i)

Since δi+1 is always negative, the recurrence converges to
√

z from above. Let z
be in the range 1 ≤ z < 4 (as in square-rooting with IEEE 754-2008 format). Then,
beginning with the initial estimate x(0) = 2, the value of x(i) will always remain in the
range 1 ≤ x(i) < 2. This means that |δi+1| ≤ 0.5δ2

i .
An initial table-lookup step can be used to obtain a better starting estimate for

√
z.

For example, if the initial estimate is accurate to within 2−8, then three iterations would
be sufficient to increase the accuracy of the root to 64 bits. In the rest of this section, we
will assume that suitable approximations are used to start up the convergence methods
discussed (see Section 21.6 for some such approximations).

■ EXAMPLE 21.1 Suppose we want to compute the square root of z = (2.4)ten and the
initial table lookup provides the starting value x(0) = 1.5, accurate to 10−1. Then, we
will go through the following steps to find the result to eight decimal positions (accurate
to 10−8):

x(0) (read out from table) = 1.5 Accurate to 10−1

x(1) = 0.5(x(0) + 2.4/x(0)) = 1.550 000 000 Accurate to 10−2

x(2) = 0.5(x(1) + 2.4/x(1)) = 1.549 193 548 Accurate to 10−4

x(3) = 0.5(x(2) + 2.4/x(2)) = 1.549 193 338 Accurate to 10−8

The preceding convergence method involves a division in each iteration. Since divi-
sion is a relatively slow operation, especially if a dedicated hardware divider is not

Square-Rooting by Convergence 449

available, division-free variants of the method have been suggested. One such variant
relies on the availability of a circuit or table to compute the approximate reciprocal of a
number. We can rewrite the square-root recurrence as follows:

x(i+1) = x(i) + 0.5(1/x(i))(z − (x(i))2)

Let γ (x(i)) be an approximation to 1/x(i) obtained by a simple circuit or read out from
a table. Then, each iteration requires a table lookup, a 1-bit shift, two multiplications,
and two additions. If multiplication is much more than twice as fast as division, this
variant may be more efficient. However, note that because of the approximation used
in lieu of the exact value of the reciprocal 1/x(i), the convergence rate will be less than
quadratic and a larger number of iterations will be needed in general.

Since we know that the reciprocal function can also be computed by Newton–
Raphson iteration, one can use the preceding recurrence, but with the reciprocal itself
computed iteratively, effectively interlacing the two iterative computations. Using the
function f (y) = 1/y−x to compute the reciprocal of x, we find the following combination
of recurrences:

x(i+1) = 0.5(x(i) + zy(i))

y(i+1) = y(i)(2− x(i)y(i))

The two multiplications, of z and x(i) by y(i) can be pipelined for improved speed,
as discussed in Section 16.5 for convergence division. The convergence rate of this
algorithm is less than quadratic but better than linear.

■ EXAMPLE 21.2 Suppose we want to compute the square root of z = (1.4)ten. Beginning
with x(0) = y(0) = 1.0, we find the following results:

x(0)= 1.0
y(0)= 1.0
x(1)= 0.5(x(0) + 1.4y(0))= 1.200 000 000
y(1)= y(0)(2− x(0)y(0)) = 1.000 000 000
x(2)= 0.5(x(1) + 1.4y(1))= 1.300 000 000
y(2)= y(1)(2− x(1)y(1)) = 0.800 000 000
x(3)= 0.5(x(2) + 1.4y(2))= 1.210 000 000
y(3)= y(2)(2− x(2)y(2)) = 0.768 000 000
x(4)= 0.5(x(3) + 1.4y(3))= 1.142 600 000
y(4)= y(3)(2− x(3)y(3)) = 0.822 312 960
x(5)= 0.5(x(4) + 1.4y(4))= 1.146 919 072
y(5)= y(4)(2− x(4)y(4)) = 0.872 001 394
x(6)= 0.5(x(5) + 1.4y(5))= 1.183 860 512 ≈ √

1.4

A final variant, that has found wider application in high-performance processors, is
based on computing the reciprocal of

√
z and then multiplying the result by z to obtain

450 Chapter 21 Square-Rooting Methods

√
z. We can use the function f (x) = 1/x2−z that has a root at x = 1/

√
z for this purpose.

Since f ′(x) = −2/x3, we get the recurrence

x(i+1) = 0.5x(i)(3− z(x(i))2)

Each iteration now requires three multiplications and one addition, but quadratic
convergence leads to only a few iterations with a suitably accurate initial estimate.

The Cray-2 supercomputer uses this last method [Cray89]. An initial estimate x(0)

for 1/
√

z is plugged into the equation to obtain a more accurate estimate x(1). In this
first iteration, 1.5x(0) and 0.5(x(0))3 are read out from a table to reduce the number of
operations to only one multiplication and one addition. Since x(1) is accurate to within
half the machine precision, a second iteration to find x(2), followed by a multiplication
by z, completes the process.

■ EXAMPLE 21.3 Suppose we want to obtain the square root of z = (.5678)ten and the
initial table lookup provides the starting value x(0) = 1.3 for 1/

√
z. We can then to find a

fairly accurate result by performing only two iterations, plus a final multiplication by z.

x(0) (read out from table) = 1.3
x(1) = 0.5x(0)(3− 0.5678(x(0))2)= 1.326 271 700
x(2) = 0.5x(1)(3− 0.5678(x(1))2)= 1.327 095 128√

z ≈ z × x(2) = 0.753 524 613

21.6 FAST HARDWARE SQUARE-ROOTERS

Combinational hardware square-rooters may serve one of two purposes: provide an
approximate value for the square root to start up or speed up the convergence methods
discussed in Section 21.5, or to replace digit-recurrence or iterative methods altogether.
Tabular starting approximation is quite similar to that used for convergence division in
Chapter 16. So, we will not discuss it further here (see Problem 21.13).

Approximating functions of varying complexities can be used to get an estimate for√
z. Consider, for example, a radicand z in the range [1, 4), as depicted in Fig. 21.7. It

is readily seen that the best constant approximation for
√

z is x(0) = 1.5, with absolute
error of 0.5 at either end and worst-case relative error of 50% at z = 1. The best linear
approximation that does not require any computation is x(0) = 1+ z/4. In this case, the
worst-case absolute and relative errors are 0.25 and 25%, respectively. The best linear
approximation requiring a single addition, and perhaps some shifting (which means that
its slope must be a power of 2), is x(0) = 7/8+ z/4, with absolute and relative errors of
0.125 and 12.5%, respectively. The best general linear approximation has a slope of 1/3.
The worst-case absolute error in this approximation x(0) = 17/24 + z/3, which needs
a multiplication by a constant and an addition, is 1/24 ≈ 0.042, occurring for z = 1,
z = 2.25, and z = 4. The worst-case relative error is roughly 4.2% at z = 1.

A better approximation can be obtained by splitting the range [1, 4) into several
subranges and using different parameters, or even a different method, in each subrange.

Fast Hardware Square-Rooters 451

43210
0

2

1

z

Figure 21.7 Plot of the function
√

z for 1 ≤ z < 4.

We illustrate this approach for the case of splitting into two subranges [1, 2) and [2, 4)
and using linear approximations requiring no computation. The two subranges of interest
can be easily distinguished by examining bit z1 of the radicand. For the lower subrange
[1, 2), corresponding to z1 = 0, the approximation 1+ (z−1)/2, derived by shifting the
fractional part of z to the right, has the worst-case absolute error of about 0.086 at z = 2.
Similarly, for the upper subrange [2, 4), corresponding to z1 = 1, the approximation
1+ z/4 offers the same maximum error, occurring at z = 2.

For integer operands, a starting approximation with the maximum error of 6.07%
can be found as follows [Hash90]. Assume that the most-significant 1 in the binary
representation of an integer-valued radicand z is in position 2m−1 (if the most-significant
1 is not in an odd position, simply double z and multiply the resulting square root by
1/
√

2 ≈ 0.707 107). Then, we have z = 22m−1 + zrest, with 0 ≤ zrest < 22m−1. We
claim that the starting approximation

x(0) = 2m−1 + 2−(m+1)z = (3× 2m−2)+ 2−(m+1)zrest

which can be obtained from z by counting the leading zeros and shifting, has a maximum
relative error of 6.07%. The difference between (x(0))2 and z is

� = (x(0))2 − z

= (9× 22m−4)+ 3zrest

4
+ 2−2(m+1)(zrest)2 − (22m−1 + zrest)

= 22m−4 − zrest

4
+ 2−2(m+1)(zrest)2

= 22m−4 − zrest(1− 2−2m zrest)

4

Since the derivative of � with respect to zrest is uniformly negative, we only need to
check the two extremes to find the worst-case error. At the upper extreme (i.e., for

452 Chapter 21 Square-Rooting Methods

zrest ≈ 22m−1), we have � ≈ 0. At the lower extreme of zrest = 0, we find � = 22m−4.
For this latter case, x(0)/

√
z = 3/

√
8 ≈ 1.0607.

Schwarz and Flynn [Schw96] propose a general hardware approximation method and
illustrate its applicability to the square-root function. Their method consists of generating
a number of Boolean terms (bits or “dots”) such that when these terms are added by the
same hardware that is used for multiplication, the result is a good starting approximation
for the desired function. In the case of square-rooting, they show that adding about
1000 gates of complexity to a 53-bit multiplier allows for the generation of a 16-bit
approximation to the square root, which can then be refined in only two iterations, to
yield a double-precision result.

As stated in Section 21.2 in connection with the restoring square-rooter depicted
in Fig. 21.5, and again at the end of Section 21.4, the hardware realization of digit-
recurrence square-rooting algorithms (binary or high-radix) is quite similar to that of
digit-recurrence division. Thus, it is feasible to modify divide or multiply/divide units
(Fig. 15.7) to also compute the square-root function. An extensive discussion of design
issues is available elsewhere [Zura87]. Similar observations apply to convergence meth-
ods that perform various combinations of multiplications, additions, and shifting in each
iteration.

It is also possible to derive a restoring or nonrestoring array square-rooter directly
from the dot notation representation of Fig. 21.3 in a manner similar to the derivation
of the array dividers of Section 15.5 from the dot notation representation of division
in Fig. 13.1. Figure 21.8 depicts a possible design for an 8-bit fractional square-rooter
based on the nonrestoring algorithm. The design uses controlled add/subtract cells to

Figure 21.8 Nonrestoring array square-rooter built of controlled add/subtract cells
incorporating full adders (FAs) and XOR gates.

Problems 453

perform the required subtraction/addition prescribed by the nonrestoring square-rooting
algorithm depending on the sign of the preceding partial remainder.

The reader should be able to understand the operation of the array square-rooter of
Fig. 21.8 based on our discussion of nonrestoring square-rooting in Section 21.3, and
by comparison to the nonrestoring array divider in Fig. 15.3. The design of a restoring
array square-rooter is left as an exercise.

PROBLEMS 21.1 Decimal square-rooting

Using the pencil-and-paper square-rooting algorithm:

a. Compute the four-digit integer square root of the decimal number
(12 34 56 78)ten.

b. Compute the square root of the decimal fraction (.4321)ten with four fractional
digits.

c. Repeat part b, this time obtaining the result rounded to 4 fractional digits.

21.2 Integer square-rooting

Compute the 8-bit square root of the unsigned radicand
z = (1011 0001 0111 1010)two.

a. Use the restoring radix-2 algorithm.
b. Use the nonrestoring radix-2 algorithm.
c. Convert the number to radix 4 and compute the square root in radix 4, using

the pencil-and-paper method.

21.3 Fractional square-rooting

Compute the 8-bit square root of the unsigned fractional radicand z =
(.0111 1100)two.

a. Use the restoring radix-2 algorithm, with the result rounded to 8 bits.
b. Repeat part a with the nonrestoring radix-2 algorithm.
c. Convert the number to radix 4 and compute the square root in radix 4, using

the pencil-and-paper method.

21.4 Programmed square-rooting

Write an assembly-language program similar to the division program in Fig. 13.4
for computing the square root of a 2k-bit binary integer using the restoring
shift/subtract algorithm.

21.5 Combinational square-rooter

A fully combinational multiplier circuit computing p = ax can be used as a
squarer by connecting both its inputs to x, leading to the output p = x2. A fully
combinational divider circuit computes q = z/d . If we feed back the quotient
output q to the divisor input d , as in Fig. 15.5b, can we expect to get q = √

z at
the output? Discuss.

454 Chapter 21 Square-Rooting Methods

21.6 Restoring square-rooter

For the restoring square-rooter in Fig. 21.5:

a. Explain the initial placement of z − 1 in the partial remainder register.
b. Explain the two unlabeled input bits on the left side of the adder (gray lines).
c. Explain the alignment of the two inputs to the adder. (i.e., Which bits of the

partial remainder register are added to the complement of the partial square
root?)

d. Provide a complete logic design for the root digit selection block.

21.7 Nonrestoring square-rooter

Consider the hardware implementation of a nonrestoring square-rooter.

a. Draw a block diagram similar to Fig. 21.5 for the hardware, assuming that
the partial remainder is kept is standard binary form.

b. Repeat part a for a nonrestoring square-rooter that keeps the partial remainder
in stored-carry form.

c. Provide a complete logic design for the root digit selection block in part b.

21.8 High-radix integer square-rooting

Compute the 8-bit square root of the following 16-bit unsigned binary numbers
using the radix-4 square-rooting algorithm of Section 21.4. Do not worry about
the process of selecting a root digit in [−2, 2]; that is, use a trial-and-error
approach.

a. 0011 0001 0111 1010
b. 0111 0001 0111 1010
c. 1011 0001 0111 1010

21.9 High-radix fractional square-rooting

Given the radicand z = 0.0111 1100, compute the square root q =
0.q−1q−2 · · · q−8 and remainder s = 0.0000 000r−8 · · · r−16 using:

a. The radix-2 restoring algorithm.
b. The radix-4 algorithm with root digit set [−2, 2]. Hint: Preshifting is required

to make the root representable with the given digit set.

21.10 High-radix square-rooting

Consider the radix-4 square-rooting algorithm discussed in Section 21.4

a. Develop a p-q plot (similar to the p-d plot in high-radix division) for this
algorithm and discuss the root digit selection process.

b. Draw a block diagram of the hardware required to execute the radix-4 square-
rooting algorithm. In particular, show the complete logical design of the
elements needed to update the registers Q and Q*.

c. Derive the add/subtract rules and the updating process for Q and Q* in radix-8
square-rooting with the root digit set [−4, 4].

Problems 455

d. Briefly discuss the cost-effectiveness of the radix-8 square-rooter of part c
compared with the simpler radix-4 implementation.

21.11 Rounding of the square root

a. Prove that rounding of a fractional square root (see the end of Section 21.2)
can be done by generating an extra digit of the result and that the equivalent
of the “sticky bit” is not required (i.e., the midway case never arises).

b. Show that as an alternative to the extra iteration, the rounding decision can
be based on whether s(l) ≤ q (truncate) or s(l) > q (round up).

21.12 Approximating the square-root function

Consider the problem of extracting the square root of z, which is in the range
0.5 ≤ z < 2 (at the beginning of Section 21.6, we dealt with the range 1 ≤ z < 4).

a. By analyzing the worst-case error, show that x(0) = (1 + z)/2 is a good
approximation to

√
z in the given range.

b. Demonstrate that the approximation of part a is quite easy to obtain form z.
c. Derive progressively better approximations for

√
z in the given range by

following the same steps that appear at the beginning of Section 21.6.
d. Try to improve on the approximations in parts a and c by subdividing the

range [0.5, 2) into two subranges.
e. Discuss whether, and if so, how, the results of parts a-d are applicable to

extracting the square root of an IEEE 754-2008 floating-point number.

21.13 Approximating the square-root function

a. Formulate and prove a theorem similar to Theorem 16.1 (concerning the ini-
tial multiplicative factor in convergence division) that relates the accuracy of
the square-root approximation to the required table size [Parh99].

b. Identify any special cases that might allow smaller tables.

21.14 Convergence square-rooting

Discuss the practicality of the following method for convergence square-rooting.
Initially, the square root of a radicand in [1, 4) is known to be in [1, 2). The inter-
val holding the square root is iteratively refined by a binary search process: the
midpoint m = (l + u)/2 of the current interval [l, u) is squared and the result
compared with the radicand to decide if the search must be restricted to [l, m) or
to [m, u) in the next iteration.

21.15 Convergence square-rooting

a. Derive a convergence scheme for square-rooting using the Newton–Raphson
method and the function f (x) = z/x2 − 1.

b. Show that with x(0) = y(0) = 1, the pair of iterative formulas x(i+1) =
x(i) + y(i)z and y(i+1) = x(i) + y(i) converges to x(m)/y(m) = √

z.

456 Chapter 21 Square-Rooting Methods

21.16 Square-rooting by convergence

Consider square-rooting by convergence when the radicand z is in the range [1, 4),
intermediate computations are to be performed with 60 bits of precision after the
radix point, and a lookup table is used to provide an initial estimate for the square
root that is accurate to within±2−8. Identify the best approach by determining the
required table size and analyzing the convergence methods described in Section
21.5. Assume that hardware add, multiply, and divide times are 1, 3, and 8 units,
respectively, and that shifting and control overheads can be ignored.

21.17 Array square-rooter

a. In the nonrestoring square-rooter of Fig. 21.8, explain the roles of all inputs
connected to a constant 0 or 1, the connections from horizontally broadcast
signals to the diagonal inputs of some cells, and the wraparound connections
of the cells located at the right edge.

b. Present the design of a restoring array square-rooter for radix-2 radicands.
c. Compare the design of part b to the nonrestoring square-rooter of Fig. 21.8

with regard to speed and cost.
d. Design a 4-bit array squarer with a cell layout similar to that in Fig. 21.8, so

that the operand enters from the left side and the square emerges from the
bottom.

e. Based on the design of part d, build an array that can compute the square or
square-root function depending on the status of a control signal.

21.18 Convergence square-rooting

The square root of z can be computed by applying the Newton-Raphson method
to f (x) = 1− 1/(zx2), which has a root at x = 1/

√
z.

a. Derive the corresponding iteration formula.
b. Prove that the method derived in part a has quadratic convergence.
c. Apply the method of part a to the calculation of

√
0.333 333 using at least

six decimal digits of precision in your computations.

21.19 Convergence square-rooting

The convergence square-rooting methods discussed in this chapter use multipli-
cations and additions (mostly) as the basic computational building blocks. Many
modern (signal) processor chips can perform multiply-add operations almost as
fast as multiplications. Study the implications of this capability on the design of
efficient convergence square-rooting methods [Ito96].

21.20 Computing the fourth root

a. Derive an iterative formula for computing the fourth root of z (q = z1/4)

based on the Newton-Raphson method.
b. Analyze the convergence of your scheme.

Problems 457

c. Compare your scheme with a cascaded square-root computation using a
convergence square-rooting method; i.e., q = (z1/2)1/2.

21.21 Computing the jth root

a. Derive an iterative formula for computing the jth root of z(q = z1/j) based
on the Newton-Raphson method.

b. Analyze the convergence of your method.

21.22 Simplified array square-rooter

Show that in the nonrestoring array square-rooter of Fig. 21.8, three cells in the
lower left corner (one from the next to last row, two from last row) can be removed
without affecting the correctness of the square root or the remainder. More gen-
erally, prove that the design can be pruned by removing j − 2 cells from the left
end of row j, where rows are numbered from top to bottom, beginning with 1.

21.23 Multifunction pipelined arithmetic circuit

The last paragraph in Section 15.6 refers to a universal pipelined arithmetic circuit
that is capable of performing multiplication, squaring, division, and square root-
ing [Kama74]. A brief description of the circuit appears in [Kogg81], pp. 53–57.

a. Study the circuit in [Kogg81] and write a paragraph that describes the intuition
behind its multifunction operation.

b. Can one replace the control cells with computation cells (albeit with appro-
priate values used for its additional inputs and outputs) so as to have a single
cell type throughout?

21.24 Initial square-root approximation

Consider the problem of approximating the square-root of a fixed-point fractional
number z ∈ [0.25, 1). Begin by extending Fig. 21.7 for the range [0.25, 1). Then,
for each of the cases outlined below, offer the best possible approximation, along
with its maximal error in absolute and relative terms.

a. Constant approximation, independent of z.
b. Approximation requiring no arithmetic operation; similar to the approxima-

tion 1+ z/4 when z is in the range [1, 4).
c. Approximation requiring a single addition and perhaps some shifting.
d. Linear approximation of the form a + bz, that is, using one multiplication

and one addition.
e. A better approximation by using four subranges.

21.25 Digit-recurrence cube-rooting algorithm

Describe a digit-recurrence cube-rooting algorithm in terms of root-digit selec-
tion and partial remainder updating process [Pine08]. Does nonrestoring
cube-rooting make sense? Explain.

458 Chapter 21 Square-Rooting Methods

REFERENCES AND FURTHER READINGS

[Agra79] Agrawal, D. P., “High-Speed Arithmetic Arrays,” IEEE Trans. Computers, Vol. 28,
No. 3, pp. 215–224, 1979.

[Cimi90] Ciminiera, L., and P. Montuschi, “Higher Radix Square Rooting,” IEEE Trans.
Computers, Vol. 39, No. 10, pp. 1220–1231, 1990.

[Cray89] Cray Research, “Cray-2 Computer System Functional Description Manual,” Cray
Research, Chippewa Falls, WI, 1989.

[Erce90] Ercegovac, M. D., and T. Lang, “Radix-4 Square Root Without Initial PLA,” IEEE
Trans. Computers, Vol. 39, No. 8, pp. 1016–1024, 1990.

[Erce94] Ercegovac, M. D., and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations, Kluwer, 1994.

[Hash90] Hashemian, R., “Square Rooting Algorithms for Integer and Floating-Point
Numbers,” IEEE Trans. Computers, Vol. 39, No. 8, pp. 1025–1029, 1990.

[Ito96] Ito, M., N. Takagi, and S. Yajima, “Square Rooting by Iterative Multiply-Additions,”
Information Processing Letters, Vol. 60, No. 5, pp. 267–269, 1996.

[Kama74] Kamal, A. K., et al., “A Generalized Pipeline Array,” IEEE Trans. Computers,
Vol. 23, No. 5, pp. 533–536, 1974.

[Kogg81] Kogge, P. M., The Architecture of Pipelined Computers, McGraw-Hill, 1981.

[Korn05] Kornerup, P., “Digit Selection for SRT Division and Square Root,” IEEE Trans.
Computers, Vol. 54, No. 3, pp. 294–303, 2005.

[Maje85] Majerski, S., “Square-Root Algorithms for High-Speed Digital Circuits,” IEEE
Trans. Computers, Vol. 34, No. 8, pp. 1016–1024, 1985.

[Maji71] Majithia, J. C., “Cellular Array for Extraction of Squares and Square Roots of
Binary Numbers,” IEEE Trans. Computers, Vol. 20, No. 12,
pp. 1617–1618, 1971.

[Mont90] Montuschi, P., and M. Mezzalama, “Survey of Square-Rooting Algorithms,” Proc.
IEE: Pt. E, Vol. 137, pp. 31–40, 1990.

[Mont07] Montuschi, P., J. D. Bruguera, L. Ciminiera, and J.-A. Pineiro, “A Digit-by-Digit
Algorithm for mth Root Extraction,” IEEE Trans. Computers, Vol. 56, No. 12,
pp. 1696–1706, 2007.

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture and
Implementation, Prentice-Hall, 1994.

[Parh99] Parhami, B., “Analysis of the Lookup Table Size for Square-Rooting,” Proc. 33rd
Asilomar Conf. Signals, Systems, and Computers, pp. 1327–1330, 1999.

[Pine08] Pineiro, A., J. D. Bruguera, F. Lamberti, and P. Montuschi, “A Radix-2
Digit-by-Digit Architecture for Cube Root,” IEEE Trans. Computers, Vol. 57, No. 4,
pp. 562–566, 2008.

[Schw96] Schwarz, E. M., and M. J. Flynn, “Hardware Starting Approximation Method and Its
Application to the Square Root Operation,” IEEE Trans. Computers, Vol. 45, No. 12,
pp. 1356–1369, 1996.

[Zura87] Zurawski, J. H. P., and J. B. Gosling, “Design of a High-Speed Square Root,
Multiply, and Divide Unit,” IEEE Trans. Computers, Vol. 36, No. 1, pp. 13–23,
1987.

22 The CORDIC Algorithms

■ ■ ■

“Geometry is the art of correct reasoning on incorrect figures.”
G . P O LYA , H O W T O S O LV E I T

■ ■ ■

I n this chapter, we learn an elegant convergence method for evaluating

trigonometric and many other functions of interest. We will see that, somewhat

surprisingly, all these functions can be evaluated with delays and hardware costs that

are only slightly higher than those of division or square-rooting.The simple form of a

coordinate rotation digital computer (CORDIC) algorithm is based on the observation

that if a unit-length vector with end point at (x , y)= (1, 0) is rotated by an angle z, its

new end point will be at (x , y)= (cos z, sin z).Thus, cos z and sin z can be computed by

finding the coordinates of the new end point of the vector after rotation by z. Similar

geometric transformations, and their combinations, allow us to compute many other

functions. Chapter topics include:

22.1 Rotations and Pseudorotations

22.2 Basic CORDIC Iterations

22.3 CORDIC Hardware

22.4 Generalized CORDIC

22.5 Using the CORDIC Method

22.6 An Algebraic Formulation

22.1 ROTATIONS AND PSEUDOROTATIONS

Consider the vector OE(i) in Fig. 22.1, having one end point at the origin O and the other
at E(i) with coordinates (x(i), y(i)). If OE(i) is rotated about the origin by an angle α(i),
as shown in Fig. 22.1, the new end point E(i+1) will have coordinates (x(i+1), y(i+1))

459

460 Chapter 22 The Cordic Algorithms

Figure 22.1 A
pseudorotation step
in CORDIC.

x

y
Rotation

O

R (i+1)

y (i+1)

y (i)

E�(i+1)

E(i+1)

Pseudo-
rotation

E(i)

R (i)
a(i)

 x(i+1) x(i)

satisfying

x(i+1) = x(i) cos α(i) − y(i) sin α(i) = x(i) − y(i) tan α(i)

(1+ tan2 α(i))1/2

y(i+1) = y(i) cos α(i) + x(i) sin α(i) = y(i) + x(i) tan α(i)

(1+ tan2 α(i))1/2
[Real rotation]

z(i+1) = z(i) − αi

where the variable z allows us to keep track of the total rotation over several steps. More
specifically, z(i) can be viewed as the residual rotation still to be performed; thus z(i+1)

is the updated version of z(i) after rotation by α(i). If z(0) is the initial rotation goal and
if the α(i) angles are selected at each step such that z(m) tends to 0, the end point E(m)

with coordinates (x(m), y(m)) will be the end point of the vector after it has been rotated
by the angle z(0).

In the CORDIC computation method, which derives its name from the coordinate
rotation digital computer designed in the late 1950s, rotation steps are replaced by
pseudorotations as depicted in Fig. 22.1. Whereas a real rotation does not change the
length R(i) of the vector, a pseudorotation step increases its length to

R(i+1) = R(i)(1+ tan2 α(i))1/2

The coordinates of the new end point E′(i+1) after pseudorotation are derived by
multiplying the coordinates of E(i+1) by the expansion factor (1 + tan2 α(i))1/2. The
pseudorotation by the angle α(i) is thus characterized by the equations:

x(i+1) = x(i) − y(i) tan α(i)

y(i+1) = y(i) + x(i) tan α(i) [Pseudorotation]

z(i+1) = z(i) − α(i)

Basic Cordic Iterations 461

Assuming x(0) = x, y(0) = y, and z(0) = z, after m real rotations by the angles
α(1), α(2), . . . , α(m), we have

x(m) = x cos
(∑

α(i)
)
− y sin

(∑
α(i)

)

y(m) = y cos
(∑

α(i)
)
+ x sin

(∑
α(i)

)

z(m) = z −
(∑

α(i)
)

After m pseudorotations by the angles α(1), α(2), . . . , α(m), with x(0) = x, y(0) = y, and
z(0) = z, we have

x(m) =
(

x cos
(∑

α(i)
)
− y sin

(∑
α(i)

)) ∏
(1+ tan2 α(i))1/2

= K
(

x cos
(∑

α(i)
)
− y sin

(∑
α(i)

))

x(m) =
(

y cos
(∑

α(i)
)
+ x sin

(∑
α(i)

)) ∏
(1+ tan2 α(i))1/2 [∗]

= K
(

y cos
(∑

α(i)
)
+ x sin

(∑
α(i)

))

z(m) = z −
(∑

α(i)
)

The expansion factor K = ∏
(1 + tan2 α(i))1/2 depends on the rotation angles

α(1), α(2), . . . , α(m). However, if we always rotate by the same angles, with positive
or negative signs, then K is a constant that can be precomputed. In this case, using the
simpler pseudorotations instead of true rotations has the effect of expanding the vector
coordinates and length by a known constant.

22.2 BASIC CORDIC ITERATIONS

To simplify each pseudorotation, pick α(i) such that tan α(i) = di2−i, di ∈ {−1, 1}. Then

x(i+1) = x(i) − diy
(i)2−i

y(i+1) = y(i) + dix
(i)2−i [CORDIC iteration]

z(i+1) = z(i) − di tan−1 2−i

The computation of x(i+1) or y(i+1) requires an i-bit right shift and an add/subtract.
If the function e(i) = tan−1 2−i is precomputed and stored in a table for different values
of i, a single add/subtract suffices to compute z(i+1). Table 22.1 contains a list of the
precomputed angles e(i) for 0 ≤ i ≤ 9. Two versions of each angle are shown: an
approximate value, in degrees, that we will use in our example calculations, and a
precise version in radians, for use in practical applications of CORDIC. Each CORDIC
iteration thus involves two shifts, a table lookup, and three additions.

462 Chapter 22 The Cordic Algorithms

Table 22.1 Approximate and
precise values of the function
e(i) = tan−12−i, for 0 ≤ i ≤ 9

i ≈ e(i), degrees e(i), radians

0 45.0 0.785 398 163 397

1 26.6 0.463 647 609 001

2 14.0 0.244 978 663 127

3 7.1 0.124 354 994 547

4 3.6 0.062 418 809 996

5 1.8 0.031 239 833 430

6 0.9 0.015 623 728 620

7 0.4 0.007 812 341 060

8 0.2 0.003 906 230 132

9 0.1 0.001 953 122 516

If we always pseudorotate by the same set of angles (with + or − signs), then
the expansion factor K is a constant that can be precomputed. For example, to pseu-
dorotate by 30◦, we can pseudorotate by the following sequence of angles that add
up to ≈30◦:

30.0 ≈ 45.0− 26.6+ 14.0− 7.1+ 3.6+ 1.8− 0.9+ 0.4− 0.2+ 0.1

= 30.1

Note that, to avoid clutter and to get a better intuitive feel for the process, we have used
the approximate versions of the angles (in degrees) from Table 22.1. In effect, what
actually happens in CORDIC is that z is initialized to 30◦ and then, in each step, the
sign of the next rotation angle is selected to try to change the sign of z; that is, we
choose di = sign(z(i)), where the sign function is defined to be −1 or 1 depending on
whether the argument is negative or nonnegative. This is reminiscent of nonrestoring
division.

Table 22.2 shows the process of selecting the signs of the rotation angles for a desired
rotation of +30◦. Figure 22.2 depicts the first few steps in the process of forcing z to 0
through the choice of angles in successive pseudorotations.

In CORDIC terminology, the preceding selection rule for di, which makes z converge
to 0, is known as “rotation mode.” We rewrite the CORDIC iterations as follows, where
e(i) = tan−1 2−i:

x(i+1) = x(i) − di(2
−iy(i))

y(i+1) = y(i) + di(2
−ix(i)) [CORDIC iteration]

z(i+1) = z(i) − die
(i)

Basic Cordic Iterations 463

Table 22.2 Choosing the signs of the
rotation angles to force z to 0

i z(i) − α(i) = z(i+1)

0 +30.0 − 45.0 = −15.0

1 −15.0 + 26.6 = +11.6

2 +11.6 − 14.0 = −2.4

3 −2.4 + 7.1 = +4.7

4 +4.7 − 3.6 = +1.1

5 +1.1 − 1.8 = −0.7

6 −0.7 + 0.9 = +0.2

7 +0.2 − 0.4 = −0.2

8 −0.2 + 0.2 = +0.0

9 +0.0 − 0.1 = −0.1

Figure 22.2 The
first 3 of 10
pseudorotations
leading from
(x(0), y(0)) to
(x(10), 0) in rotating
by+30◦.

y

x

x , y

x
–45°

+26.6°

–14°
30°

(0) (0)

(10)

x , y(1) (1)

x , y(2) (2)

x , y(3) (3)

After m iterations in rotation mode, when z(m) is sufficiently close to 0, we have
∑

α(i) =
z, and the CORDIC equations [*] become:

x(m) = K(x cos z − y sin z)
y(m) = K(y cos z + x sin z) [Rotation mode]
z(m) = 0
Rule : Choose di ∈ {−1, 1} such that z → 0.

The constant K in the preceding equations is K = 1.646 760 258 121 · · · . Thus, to
compute cos z and sin z, one can start with x = 1/K = 0.607 252 935 · · · and y = 0.
Then, as z(m) tends to 0 with CORDIC iterations in rotation mode, x(m) and y(m) converge
to cos z and sin z, respectively. Once sin z and cos z are known, tan z can be obtained
through division if desired.

For k bits of precision in the resulting trigonometric functions, k CORDIC iterations
are needed. The reason is that for large i, we have tan−1 2−i ≈ 2−i. Hence, for i > k,
the change in z will be less than ulp.

In rotation mode, convergence of z to 0 is possible because each angle in Table 22.1
is more than half the previous angle or, equivalently, each angle is less than the sum of
all the angles following it. The domain of convergence is −99.7◦ ≤ z ≤ 99.7◦, where

464 Chapter 22 The Cordic Algorithms

99.7◦ is the sum of all the angles in Table 22.1. Fortunately, this range includes angles
from−90◦ to+90◦, or [−π/2, π/2] in radians. For outside the preceding range, we can
use trigonometric identities to convert the problem to one that is within the domain of
convergence:

cos(z ± 2jπ)= cos z sin(z ± 2jπ)= sin z
cos(z − π) = − cos z sin(z − π) = − sin z

Note that these transformations become particularly convenient if angles are repre-
sented and manipulated in multiples of π radians, so that z = 0.2 really means z = 0.2π

radian or 36◦. The domain of convergence then includes [−1/2, 1/2], with numbers out-
side this domain converted to numbers within the domain via the addition or subtraction
of a suitable integer representing a multiple of π radians. A more general discussion of
range reduction in function evaluation is presented at the end of Section 23.1.

In a second way of utilizing CORDIC iterations, known as vectoring mode, we make
y tend to zero by choosing di = −sign(x(i)y(i)). After m iterations in vectoring mode,
we have tan(

∑
α(i)) = −y/x. This means that

x(m) = K
[
x cos

(∑
α(i)

)
− y sin

(∑
α(i)

)]

= K
(
x − y tan

(∑
α(i)

))
[
1+ tan2

(∑
α(i)

)]1/2

= K(x + y2/x)

(1+ y2/x2)1/2

= K(x2 + y2)1/2

The CORDIC equations [*] thus become

x(m) = K(x2 + y2)1/2

y(m) = 0 [Vectoring mode]
z(m) = z + tan−1(y/x)
Rule: Choose di ∈ {−1, 1} such that y → 0.

We can compute tan−1y in vectoring mode by starting with x = 1 and z = 0. This
computation always converges. However, we can take advantage of the identity

tan−1(1/y) = π/2− tan−1 y

to limit the range of fixed-point numbers that are encountered. We will see later, in
Section 22.5, that the CORDIC method also allows the computation of other inverse
trigonometric functions.

The preceding discussions concern rotations and pseudorotation in 2D space (i.e.,
on a plane). Many computer graphics applications require rotations and other geometric
operations in 3D space. For a discussion of similar 3D methods and their applications,
see [Lang05].

Generalized Cordic 465

Figure 22.3
Hardware elements
needed for the
CORDIC method.

x

y

z

Shift

Shift

±

±

±

Lookup
 table

22.3 CORDIC HARDWARE

A straightforward hardware implementation for CORDIC arithmetic is shown in
Fig. 22.3. It requires three registers for x, y, and z; a lookup table to store the val-
ues of e(i) = tan−1 2−i; and two shifters to supply the terms 2−ix and 2−iy to the
adder/subtractor units. The di factor (−1 or 1) is accommodated by selecting the (shifted)
operand or its complement.

A single adder and one shifter can be shared by the three computations if a reduction
in speed by a factor of about 3 is acceptable. In the extreme, CORDIC iterations can be
implemented in firmware (microprogram) or even software using the arithmetic/logic
unit and general-purpose registers of a standard microprocessor. In this case, the lookup
table supplying the terms e(i) can be stored in the control ROM or in main memory.

Where high speed is not required and minimizing the hardware cost is important
(as in calculators), the adders in Fig. 22.3 can be bit-serial. Then with k-bit operands,
O(k2) clock cycles would be required to complete the k CORDIC iterations. This is
acceptable for handheld calculators, since even a delay of tens of thousands of clock
cycles constitutes a small fraction of a second and thus is hardly noticeable to a human
user. Intermediate between the fully parallel and fully bit-serial realizations are a wide
array of digit-serial (say decimal or radix-16) implementations that provide trade-offs
of speed versus cost.

22.4 GENERALIZED CORDIC

The basic CORDIC method of Section 22.2 can be generalized to provide a more powerful
tool for function evaluation. Generalized CORDIC is defined as follows:

x(i+1) = x(i) − µdiy
(i)2−i

y(i+1) = y(i) + dix
(i)2−i [Generalized CORDIC iteration]

z(i+1) = z(i) − die
(i)

466 Chapter 22 The Cordic Algorithms

Figure 22.4 Circular,
linear, and hyperbolic
CORDIC. A

B

C

D

E

F

O
UVW

y

x

µ = –1
Hyperbolic
(pseudo)
rotation

µ = 1
Circular
(pseudo)
rotation

µ = 0
Linear
rotation

Note that the only difference with basic CORDIC is the introduction of the parameter µ

in the equation for x and redefinition of e(i). The parameter µ can assume one of three
values:

µ = 1 Circular rotations (basic CORDIC) e(i) = tan−1 2−i

µ = 0 Linear rotations e(i) = 2−i

µ = −1 Hyperbolic rotations e(i) = tanh−12−i

Figure 22.4 illustrates the three types of rotation in generalized CORDIC.
For the circular case with µ = 1, we introduced pseudorotations that led to expansion

of the vector length by a factor (1 + tan2 α(i))1/2 = 1/ cos α(i) in each step, and by
K = 1.646 760 258 121 · · · overall, where the vector length is the familiar R(i) =√

(x(i))2 + (y(i))2. With reference to Fig. 22.4, the rotation angle AOB can be defined in
terms of the area of the sector AOB as follows:

angle AOB = 2(area AOB)

(OU)2

The following equations, repeated here for ready comparison, characterize the results
of circular CORDIC rotations:

x(m) = K(x cos z − y sin z)
y(m) = K(y cos z + x sin z) [Circular rotation mode]
z(m) = 0
Rule: Choose di ∈ {−1, 1} such that z → 0.

x(m) = K(x2 + y2)1/2

y(m) = 0 [Circular vectoring mode]
z(m) = z + tan−1(y/x)
Rule: Choose di ∈ {−1, 1} such that y → 0.

In linear rotations corresponding to µ = 0, the end point of the vector is kept on the
line x = x(0) and the vector “length” is defined by R(i) = x(i). Hence, the length of

Generalized Cordic 467

the vector is always its true length OV and the scaling factor is 1 (our pseudorotations
are true linear rotations in this case). The following equations characterize the results of
linear CORDIC rotations:

x(m) = x
y(m) = y + xz [Linear rotation mode]
z(m) = 0
Rule: Choose di ∈ {−1, 1} such that z → 0.

x(m) = x
y(m) = 0 [Linear vectoring mode]
z(m) = z + y/x
Rule: Choose di ∈ {−1, 1} such that y → 0.

Hence, linear CORDIC rotations can be used to perform multiplication (rotation mode,
y = 0), multiply-add (rotation mode), division (vectoring mode, z = 0), or divide-add
(vectoring mode).

In hyperbolic rotations corresponding to µ = −1, the rotation “angle” EOF can be
defined in terms of the area of the hyperbolic sector EOF as follows:

angle EOF = 2(area EOF)

(OW)2

The vector “length” is defined as R(i) = √
(x(i))2 − (y(i))2, with the length expansion

due to pseudorotation being (1 − tanh2α(i))1/2 = 1/coshα(i). Because cos hα(i) > 1,
the vector length actually shrinks, leading to an overall shrinkage factor K ′ =
0.828 159 360 960 2 · · · after all the iterations. The following equations characterize
the results of hyperbolic CORDIC rotations:

x(m) = K ′(x coshz + y sinhz)
y(m) = K ′(y coshz + x sinhz) [Hyperbolic rotation mode]
z(m) = 0
Rule: di ∈ {−1, 1} such that z → 0.

x(m) = K ′(x2 − y2)1/2

y(m) = 0 [Hyperbolic vectoring mode]
z(m) = z + tanh−1(y/x)
Rule: di ∈ {−1, 1} such that y → 0.

Hence, hyperbolic CORDIC rotations can be used to compute the hyperbolic sine and
cosine functions (rotation mode, x = 1/K ′, y = 0) or the tanh−1 function (vectoring
mode, x = 1, z = 0). Other functions can be computed indirectly, as we shall see shortly.

Convergence of circular CORDIC iterations was discussed in Section 22.2. Linear
CORDIC iterations trivially converge for suitably restricted values of z (rotation mode)
or y (vectoring mode). For hyperbolic CORDIC iterations, ensuring convergence is a bit
more tricky, since whereas tan−1(2−(i+1)) ≥ 0.5 tan−1(2−i), the corresponding relation
for tanh, namely, tanh−1(2−(i+1)) ≥ 0.5 tanh−1(2−i), does not hold in general.

468 Chapter 22 The Cordic Algorithms

A relatively simple cure is to repeat steps i = 4, 13, 40, 121, …, j, 3j + 1, . . . to
ensure convergence (each term is 1 more than 3 times the preceding term). In other
words, the iterations corresponding to the foregoing values of i are executed twice. The
effect of these repetitions on performance is minimal because in practice we always stop
for m < 121. These repeated steps have already been taken into account in computing the
shrinkage constant K ′ given earlier. With these provisions, convergence in computing
hyperbolic sine and cosine functions is guaranteed for |z| < 1.13 and in the case of the
tanh−1 function, for |y| < 0.81.

The preceding convergence domains are more than adequate to compute the cosh,
sinh, and tanh−1 functions over the entire range of arguments using the following
identities that hold for |z| < ln 2 ≈ 0.69:

cosh(q ln 2+ z) = 2q−1[cosh z + sinh z + 2−2q(cosh z − sinh z)]
sinh(q ln 2+ z) = 2q−1[cosh z + sinh z − 2−2q(cosh z − sinh z)]

tanh−1(1− 2−es) = tanh−1
(

2− s− 2−es

2+ s− 2−es

)
+ e ln 2

2

We will revisit the topic of range reduction at the end of Section 23.1.

22.5 USING THE CORDIC METHOD

We have already seen that the generalized CORDIC method can directly compute sin,
cos, tan−1, sinh, cosh, tanh−1, as well as multiplication and division functions. To
use CORDIC iterations for computing these functions, it is necessary to check that the
arguments are within the domain of convergence and to convert the problem, if necessary,
to one for which the iterations are guaranteed to converge.

Somewhat more complex functions such as tan−1(y/x), y + xz, (x2 + y2)1/2, (x2 −
y2)1/2, and ez = sinh z+cosh z can also be directly computed with suitable initializations.
We will see shortly that some special cases of these functions, such as (1+ w2)1/2 and
(1− w2)1/2, are quite useful in computing other functions.

Many other functions are computable by suitable pre- or postprocessing steps or
by multiple passes through the CORDIC hardware. Figure 22.5 provides a summary
of CORDIC for ease of reference and also contains formulas for computing some of
these other functions. For example, the tan function can be computed by first computing
sin and cos and then performing a division, perhaps through another set of (linear)
CORDIC iterations. Similarly, the tanh function can be computed through dividing sinh
by cosh.

Computing the natural logarithm function, ln w, involves precomputing y = w − 1
and x = w + 1 via two additions and then using the identity

ln w = 2 tanh−1
∣∣∣∣
w − 1

w + 1

∣∣∣∣

Using the Cordic Method 469

z 0 y 0

e =

e =

For tanh , set x = 1, z = 0

ln w = 2 tanh |(w – 1)/(w + 1)|

K x –y2

Rotation mode: d = sign(z)i

 = 1
Circular

 = 0
Linear

x

y

z

K(x cos z –y sin z)

K(y cos z + x sin z)

0

x

y

z

K x + y

0

z + tan (y/x)

x

y

z

x

y + xz

0

x

y

z

x

0

z + y/x

tan 2–i

–1

2 2

For cos & sin, set x = 1/K, y = 0

tan z = sin z / cos z

For tan , set x = 1, z = 0

cos w = tan √1 –w 2 /w]
sin w = tan [w/√1 –w 2]

–1

–1 –1 [
–1–1

For multiplication, set y = 0 For division, set z = 0

In executing the iterations for = –1, steps 4, 13, 40, 121, . . . , j , 3j + 1, . . .
must be repeated. These repetitions are incorporated in the constant K below.

√

 = –1
Hyperbolic

x

y

z

C
O
R
D
I
C

C
O
R
D
I
C

C
O
R
D
I
C

C
O
R
D
I
C

C
O
R
D
I
C

K (x cosh z + y sinh z)

K (y cosh z + x sinh z)

0

x

y

z

0

2

z + tanh (y/x)–1

For cosh & sinh, set x = 1/K , y = 0

tanh z = sinh z / cosh z
e = sinh z + cosh z
w = e

–1

t

–1

C
O
R
D
I
C

√

√w = √ (w + 1/4)2 – (w – 1/4) 2

sinh w = ln(w + √ 1 + w2)–1
cosh w = ln(w + √ 1 –w 2)–1

µ

µ

µ

µ

(i)(i)

(i)

e =(i)

(i) Vectoring mode: d = – sign(x y)i (i) (i)

–1

tanh 2–i–1

(i) –i–i

→→

2

'

'

'

'

'

 z

t ln w

e

µx
y
z

x
y
z

=
=
=

(i +1) (i)

(i +1) (i)

(i +1) (i) (i)

–
+
–

d
d

di

i
i

(2 y)– i (i)

(2 x)– i (i)
µ
K
K'

=
=

∈ {–1, 0, 1}, d ∈ {–1, 1}i
1.646 760 258 121 . . .
0.828 159 360 960 2 . . .

Figure 22.5 Summary of generalized CORDIC algorithms.

Logarithms in other bases (such as 2 or 10) can be obtained from the natural logarithm
through multiplication by constant factors. Thus, all such logarithms can be computed
quite easily by suitably modifying the constant 2 in the preceding equation.

Exponentiation can be done through CORDIC iterations by noting that

wt = et ln w

with the natural logarithm, multiplication, and the exponential function all computable
through CORDIC iterations. We should note that the mere validity of a mathematical
identity is not an indication that a particular method of function evaluation would be a
sensible choice. In fact, the foregoing exponentiation method is known to be prone to
inaccuracies [Mull06].

470 Chapter 22 The Cordic Algorithms

The following procedures for computing the functions sin−1, cos−1, sinh−1, cosh−1,
and for square-rooting are also listed in Fig. 22.5:

cos−1 w = tan−1(y/w) for y = √
1− w2

sin−1 w = tan−1(w/x) for x = √
1− w2

cosh−1 w= ln(w + x) for x = √
1− w2

sinh−1 w = ln(w + x) for x = √
1+ w2√

w = √
x2 − y2 for x = w + 1/4 and y = w − 1/4

Modified forms of CORDIC have been suggested for computing still other functions or
for computing some of the aforementioned functions more efficiently or with less error.
Some of these are explored in the end-of-chapter problems.

From the preceding discussion, we see that a CORDIC computation unit can evaluate
virtually all functions of common interest and is, in a sense, a universally efficient
hardware implementation for evaluating these functions.

The number of iterations in CORDIC is fixed to ensure that K and K ′ remain con-
stants. In other words, if at some point during the computation in rotation (vectoring)
mode z (y) becomes 0, we cannot stop the computation, except of course for the lin-
ear version with µ = 0. Thus, it appears that we always need k iterations for k digits
of precision. Recall that basic sequential multiplication and division algorithms, dis-
cussed in Chapters 11 and 16, also involve k shift/add iterations. Each iteration of
CORDIC requires three shift/adds. Nevertheless, it is quite remarkable that a large num-
ber of useful, and seemingly complicated, functions can be computed through CORDIC
with a latency that is essentially comparable to that of sequential multiplication or
division.

Note that it is possible to terminate the CORDIC algorithm with µ �= 0 before k
iterations, or to skip some rotations, by keeping track of the expansion factor via the
recurrence

(K (i+1))2 = (K (i))2(1± 2−2i)

Thus, by using an additional shift/add in each iteration to update the square of the expan-
sion factor, we can free ourselves from the requirement that every rotation angle be used
once and only once (or exactly twice in some iterations of the hyperbolic pseudorota-
tions). At the end, after m iterations, we may have to divide the results by the square
root of the (K (m))2 value thus obtained. Given the additional variable to be updated and
the final adjustment steps involving square-rooting and division, these modifications are
usually not worthwhile and constant-factor CORDIC is almost always preferred to the
variable-factor version.

Several speedup methods have been suggested to reduce the number of iterations
in constant-factor CORDIC to less than k. One idea for circular CORDIC (in rotation
mode) is to do k/2 iterations as usual and then combine the remaining k/2 iterations into

An Algebraic Formulation 471

a single step, involving multiplication, by means of the following:

x(k/2+1) = x(k/2) − y(k/2)z(k/2)

y(k/2+1) = y(k/2) + x(k/2)z(k/2)

z(k/2+1) = z(k/2) − z(k/2) = 0

This is possible because for very small values of z, we have tan−1 z ≈ z ≈ tan z. The
expansion factor K presents no problem because for e(i) < 2−k/2, the contribution of the
ignored terms that would have been multiplied by K is provably less than ulp. In other
words, the same expansion factor K can be used with k/2 or more iterations.

Like high-radix multiplication and division algorithms, CORDIC can be extended
to higher radices. For example, in a radix-4 CORDIC algorithm, di assumes values in
{−2,−1, 1, 2} (perhaps with 0 also included in the set) rather than in {−1, 1}. The hard-
ware required for the radix-4 version of CORDIC is quite similar to Fig. 22.3, except
that 2-to-1 multiplexers are inserted after the shifters and the lookup table to allow
the operand or twice the operand to be supplied to the corresponding adder/subtractor.
The contents of the lookup table will of course be different for the radix-4 ver-
sion. The number of iterations in radix-4 CORDIC will be half that of the radix-2
algorithm.

Such high-radix algorithms are best understood in terms of additive and multiplica-
tive normalization methods discussed in Chapter 23.

22.6 AN ALGEBRAIC FORMULATION

Let us accept that the following iterations, with initial values u(0) = u and v(0) = v,
lead to the computation of the exponential function v(m) = veu when u(m) is made to
converge to 0 (we will prove this in Section 23.3).

u(i+1) = u(i) − ln c(i)

v(i+1) = v(i)c(i)

Since cos z + j sin z = ejz , where j = √−1, we can compute both cos z and sin z by
means of the iterations above if we start with v(0) = 1 and u(0) = jz and use complex
arithmetic. Consider now the identity

a + jb =
√

a2 + b2ejθ =
√

a2 + b2(cos θ + j sin θ)

where θ = tan−1(b/a), and suppose that we choose

c(i) = 1+ jdi2−i

√
1+ 2−2i

472 Chapter 22 The Cordic Algorithms

with di ∈ {−1, 1}. Defining g(i) = tan−1(di2−i), the complex number c(i) can be written
in the form:

c(i) =
√

1+ 2−2i(cos g(i) + j sin g(i))√
1+ 2−2i

= exp(jg(i))

This leads to

ln c(i) = jg(i) = j tan−1(di2
−i)

To make the multiplication needed for computing v(i+1) simpler, we can replace our
second recurrence by

v(i+1) = v(i)c(i)
√

1+ 2−2i = v(i)(1+ jdi2
−i)

Multiplying the right-hand side by
√

1+ 2−2i will change v(m) = v(0)ejz to

v(m) = v(0)ejz
m−1∏
i=1

√
1+ 2−2i

Thus, we can still get v(m) = ejz by setting v(0) = 1/(
∏m−1

i=1

√
1+ 2−2i) instead of

v(0) = 1. Note that in the terminology of circular CORDIC, the term
∏m−1

i=1

√
1+ 2−2i

is the expansion factor K and the complex multiplication

v(i+1) = v(i)(1+ j di2
−i) = (x(i) + jy(i))(1+ j di2

−i)

is performed by computing the real and imaginary parts separately:

x(i+1) = x(i) − diy
(i)2−i

y(i+1) = y(i) + dix
(i)2−i

Note also that since the variable u is initialized to the imaginary number jz and then only
imaginary values jg(i) are subtracted from it until it converges to 0, we can ignore the
factor j and use real computation on the real variable z(i) = −ju(i), which is initialized
to z(0) = z, instead. This completes our algebraic derivation of the circular CORDIC
method.

PROBLEMS 22.1 Circular CORDIC arithmetic example

a. Use the CORDIC method to compute sin 45◦ and cos 45◦. Perform all arith-
metic in decimal with at least six significant digits and show all intermediate
steps. Note the absolute and relative errors by comparing the results to exact
values.

b. Since sin 45◦ = cos 45◦, explain any difference in the accuracy of the two
results.

c. Repeat part a for tan−1 1.

Problems 473

22.2 Circular CORDIC arithmetic example

a. Use the CORDIC method to compute sin 30◦ and cos 30◦. Perform all arith-
metic in decimal with at least six significant digits and show all intermediate
steps. Note the absolute and relative errors by comparing the results to exact
values.

b. Calculate tan 30◦ from the results of part a and discuss its error.
c. Repeat part a for tan−1 0.41421.

22.3 Generalized CORDIC arithmetic example

Use (generalized) CORDIC iterations, along with appropriate pre- and postpro-
cessing steps, to compute the following. Use decimal arithmetic with at least six
digits.

a. sinh 1 and cosh 1
b. e0.5

c. tanh−1 0.9
d.

√
2

e. ln 2
f. 21/3

22.4 Generalized CORDIC arithmetic in binary

Use generalized CORDIC iterations, along with appropriate pre- and postpro-
cessing steps, to compute the following. Use binary arithmetic with 8 bits after
the radix point in all computations.

a. ln(1.1011 0001)
b. exp(.1011 0001)
c.
√

.1011 0001
d. 3

√
.1011 0001

22.5 Multiplication/Division via CORDIC

The generalized CORDIC iterations with µ = 0 leave x unchanged and modify
y and z as follows: y(i+1) = y(i) ± 2−ix(i), z(i+1) = z(i) − (±2−i).

a. Show how these iterations can be used to do multiplication and compare
the procedure to basic (1-bit-at-a-time) sequential multiplication in terms of
speed and implementation cost.

b. Repeat part a for division.

22.6 CORDIC preprocessing

Assume that angles are represented and manipulated in multiples of π radians,
as suggested near the end of Section 22.2.

a. Given an angle z′ in fixed-point format, with k whole and l fractional digits,
the computation of sin z′ can be converted to the computation of ± sin z or

474 Chapter 22 The Cordic Algorithms

± cos z, where z is in [−1/2, 1/2]. Show the details of the conversion process
leading from z′ to z.

b. Repeat part a for cos z.
c. Repeat part a when the input z is in 32-bit IEEE 754-2008 standard binary

floating-point format.

22.7 Composite CORDIC algorithms

Determine which of the functions listed in Section 22.5 requires the largest num-
ber of CORDIC iterations if it is to be evaluated solely by a CORDIC computation
unit and no other hardware element.

22.8 Truncated CORDIC iterations

Verify that the difference between the CORDIC scale factors for m and m/2
iterations [i.e., K = K (m) = ∏m

i=0(1+2−2i)1/2 and K (m/2) = ∏m/2
i=0 (1+2−2i)1/2]

is less than 2−m, thus justifying the truncated version of CORDIC discussed near
the end of Section 22.5.

22.9 Scaling in CORDIC

If in some step of the (generalized) CORDIC algorithm we multiply both x and y
by a common factor, the algorithm will still converge but the result(s) would be
larger than original values by the same factor. Such scaling steps can be inserted
at will, provided the product of all scaling factors is maintained and used at the
end to adjust the final results. In the special case that the product of all scaling
factors is a power of 2, the final adjustment consists of a shifting operation. How
can one use scaling steps to make (K (m))2, normally in [1, K2] for variable-factor
CORDIC, converge to 4?

22.10 Circular CORDIC constant

Show that the circular CORDIC constant K need not be recomputed for each
word width k and that it can be derived by simply truncating a highly precise
version to k bits. In other words, the first k bits of K (k) will not change if we
compute it by multiplying more than k “expansion” terms to obtain K (m) for
some m > k [Vach87].

22.11 Composite CORDIC algorithms

a. What would the final results be if the three output lines from the CORDIC
computation box at the top left corner of Fig. 22.5 were directly connected
to the three input lines of the box to its right?

b. Repeat part a for the two linear CORDIC boxes of Fig. 22.5.
c. Repeat part a for the two hyperbolic CORDIC boxes of Fig. 22.5.

22.12 Convergence of hyperbolic CORDIC

To ensure the convergence of the hyperbolic version of CORDIC, certain steps
must be performed twice. Consider the analogy of having to pay someone a

Problems 475

sum z of money using bills and coins in the following denominations: $50, $20,
$10, $5, $2, $1, $0.50, $0.25, $0.10, $0.05, and $0.01. The sum must be paid
to within $0.01 (i.e., an error of $0.01 in either direction is acceptable). Every
denomination must be used. For example, a $5 bill must be used, either in the
form of payment or by way of refund.

a. Prove or disprove that the goal can always be accomplished for z ≤ $100
by giving or receiving each denomination exactly once and a few of them
exactly twice.

b. Add a minimum number of new denominations to the given list so that
convergence is guaranteed with each denomination used exactly once.

22.13 Algebraic formulation of CORDIC

An algebraic formulation of circular CORDIC iterations was presented in
Section 22.6. Construct a similar formulation for the hyperbolic version of
CORDIC.

22.14 Computing tan and cot via CORDIC

The function tan z or cot z, for 0 ≤ z < π/4, can be computed by first using
circular CORDIC iterations to find sin z and cos z and then performing a division.
However, if we do not need sin z or cos z and are interested only in tan z or cot z,
we can use variable-factor CORDIC with no need to keep track of the expansion
factor [Omon94].

a. Use this method to compute tan 30◦.
b. Use this method to compute cot 15◦.
c. Estimate the worst-case absolute error in tan z if we stop after k iterations.
d. Estimate the worst-case error in cot z if we stop after k iterations, and show

that it can be quite large for z ≈ 0.

22.15 Redundant CORDIC algorithms

The values of x, y, and z in CORDIC computations can be represented in redun-
dant form to speed up each iteration through carry-free addition. A problem that
must be overcome is that the sign of a redundant value cannot be determined with-
out full carry-propagation in the worst case. It has been suggested [Taka91] that
an estimate of the sign be obtained by looking at a few bits of the redundant form,
with the scale factor kept constant by (1) performing two rotations for every angle
(possibly in opposite directions) and (2) inserting corrective iterations in some
steps, the frequency of which is dependent on the accuracy of the sign estimation.

a. Study the two methods and describe their implementation requirements.
b. Compare the two methods with respect to speed and implementation cost.

22.16 High-radix CORDIC algorithms

Study the issues involved in high-radix CORDIC algorithms and the differences
between such algorithms with variable scale factor, constant scale factor, and
constant scale factor that is forced to be a power of 2 [Lee92].

476 Chapter 22 The Cordic Algorithms

22.17 Direct CORDIC method for inverse sine and cosine

The CORDIC equations [*] become x(m) = K cos θ , y(m) = K sin θ , and
z(m) = −θ , where θ = −∑

α(i), if we start with x = 1, y = 0, and z = 0. To
compute cos−1 u, we pick the rotation directions (the digits di in {−1, 1}) such
that x converges to Ku. Then, z will converge to − cos−1 u. One way to make
x converge to Ku is to compare x(i) with K (i)u at each step. If x(i) ≥ K (i)u, we
subtract from it; otherwise we add to it. The problem with this approach is that
K (i) cannot be easily computed. However, if we perform each CORDIC pseu-
dorotation exactly twice, the factor K will be replaced by K2. Now, x must be
compared with (K (i))2u, a value that can be easily calculated in each step by
using the recurrence t(i+1) = t(i) + 2−2it(i), with t(0) = u [Maze93].

a. Supply the details of the algorithm for computing cos−1 u, including the
selection rule for di.

b. Repeat part a for sin−1 u.
c. How do the methods of parts a and b compare to the methods shown in Fig.

22.5 for computing the sin−1 and cos−1 functions?
d. Show that the iterations above can also lead to the computation of

√
1− u2.

e. Show how a similar modification to generalized CORDIC iterations can be
used for computing the sinh−1, cosh−1, and

√
1+ u2 functions.

f. Show that the use of double iterations extends the domain of convergence
and that it leads to the need for extra iterations (how many?).

22.18 CORDIC with constant rotations

In Sections 9.5 and 13.5, we discussed the motivations and techniques for multi-
plication and division by constants. Study, in terms of possible applications and
computation speedup, the implications of the rotation angle in CORDIC being a
known constant. Reference [Ante97] provides a good starting point.

22.19 CORDIC with scaling

Show that the hardware complexity of CORDIC can be reduced by using a scaled
version of y(i), namely, w(i) = 2iy(i). Discuss the changes in hardware and how
the computation is affected for both the rotation and vectoring modes [Vill98].

22.20 Latency of CORDIC algorithms

Assuming that each iteration of CORDIC (in any of its forms) takes 1 time unit,
as does one addition or subtraction operation, estimate the latency of each of
the following computations for k bits of precision. No other hardware (such as
a multiplier or divider) is available. Assume that shifting, register initialization,
inter-register transfer, and all control operations take negligible time.

a. tan z
b. cos−1w
c. ez

d. log10 w

References and Further Readings 477

22.21 The general exponential function xy

Consider the computation of xy by means of ey ln x, as suggested in Section 22.5.
Prove that a small relative error ε in the value of y ln x can lead to a fairly large
relative error in the final result, even if raising e to the power y ln x introduces
no additional error.

REFERENCES AND FURTHER READINGS

[Andr98] Andraka, R., “A Survey of CORDIC Algorithms for FPGA Based Computers,” Proc.
6th Int’l Symp. Field Programmable Gate Arrays, pp. 191–200, 1998.

[Ante97] Antelo, E., L. Villalba, J. D. Bruguera, and E. L. Zapata, “High Performance Rotation
Architectures Based on the Radix-4 CORDIC Algorithm,” IEEE Trans. Computers,
Vol. 46, No. 8, pp. 855–870, 1997.

[Ante00] Antelo, E., T. Lang, and J. D. Bruguera, “Very-High Radix Circular CORDIC:
Vectoring and Unified Rotation/Vectoring,” IEEE Trans. Computers, Vol. 49, No. 7,
pp. 727–739, 2000.

[Dawi99] Dawid, H., and H. Meyr, “CORDIC Algorithms and Architectures,” in Digital Signal
Processing for Multimedia Systems, ed. by K. K. Parhi and T. Nishitani, pp. 623–655,
Marcel Dekker, 1999.

[Dupr93] Duprat, J., and J.-M. Muller, “The CORDIC Algorithm: New Results for Fast VLSI
Implementation,” IEEE Trans. Computers, Vol. 42, No. 2, pp. 168–178, 1993.

[Lang05] Lang, T., and E. Antelo, “High-Throughput CORDIC-Based Geometry Operations for
3D Computer Graphics,” IEEE Trans. Computers, Vol. 54, No. 3, pp. 347–361, 2005.

[Lee92] Lee, J.-A., and T. Lang, “Constant-Factor Redundant CORDIC for Angle Calculation
and Rotation,” IEEE Trans. Computers, Vol. 41, No. 8, pp. 1016–1025, 1992.

[Maze93] Mazenc, C., X. Merrheim, and J.-M. Muller, “Computing Functions cos−1 and sin−1

Using CORDIC,” IEEE Trans. Computers, Vol. 42, No. 1, pp. 118–122, 1993.

[Mull06] Muller, J.-M., Elementary Functions: Algorithms and Implementation, 2nd ed.,
Chapter 7, Birkhauser, 2006.

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture and
Implementations, Prentice Hall, 1994.

[Phat98] Phatak, D. S., “Double Step Branching CORDIC: A New Algorithm for Fast Sine and
Cosine Generation,” IEEE Trans. Computers, Vol. 47, pp. 587–603, 1998.

[Taka91] Takagi, N., T. Asada, and S. Yajima, “Redundant CORDIC Methods with a Constant
Scale Factor for Sine and Cosine Computations,” IEEE Trans. Computers, Vol. 40,
No. 9, pp. 989–995, 1991.

[Vach87] Vachss, R., “The CORDIC Magnification Function,” IEEE Micro, Vol. 7, No. 5,
pp. 83–84, 1987.

[Vill98] Villalba, J., E. L. Zapata, E. Antelo, and J. D. Bruguera, “Radix-4 Vectoring CORDIC
Algorithm and Architectures,” J. VLSI Signal Processing, Vol. 19, No. 2,
pp. 127–147, 1998.

[Vold59] Volder, J. E., “The CORDIC Trigonometric Computing Technique,” IRE Trans.
Electronic Computers, Vol. 8, No. 3, pp. 330–334, 1959.

478 Chapter 22 The Cordic Algorithms

[Vold00] Volder, J. E., “The Birth of Cordic,” J. VLSI Signal Processing, Vol. 25, No. 2,
pp. 101–105, 2000.

[Walt71] Walther, J. S., “A Unified Algorithm for Elementary Functions,” Proc. AFIPS Spring
Joint Computer Conf., pp. 379–385, 1971.

[Walt00] Walther, J. S., “The Story of Unified Cordic,” J. VLSI Signal Processing, Vol. 25,
No. 2, pp. 107–112, 2000.

23 Variations in Function
Evaluation

■ ■ ■

“Mathematics was orderly and it made sense.The answers were always there
if you worked carefully enough, or that’s what she said.”

S U E G R A F T O N , ’ A’ I S F O R A L I B I , 1 9 8 2

■ ■ ■

T he coordinate rotation digital computer (CORDIC) method of Chapter 22 can be

used to compute virtually all elementary functions of common interest. Now we

turn to other schemes for evaluating some of the same functions. These alternate

schemes may have advantages with certain implementation methods or technolo-

gies or may provide higher performance,given the availability of particular arithmetic

operations as building blocks. In addition, we introduce the notion of merged arith-

metic, a technique that allows us to optimize arithmetic computations at the level

of bit manipulations as opposed to the word-level arithmetic found in CORDIC and

other iterative methods. Chapter topics include:

23.1 Normalization and Range Reduction

23.2 Computing Logarithms

23.3 Exponentiation

23.4 Division and Square-Rooting, Again

23.5 Use of Approximating Functions

23.6 Merged Arithmetic

23.1 NORMALIZATION AND RANGE REDUCTION

We begin by introducing some terminology that is commonly used for characterizing iter-
ative function evaluation methods. Recall from Section 16.1 that a general convergence

479

480 Chapter 23 Variations in Function Evaluation

method is characterized by two or three recurrences of the form

u(i+1) = f (u(i), v(i)) u(i+1) = f (u(i), v(i), w(i))

v(i+1) = g(u(i), v(i)) v(i+1) = g(u(i), v(i), w(i))

w(i+1) = h(u(i), v(i), w(i))

Beginning with the initial values u(0), v(0), and perhaps w(0), we iterate such that one
value, say u, converges to a constant; v and/or w then converge to the desired function(s).
The iterations are performed a preset number of times based on the required precision, or
a stopping rule may be applied to determine when the precision of the result is adequate.

Making u converge to a constant is sometimes referred to as normalization. If u is
normalized by adding a term to it in each iteration, the convergence method is said to
be based on additive normalization. If a single multiplication is needed per iteration
to normalize u, then we have a multiplicative normalization method. These two special
classes of convergence methods are important in view of the availability of cost-effective
fast adders and multipliers.

Since multipliers are slower and more costly than adders, we try to avoid multi-
plicative normalization when additive normalization will do. However, multiplicative
methods often offer faster convergence, thus making up for the slower steps by requir-
ing fewer of them. Furthermore, when the multiplicative terms are of the form 1 ± 2a,
multiplication reduces to shift and add/subtract

u(1± 2a) = u ± 2au

thus making multiplicative convergence methods just as fast as the additive schemes.
Hence, both additive and multiplicative normalization are useful in practice.

The coordinate rotation digital computer (CORDIC) computation algorithms of
Chapter 22 use additive normalization. The rate of convergence for CORDIC is roughly
1 bit or digit per iteration. Thus, CORDIC is quite similar to digit-recurrence algorithms
for division and square-rooting in terms of computation speed. Convergence division
and reciprocation, discussed in Chapter 16, offer examples of multiplicative normaliza-
tion. The rate of convergence is much higher for this class (e.g., quadratic). Trade-offs
are often possible between the complexity of each iteration and the number of iterations.
Redundant and high-radix CORDIC algorithms, mentioned in Section 22.5, provide
good examples of such trade-offs.

In Sections 23.2 and 23.3, we examine convergence methods based on additive
or multiplicative normalization for logarithm evaluation and exponentiation. Then, in
Section 23.4, we revisit division and square-rooting to illustrate that the digit-recurrence
algorithms introduced in Part IV are simply instances of additive normalization methods
and that the more general formulation allows us to derive other types of algorithms for
these two important arithmetic operations. Similar convergence methods exist for eval-
uating many other functions of interest (e.g., reciprocals, cube roots, and trigonometric
functions, both circular and hyperbolic). We conclude this chapter with discussions of
approximating functions and merged arithmetic in Sections 23.5 and 23.6, respectively.

An important aspect of function evaluation is range reduction for the input argu-
ments [Bris05] [Li03]. Range reduction is needed when a function evaluation method

Computing Logarithms 481

has a limited domain of convergence and thus is not directly applicable to many input
values. Like convergence methods, range reduction algorithms come in additive and
multiplicative varieties. As an example of additive range reduction, consider the com-
putation of cos(1.125 × 247). We can subtract an appropriate multiple of 2π from the
argument so that the difference falls in the range [−π , π]. This transformation does not
affect the final result. Then, if the domain of convergence for our cosine function eval-
uation method is [−π/2, π/2], say, we need to make adjustments to our computation,
using trigonometric identities such as cos x = − cos(x − π). The logarithm function
is an example where multiplicative range reduction is applicable. Multiplicative range
reduction in this latter case becomes trivial when the scaling constant is a power of the
logarithm base.

Although range reduction methods are conceptually simple, their application may
lead to accuracy problems in some cases. For example, if proper care is not taken in the
cosine example of the preceding paragraph, the large multiple of 2π subtracted from the
argument may lead to a substantial error, even if our value for π is highly accurate. For a
thorough treatment of range reduction and extreme examples of inaccuracies that might
arise, see [Mull06, pp. 173–191].

23.2 COMPUTING LOGARITHMS

The logarithm function and its inverse (exponentiation) are important for many applica-
tions and, thus, various methods have been suggested for their evaluation. For example,
these functions are needed for converting numbers to and from logarithmic number sys-
tems (Section 17.6). We begin by discussing a method for computing ln x. The following
equations define a convergence method based on multiplicative normalization in which
multiplications are done by shift/add

x(i+1) = x(i)c(i) = x(i)(1+ di2
−i) di ∈ {−1, 0, 1}

y(i+1) = y(i) − ln c(i) = y(i) − ln(1+ di2
−i)

where ln(1+ di2−i) is read out from a table. Beginning with x(0) = x and y(0) = y and
choosing the di digits such that x(m) converges to 1, we have, after m steps:

x(m) = x
∏

c(i) ≈ 1 ⇒
∏

c(i) ≈ 1/x

y(m) = y −
∑

ln c(i) = y − ln
∏

c(i) ≈ y + ln x

So starting with y = 0 leads to the computation of ln x. The domain of convergence for
this algorithm is easily obtained:

1∏
(1+ 2−i)

≤ x ≤ 1∏
(1− 2−i)

or 0.21 ≤ x ≤ 3.45

482 Chapter 23 Variations in Function Evaluation

We need k iterations to obtain ln x with k bits of precision. The reason is that for large i,
we have ln(1± 2−i) ≈ ±2−i. Thus, the kth iteration changes the value of y by at most
ulp and subsequent iterations have even smaller effects.

The preceding method can be used directly for x in [1, 2). Any unsigned value x
outside [1, 2) can be written as x = 2qs, with 1 ≤ s < 2. Then

ln x = ln(2qs) = q ln 2+ ln s

= 0.693 147 180 q+ ln s

The logarithm function in other bases can be computed just as easily. For example,
base-2 logarithms are computed as follows:

log2 x = log2(2
qs) = q+ log2 s

= q+ log2 e × ln s = q+ 1.442 695 041 ln s

A radix-4 version of this algorithm can be easily developed. For this purpose, we begin
with general, radix-r version of the preceding recurrences for x and y

x(i+1) = x(i)b(i) = x(i)(1+ dir
−i) di ∈ [−a, a]

y(i+1) = y(i) − ln b(i) = y(i) − ln(1+ dir
−i)

where ln(1+ dir−i) is read out from a table.
In practice, it is easier to deal with scaled values u(i) = ri(x(i)−1). This scaled value

must then be maintained within a bounded range, using comparisons of the magnitude
of u(i) with a few constants to determine the next choice for di. The scaled versions of
the radix-r recurrences are

u(i+1) = r(u(i) + di + diu
(i)r−i) di ∈ [−a, a]

y(i+1) = y(i) − ln(1+ dir
−i)

The following selection rules apply to di ∈ [−2, 2] for the radix-4 version of this
algorithm

di =

2 if u ≤ −13/8
1 if −13/8 < u ≤ −5/8
0 if −5/8 < u < 5/8

−1 if 5/8 ≤ u < 13/8
−2 if u ≥ 13/8

provided u and y are initialized to 4(δx − 1) and − ln δ, respectively, with δ = 2 if
1/2 ≤ x < 5/8 and δ = 1 if 5/8 ≤ x < 1. For justification of the preceding rules, see
[Omon94 pp. 410–412].

We next describe a clever method [Lo87] that requires the availability of a fast
multiplier (actually a fast squarer would do). To compute base-2 logarithms, let

Computing Logarithms 483

y = log2 x be a fractional number represented in binary as (.y−1y−2 · · · y−l)two. Hence

x = 2y = 2(.y−1y−2y−3···y−l)two

x2 = 22y = 2(y−1.y−2y−3···y−l)two ⇒ y−1 = 1 iff x2 ≥ 2

Thus, computing x2 and comparing the result with 2 allows us to determine the most-
significant bit y−1 of y. If y−1 = 1, then dividing both sides of the preceding equation
by 2 yields

x2

2
= 2(1.y−2y−3···y−l)two

2
= 2(.y−2y−3···y−l)two

Subsequent bits of y can be determined in a similar way. The complete procedure for
computing log2 x for 1 ≤ x < 2 is thus:

for i = 1 to l do

x := x2

if x ≥ 2

then y−i = 1; x := x/2

else y−i = 0

endif

endfor

A hardware realization for the preceding algorithm is shown in Fig. 23.1.
Generalization to base-b logarithms is straightforward if we note that y =

logb x implies

x = by = b(.y−1y−2y−3···y−l)two

x2 = b2y = b(y−1.y−2y−3···y−l)two ⇒ y−1 = 1 iff x2 ≥ b

Hence, the comparison with 2 in the base-2 version is replaced by a comparison with b
for computing base-b logarithms. If y−1 = 1, then dividing both sides of the preceding
equation by b allows us to iterate as before. However, since both comparison with b and

Figure 23.1
Hardware elements
needed for
computing log2 x .

log x

Squarer

Initialized to x

Value >– 2 iff
this bit is 1

2

Radix Shift
0 1point

484 Chapter 23 Variations in Function Evaluation

division by b are in general more complicated, the method is of direct interest only for
bases that are powers of 2. Note that logarithms in other bases are easily computed by
scaling base-2 logarithms.

23.3 EXPONENTIATION

We begin by presenting a convergence method based on additive normalization for
computing the exponential function ex:

x(i+1) = x(i) − ln c(i) = x(i) − ln(1+ di2
−i)

y(i+1) = y(i)c(i) = y(i)(1+ di2
−i) di ∈ {−1, 0, 1}

As before, ln(1 + di2−i) is read out from a table. If we choose the di digits such that x
converges to 0, we have after m steps:

x(m) = x −
∑

ln c(i) ≈ 0 ⇒
∑

ln c(i) ≈ x

y(m) = y
∏

c(i) = y eln �c(i) = y e� ln c(i) ≈ y ex

The domain of convergence for this algorithm is easily obtained:
∑

ln(1− 2−i) ≤ x ≤
∑

ln(1+ 2−i) or − 1.24 ≤ x ≤ 1.56

The algorithm requires k iterations to provide the result with k bits of precision. This is
true because in the kth iteration, ln(1 ± 2−k) ≈ ±2−k is subtracted from x. The effect
of all subsequent changes would be less than ulp. Half the k iterations can be eliminated
by noting that for ε2 < ulp, we have

ln(1+ ε) = ε − ε2/2+ ε3/3− · · · ≈ ε

So when x(j) = 0.00 · · · 00xx · · · xx, with k/2 leading zeros, we have ln(1+ x(j)) ≈ x(j),
allowing us to perform the computation step

x(j+1) = x(j) − x(j) = 0

y(j+1) = y(j)(1+ x(j))

to terminate the algorithm. This termination process replaces the remaining iterations
with a single (true) multiplication.

The preceding method can be used directly for x in (−1, 1). Any value x outside
(−1, 1) can be written as 2qs, for −1 < s < 1 and some integer q. Then, the following
equality, where squaring or square-rooting is done |q| times, will hold:

ex = (es)2q = ((· · · (es)2 · · ·)2)2 if q ≥ 0

=
√√

· · ·√es if q < 0

Exponentiation 485

A more efficient method is as follows. Rewrite x as x(log2 e)(ln 2) and let x(log2 e) =
h+ f , with h an integer and f a fraction. Then

ex = e(x log2 e) ln 2 = e(h+f) ln 2 = eh ln 2ef ln 2 = 2h ef ln 2

Hence, one can premultiply x by log2 e = 1.442 695 041 · · · to obtain h and f , multiply
f by ln 2 = 0.693 147 180 · · · to get u = f ln 2, and then compute 2heu by using the
exponential algorithm followed by shifts (or exponent adjustment).

A radix-4 version of the algorithm for computing ex can be easily developed. Again,
begin with the general radix-r version of the recurrences for x and y:

x(i+1) = x(i) − ln c(i) = x(i) − ln(1+ dir
−i)

y(i+1) = y(i)c(i) = y(i)(1+ dir
−i) di ∈ [−a, a]

where ln(1+dir−i) is read out from a table. As in the case of the radix-4 natural logarithm
function, we convert the two recurrences to include scaled values u(i) = rix(i), comparing
the magnitude of u(i) with a few constants to determine the next choice for di. Scaled
versions of the radix-r recurrences for the exponential function are

u(i+1) = r(u(i) − ri ln(1+ dir
−i))

y(i+1) = y(i) + dir
−iy(i) di ∈ [−a, a]

Assuming di ∈ [−2, 2], selection rules for the radix-4 version of this algorithm are

di =

2 if u ≤ −11/8
1 if − 11/8 < u ≤ −3/8
0 if − 3/8 < u < 3/8

−1 if 3/8 ≤ u < 11/8
−2 if u ≥ 11/8

provided u and y are initialized to 4(x − δ) and eδ , respectively, with δ = −1/2 if
x < −1/4, δ = 0 if −1/4 ≤ x < 1/4, and δ = 1/2 if x ≥ 1/4. For justification of the
preceding rules, see [Omon94, pp. 413–415].

The general exponentiation function xy can be computed by noting that

xy = (eln x)y = ey ln x

Thus, general exponentiation can be performed by combining the logarithm and expo-
nential functions, separated by a single multiplication. Note however that, as mentioned
in Section 22.5 in connection with CORDIC, this method is known to be prone to
inaccuracies (see Problem 22.21).

When y is a positive integer, exponentiation can be done by repeated multiplication.
In particular, when y is a constant, the methods used are reminiscent of multiplication by

486 Chapter 23 Variations in Function Evaluation

constants as discussed in Section 9.5. This method will lead to better accuracy, since in
the preceding approach, the errors in evaluating the logarithm and exponential functions
add up.

As an example, we can compute x25 using the identity

x25 = ((((x)2x)2)2)2x

which implies four squarings and two multiplications. Noting that

25 = (1 1 0 0 1)two

leads us to a general procedure. To raise x to the power y, where y is a positive integer,
initialize the partial result to 1. Scan the binary representation of y starting with its most-
significant bit. If the current bit is 1, multiply the partial result by x; if the current bit is
0, do not change the partial result. In either case, square the partial result before the next
step (if any).

Methods similar to those used to obtain more efficient routines for multiplication by
certain constants are applicable here. For example, to compute x15, the preceding method
involves three squarings and three multiplications (four if the redundant multiplication
by 1 is not avoided):

x15 = ((((x)2)x)2x)2x

Applying Booth’s recoding 15 = (1 1 1 1)two = (1 0 0 0 -1)two leads to the computation
of x15 using three squarings and one division. Taking advantage of the factorization
15 = 3 × 5 leads to three squarings and two multiplications, provided the value of x3

can be stored in a temporary register:

w = x3 = (x)2x and x15 = (
((w)2)2)w

For y = dq+ s, we can write

w = xy = xs(xd)q

Thus, if we compute xd in an extra register z and initialize w to xs, the problem is con-
verted to computing zq. Details of this divide-and-conquer scheme are given elsewhere
[Walt98].

In a number of applications, there is a need for modular exponentiation. In such
cases, the modular reduction methods discussed in Section 15.4 are directly applicable.
In particular, Montgomery multiplication can be used in the special case of squaring
operations performed for computing powers.

23.4 DIVISION AND SQUARE-ROOTING, AGAIN

In Chapter 16, we examined a convergence method based on multiplicative normalization
for computing the quotient q = z/d . The digit-recurrence division schemes of Chapters

Division and Square-Rooting, Again 487

13–15, are essentially additive normalization methods, where the partial remainder s is
made to converge to 0 as q converges z/d . CORDIC division also falls in the additive
normalization category. At this point, it is instructive to examine a broader formulation
of division via additive normalization.

Let z and d be the dividend and divisor, respectively. Then, the following recurrences
compute the quotient q = z/d and the remainder s:

s(i+1) = s(i) − γ (i) × d Set s(0) = z and make s(m) converge to 0
q(i+1) = q(i) + γ (i) Set q(0) = 0 and find q = q(m)

The preceding formulation is quite general and can be tailored to form a wide array of
useful, and not so useful, division schemes. For example, given integer operands z and
d , we can choose γ (i) to be +1 or −1, depending on whether z and d have identical or
opposing signs. The resulting algorithm, which is often assigned as an exercise to help
novice programmers master the notion of loop, is too slow for general use. However, if z
is in a very limited range, say 0 ≤ z < 2d as in addition modulo d , this is the algorithm
of choice.

Since s(i) becomes successively smaller as it converges to 0, scaled versions of the
recurrences, where s(i) now stands for s(i)ri and q(i) for q(i)ri, are often used. Assuming
fractional dividend z and divisor d(0 ≤ z, d < 1) we have:

s(i+1) = rs(i) − γ (i) × d Set s(0) = z and keep s(i) bounded
q(i+1) = rq(i) + γ (i) Set q(0) = 0 and find q∗ = q(m)r−m

Note, in particular, that in this general version of the division recurrence based on
additive normalization, the term γ (i) does not have to be a quotient “digit”; rather, it can
be any estimate for

r(ri−mq− q(i)) = r(riq∗ − q(i))

where r−mq is the true quotient q∗. If γ (i) is indeed the quotient digit q−i−1, then
the addition required to compute rq(i) + γ (i) is simplified (it turns into concatenation).
See [Erce94] for a thorough treatment of digit-recurrence algorithms for division and
square-rooting.

As in the case of division, we have already seen three approaches to square-rooting.
One approach, based on digit-recurrence (divisionlike) algorithms, was discussed in
Section 21.2 (radix 2, restoring), Section 21.3 (radix 2, nonrestoring), and Section 21.4
(high radix). The second approach using convergence methods, including those based
on Newton–Raphson iterations, was covered in Section 21.5. The third approach, based
on CORDIC, was introduced in Section 22.5. Here, we will see still other convergence
algorithms for square-rooting based on additive and multiplicative normalization.

An algorithm based on multiplicative normalization can be developed by noting that
if z is multiplied by a sequence of values (c(i))2, chosen such that the product converges

488 Chapter 23 Variations in Function Evaluation

to 1, then z multiplied by the c(i) values converges to
√

z, since

z
∏

(c(i))2 ≈ 1 ⇒
∏

c(i) ≈ 1/
√

z ⇒ z
∏

c(i) ≈ √
z

So, one can initialize x(0) and y(0) to z and use the following iterations:

x(i+1) = x(i)(1+ di2
−i)2 = x(i)(1+ 2di2

−i + d2
i 2−2i)

y(i+1) = y(i)(1+ di2
−i)

Devising rules for selecting di from the set {−1, 0, 1} completes the algorithm. Basically,
di = 1 is selected for x(i) < 1 − ε and di = −1 is selected for x(i) > 1 + ε, where
ε = α2−i is suitably picked to guarantee convergence. To avoid different comparison
constants in different steps, x(i) is replaced by its scaled form u(i) = 2i(x(i)−1), leading
to the iterations

u(i+1) = 2(u(i) + 2di)+ 2−i+1(2diu
(i) + d2

i)+ 2−2i+1d2
i u(i)

y(i+1) = y(i)(1+ di2
−i)

Then, selection of di in each step will be based on uniform comparisons with ±α. The
radix-4 version of this square-rooting algorithm, with di in [−2, 2], or equivalently
in {−1,−1/2, 0, 1/2, 1}, has also been proposed and analyzed. The radix-4 algorithm
requires comparison constants ±α and ±β. For details of the radix-2 and radix-4 algo-
rithms, including the choice of the comparison constants, the reader is referred to
[Omon94, pp. 380–385].

Similarly, an algorithm based on additive normalization uses the property that if a
sequence of values c(i) can be obtained with z − (

∑
c(i))2 converging to 0, then

√
z is

approximated by
∑

c(i). Letting c(i) = −di2−i with di in {−1, 0, 1}, we derive

x(i+1) = z − (y(i+1))2 = z − (y(i) + c(i))2

= x(i) + 2diy
(i)2−i − d2

i 2−2i

y(i+1) = y(i) + c(i) = y(i) − di2
−i

Initial values for this algorithm are x(0) = z and y(0) = 0. The choice of the di digit in
{−1, 0, 1} must ensure that |x| is reduced in every step. Comparison with the constants
±α2−i is one way to ensure convergence. As usual, to make the comparison constants
the same for all steps, we rewrite x(i) as 2−iu(i), leading to

u(i+1) = 2(u(i) + 2diy
(i) − d2

i 2−i)

y(i+1) = y(i) − di2
−i

Selection of the digit di in each step is then based on uniform comparison with ±α.
Again, speed can be gained by using the radix-4 version of this algorithm, with di in

Use of Approximating Functions 489

[−2, 2], or equivalently in {−1,−1/2, 0, 1/2, 1}. For details of both the radix-2 and
the radix-4 algorithms, including a discussion of their convergence and choice of the
required comparison constants, see [Omon94, pp. 385–389].

23.5 USE OF APPROXIMATING FUNCTIONS

The problem of evaluating a given function f can be converted to that of evaluating
a different function g that approximates f , perhaps with a small number of pre- and
postprocessing operations to bring the operands within appropriate ranges for g, to scale
the results, or to minimize the effects of computational errors.

Since polynomial evaluation involves only additions and multiplications, the use of
approximating polynomials can lead to efficient computations when a fast multiplier is
available. Polynomial approximations can be obtained based on various schemes (e.g.,
Taylor–Maclaurin series expansion).

The Taylor series expansion of f (x) about x = a is

f (x) =
∞∑

j=0

f (j)(a)
(x − a)j

j!

The error that results from omitting all terms of degree greater than m is

f (m+1)(a + µ(x − a))
(x − a)m+1

(m+ 1)! 0 < µ < 1

Setting a = 0 yields the Maclaurin series expansion

f (x) =
∞∑

j=0

f (j)(0)
xj

j!

and its corresponding error bound

f (m+1)(µx)
xm+1

(m+ 1)! 0 < µ < 1

Table 23.1 shows approximating polynomials, obtained from Taylor–Maclaurin series
expansions, for some functions of interest. Others can be easily derived or looked up in
standard mathematical handbooks.

The particular polynomial chosen affects the number of terms to be included for a
given precision and thus the computational complexity. For example, if ln x is to be
computed where x is fairly close to 1, the polynomial given in Table 23.1 in terms of
y = 1− x, which is the Maclaurin series expansion of ln(1− y), converges rapidly and
constitutes a good approximating function for ln x. However, if x ≈ 2, say, we have
y ≈ −1. A very large number of terms must be included to get ln x with about 32 bits
of precision. In this latter case, the expansion in terms of z = (x − 1)/(x + 1), which is

490 Chapter 23 Variations in Function Evaluation

Table 23.1 Polynomial approximations for some useful functions

Function Polynomial approximation Conditions

1/x 1+ y + y2 + y3 + · · · + yi + · · · 0 < x < 2 and y = 1− x√
x 1− 1

2 y − 1
2×4 y2 − 1×3

2×4×6 y3 − · · · − 1×3×5×···×(2i−3)
2×4×6×···×2i yi − · · · y = 1− x

ex 1+ 1
1! x + 1

2! x
2 + 1

3! x
3 + · · · + 1

i! x
i + · · ·

ln x −y − 1
2 y2 − 1

3 y3 − 1
4 y4 − · · · − 1

i yi − · · · 0 < x ≤ 2 and y = 1− x

ln x 2
(

z + 1
3 z3 + 1

5 z5 + · · · + 1
2i+1 z2i+1 + · · ·

)
x > 0 and z = (x − 1)/(x + 1)

sin x x − 1
3! x

3 + 1
5! x

5 − 1
7! x

7 + · · · + (−1)i 1
(2i+1)! x

2i+1 + · · ·
cos x 1− 1

2! x
2 + 1

4! x
4 − 1

6! x
6 + · · · + (−1)i 1

(2i)! x
2i + · · ·

tan−1 x x − 1
3 x3 + 1

5 x5 − 1
7 x7 + · · · + (−1)i 1

2i+1 x2i+1 + · · · −1 < x < 1

sinh x x + 1
3! x

3 + 1
5! x

5 + 1
7! x

7 + · · · + 1
(2i+1)! x

2i+1 + · · ·
cosh x 1+ 1

2! x
2 + 1

4! x
4 + 1

6! x
6 + · · · + 1

(2i)! x
2i + · · ·

tanh−1 x x + 1
3 x3 + 1

5 x5 + 1
7 x7 + · · · + 1

2i+1 x2i+1 + · · · −1 < x < 1

derived from the Maclaurin series for ln[(1+ z)/(1− z)], is much more efficient, since
z = (x − 1)/(x + 1) ≈ 1/3.

Evaluating an mth-degree polynomial may appear to be quite difficult. However, we
can use Horner’s method

f (y) = c(m)ym + c(m−1)ym−1 + · · · + c(1)y + c(0)

= ((c(m)y + c(m−1))y + · · · + c(1))y + c(0)

to efficiently evaluate an mth-degree polynomial by means of m multiply-add steps. The
coefficients c(i) for some of the approximating polynomials in Table 23.1 are relatively
simple functions of i that can be stored in tables or computed on the fly [e.g., 1/(2i+ 1)

for ln x or tanh−1 x]. For other polynomials, the coefficients are more complicated
but can be incrementally evaluated based on previously computed values: for example,
c(i) = c(i−1)/[2i(2i + 1)] for sin x or sinh x.

Adivide-and-conquer strategy, similar to that used for synthesizing larger multipliers
from smaller ones (see Section 12.1), can be used for general function evaluation. Let x
in [0, 4) be the (l + 2)-bit significand of a floating-point number or its shifted version.
Divide x into two chunks xH and xL (the high and low parts):

x = xH + 2−txL 0 ≤ xH < 4 0 ≤ xL < 1
t + 2 bits l − t bits

The Taylor series expansion of f (x) about x = xH is

f (x) =
∞∑

j=0

f (j)(xH)
(2−txL)j

j!

Merged Arithmetic 491

where f (j)(x) is the jth derivative of f (x), with the zeroth derivative being f (x) itself. If
one takes just the first two terms, a linear approximation is obtained

f (x) ≈ f (xH)+ 2−txLf ′(xH)

In practice, only a few terms are needed, since as j becomes large, 2−jt/j! rapidly
diminishes in magnitude. If t is not too large, the evaluation of f and/or f ′ (as well as
subsequent derivatives of f , if needed) can be done by table lookup. Examples of such
table-based methods are presented in Chapter 24.

Functions can be approximated in many other ways (e.g., by the ratio of two poly-
nomials with suitably chosen coefficients). For example, it has been suggested that good
results can be obtained for many elementary functions if we approximate them using the
ratio of two fifth-degree polynomials [Kore90]:

f (x) ≈ a(5)x5 + a(4)x4 + a(3)x3 + a(2)x2 + a(1)x + a(0)

b(5)x5 + b(4)x4 + b(3)x3 + b(2)x2 + b(1)x + b(0)

When Horner’s method for evaluating the numerator and the denominator is used, such
a “rational approximation” needs 10 multiplications, 10 additions, and 1 division.

23.6 MERGED ARITHMETIC

The methods we have discussed thus far are based on building-block operations such
as addition, multiplication, and shifting. When very high performance is needed, it is
sometimes desirable, or even necessary, to build hardware structures to compute the
function of interest directly without breaking it down into conventional operations. This
“merged arithmetic” approach [Swar80] always leads to higher speed and often implies
lower component count and power consumption as well. The drawback of starting from
scratch is that designing, implementing, and testing of the corresponding algorithms and
hardware structures may become difficult and thus more costly.

We have already seen several examples of merged arithmetic in the synthesis of
multiply-add operations of Sections 12.2 and 12.6, as well as the fused multiply-add units
of Section 18.5. In particular, Figs. 12.4 and 12.19 show how the required composite
operations are synthesized at the bit level rather than through the use of standard word-
level arithmetic building blocks.

Here, we illustrate the power of merged arithmetic through an additional example.
Suppose that the inner product of two three-element vectors must be computed and the
result added to an initial value. The computation, written as

z = z(0) + x(1)y(1) + x(2)y(2) + x(3)y(3)

involves three multiplications and three additions if broken down into conventional
word-level operations. However, one can also compute the result directly as a function
of the seven operands (8k Boolean variables for k-bit vector elements and a 2k-bit
z(0)), provided the partial results x(1)y(1), x(2)y(2), and x(3)y(3) are not needed for other
purposes.

492 Chapter 23 Variations in Function Evaluation

Figure 23.2 Merged
arithmetic
computation of an
inner product
followed by
accumulation.

z (0)

x (1) y (1)

x (2) y (2)

x (3) y (3)

• • • • • • • •
• • • •

• • • •
• • • •

• • • •
• • • •

• • • •
• • • •

• • • •
• • • •

• • • •
• • • •

• • • •

 1 4 7 10 13 10 7 4

 2 4 6 8 8 6 4 2

 3 4 4 6 6 3 3 1

 1 2 3 4 4 3 2 1 1

 1 3 2 3 3 2 1 1 1

 2 2 2 2 2 1 1 1 1

FAs

FAs + 1 HA

FAs

FAs + 1 HA

FAs + 2 HAs

16

10

9

4

3

5-bit CPA

Figure 23.3 Tabular representation of the dot matrix for inner-product computation and its
reduction.

Figure 23.2 shows the computation in dot notation if x(i) and y(i) are 4-bit unsigned
numbers and z(0) is an 8-bit unsigned number. This matrix of partial products, or dots,
can be reduced using the methods discussed for the design of tree multipliers (e.g.,
by using the Wallace or the Dadda method). Figure 23.3 is a tabular representation of
the reduction process for our example. The numbers in the first row are obtained by
counting the number of dots in each column of Fig. 23.2. Subsequent rows are obtained
by Wallace’s reduction method.

The critical path of the resulting merged arithmetic circuit goes through 1 two-input
AND gate, 5 full adders (FAs), and a 5-bit carry-propagate adder (CPA): the cost is 48
AND gates, 46 FAs, 4 half-adders (HAs), and a 5-bit adder—considerably less than the
corresponding parameters if three separate 4×4 multipliers were implemented and their
results added to the 8-bit input z(0).

Another interesting example of merged arithmetic occurs in the synthesis of Ham-
ming weight comparators. The Hamming weight of a binary n-vector V = v1, v2, . . . , vn

is a number ranging from 0 to n, defined as H (V) = �1≤i≤nvi. Certain applications
require that H (V), that is, the number of 1s in the vector V , be compared with a fixed
threshold k or with H (U), where U = u1, u2, . . . , um is another binary vector of arbi-
trary length m. Thus, the problems of interest here are determining whether H (V) ≥ k
or H (V) ≥ H (U). Merging the operations of 1s-counting and comparison leads to very
efficient designs [Parh09].

Problems 493

PROBLEMS 23.1 Alternate view of convergence algorithms

Given a function z = f (x), a convergence algorithm for evaluating c = f (a) can
be constructed based on the following observations. Suppose we introduce an
additional variable y and a convergence function F(x, y) with the following three
properties: (1) there is a known initiation value y = b such that F(a, b) = f (a);
(2) a given pair of values (x(i), y(i)) can be conveniently transformed to the new
pair (x(i+1), y(i+1)) such that F(x(i), y(i)) = F(x(i+1), y(i+1)); that is, the value of
F is invariant under the transformation; and (3) there exists a constant d , such
that F(d , y) = y for all y. Thus, if we make x converge to d , y will converge to
c = f (a), given the invariance of F(x, y) under the transformation [Chen72].

a. Provide a geometric interpretation of the process above in the three-
dimensional xyz space. Hint: Use the x = a, y = b, and z = c planes.

b. Show that the convergence function F(x, y) = y/
√

x can be used to compute
f (x) = √

x and derive the needed transformations x(i+1) = φ(x(i), y(i)) and
y(i+1) = ψ(x(i), y(i)).

c. Repeat part b for F(x, y) = y + ln x and f (x) = ln x.
d. Repeat part b for F(x, y) = yex and f (x) = ex.
e. Derive F(x, y) and its associated transformation rules for computing the

reciprocal function f (x) = 1/x.

23.2 Computing natural logarithms

a. Compute ln 2 with 8 bits of precision using the radix-2 convergence algorithm
based on multiplicative normalization given at the beginning of Section 23.2.

b. Repeat part a using a radix-4 version of the algorithm.
c. Repeat part a using the method based on squaring discussed near the end of

Section 23.2. Hint: ln 2 = 1/ log2 e.
d. Compare the results of parts a–c and discuss.

23.3 Computing base-2 logarithms

Compute the base-2 logarithm of x = (1.0110 1101)two with 8 bits of precision
using:

a. Radix-2 convergence algorithm based on multiplicative normalization given
at the beginning of Section 23.2.

b. Radix-4 version of the algorithm of part a.
c. The method based on squaring discussed near the end of Section 23.2.

23.4 Computing base-2 logarithms

Here is an alternate method for computing log2 x [Kost91]. A temporary variable
y is initialized to x. For decreasing values of an index i, each time y is compared
with 22i

. If y is greater than 22i
, the next digit of the logarithm is 1, and y is

multiplied by 2−2i
. Otherwise, the next digit is 0 and nothing is done.

a. Show that the algorithm is correct as described.
b. Use the algorithm to compute the base-2 logarithm of x = (1.0110 1101)two.

494 Chapter 23 Variations in Function Evaluation

c. Compare this new algorithm with radix-2 and radix-4 convergence methods
and with the method based on squaring (Section 23.2) with respect to speed
and cost.

d. Can you generalize the algorithm to base-2a logarithms? What about
generalization to an arbitrary base b?

23.5 Computing the exponential function

Compute e0.5 with 8 bits of precision using:

a. Radix-2 convergence algorithm based on additive normalization given at the
beginning of Section 23.3.

b. Radix-4 version of the algorithm of part a.
c. A convergence algorithm for square-rooting that you choose at will.
d. Compare the results of parts a–c and discuss.

23.6 Exponentiation

Assuming that shift-and-add takes 1 time unit, multiplication 3 time units, and
division 8 time units:

a. Devise an efficient algorithm for computing x30 using the method discussed
near the end of Section 23.3.

b. Use the algorithm of part a to compute 0.9930, with all intermediate values
and results carrying eight fractional digits in radix 10.

c. Use the convergence algorithm of Section 23.3 to compute 0.9930.
d. Compare the accuracy of the results and the computational complexity for

the algorithms of parts b and c. Discuss.

23.7 Modular exponentiation

Modular exponentiation—namely, the computation of xy mod m, where x, y, and
m are k-bit integers, k is potentially very large, and m is a prime number—plays
an important role in some public-key cryptography.

a. Show how xy mod m can be computed using k-bit arithmetic operations.
b. Show how the algorithm can be speeded up if Booth’s recoding is used on y.
c. Can radix-4 modified Booth’s recoding of the exponent lead to further

speedup?

23.8 Logarithmic multiplication/division

Discuss the feasibility of performing multiplication or division by computing the
natural logarithms of the operands, performing an add/subtract operation, and
finally computing the exponential function.

23.9 Convergence division and reciprocation

a. Consider the problem of computing q = z/d , where 1 ≤ z, d < 2 and 1/2 <

q < 2, using a strategy similar to the binary search algorithm. The midpoint

Problems 495

of [0.5, 2] (viz., 1.25) is taken as an initial estimate for q. Multiplication and
comparison then allow us to refine the interval containing q to [0.5, 1.25] or
[1.25, 2]. This refinement process continues until the interval is as narrow as
the desired precision for q. Compare the preceding convergence method to
other convergence division algorithms and discuss.

b. Devise an algorithm similar to that in part a for computing 1/d that uses inter-
polation for identifying the next point, instead of always taking the midpoint
of the interval.

23.10 Computing the generalized square-root function

Show that the following convergence computation scheme can lead to the
computation of the generalized square-root function

√
x + y2, provided di =

sign(x(i)y(i)).

x(i+1) = x(i) − 2di2
−iy(i) − d2

i 2−2i

y(i+1) = y(i) + di2
−i

23.11 Convergence algorithm for square-rooting

In discussing the radix-4 convergence algorithm for square-rooting near the
end of Section 23.4, we stated that the root digit set can be [−2, 2] or
{−1,−1/2, 0, 1/2, 1}. Discuss possible advantages of the latter digit set over
the former and devise an algorithm for converting such a radix-4 number to
standard binary.

23.12 Approximating functions

a. The polynomial approximation for tan−1 x given in Section 23.5 (Table 23.1)
is valid only for x2 < 1. Show how this approximation can be used within
an algorithm to evaluate tan−1 x for all x. Hint: For x2 > 1, y = 1/x satisfies
y2 < 1.

b. When |x| is close to 1, the preceding approximation converges slowly. How
can one speed up the computation via the application of suitable pre- and
postprocessing steps? Hint: tan(2x) = 2 tan x/(1− tan2 x).

c. Repeat part b for the function tanh−1 x.

23.13 Approximating functions

Derive approximating functions for sin−1 x, cos−1 x, sinh−1 x, cosh−1 x based
on Taylor–Maclaurin series expansions and compare the effort required for
their evaluation with those based on indirect methods such as sin−1 x =
tan−1(x/

√
1− x2).

23.14 Approximating functions

For each of the functions f (x) below, use the approximating polynomial given
in Table 23.1 and a convergence computation method of your choice to compute

496 Chapter 23 Variations in Function Evaluation

f (0.75) to four decimal digits of precision. Compare the computational efforts
expended and the results obtained. Discuss.

a. 1/x
b.

√
x

c. ex

d. ln x
e. sin x
f. tan−1 x
g. sinh x

23.15 Merged arithmetic operations

Consider the computation s = vw+xy+ z, where v, w, x, and y are k-bit integers
and z is a 2k-bit integer (all numbers are in 2’s-complement format).

a. Prove that s can be represented correctly using 2k + 1 bits.
b. Assuming k = 4, draw the partial products matrix for the entire computation

in dot notation; 16 dots for each of the two multiplications and 8 dots for z,
plus additional dots as required to take care of signed multiplication using
the (modified) Baugh–Wooley method of Fig. 11.8d.

c. Use Wallace’s method to reduce the matrix of dots in part b to only two rows.
d. Use Dadda’s method to reduce the matrix of dots in part b to only two rows.
e. Derive the lengths of the final carry-propagate adders required in parts c

and d.
f. Compare the design of part c, with regard to delay and cost, to a design based

on two 4× 4 multipliers (separately designed using the Baugh–Wooley and
Wallace methods), a single level of carry-save addition, and a final fast adder.

g. Repeat part f, replacing Wallace’s method with Dadda’s method.
h. Summarize the delay-cost comparisons of parts f and g in a table and discuss.
i. Simplify the circuit of part d if it is to perform the computation s = v2+x2+z.

23.16 Merged arithmetic/logic operations

Arithmetic operations can sometimes be merged with nonarithmetic functions to
derive speed benefits. One example is merging the addition required for com-
puting a cache memory address with the address decoding function in the cache
[Lync98].

a. Consider a small example of two 4-bit unsigned values added to find a 4-bit
memory address and design the merged adder/decoder circuit.

b. Compare the delay and cost of the design in part a to the respective parameters
of a design with separate adder and decoder. Discuss.

23.17 Computing natural logarithms

Performing all computations with 12 fractional bits, find ln((1.1011 0100)two) by
means of:

a. Repeated squaring.

Problems 497

b. The generalized CORDIC method. Hint: Because the computation is not
affected by the scale factor, there is no need to use all the angles; that is, di

can be chosen to be in 0, 1 rather than in -1, 1.

23.18 Computing natural logarithms

Performing all computations in decimal with at least 6 fractional digits, find ln 2
by means of the following methods. Based on the result obtained, briefly compare
the four methods in terms of complexity and accuracy.

a. Repeated squaring.
b. The generalized CORDIC method.
c. The convergence scheme based on multiplicative normalization (beginning

of Section 23.2).
d. The algorithm described in Problem 23.4.

23.19 Exponentiation

Evaluate each of the following powers of x with as few multiplications as possible.

a. x43

b. x55

c. x189

d. x211

23.20 Computing the value of π

a. Prove that tan−1(1) = 4 tan−1(1/5)− tan−1(1/239).
b. Show how the result of part a helps in computing the value of π .

23.21 Computing the value of π

Compare the following five methods for computing the value of π .

a. Using Maclaurin series for tan−1 x, viz. π = 4 tan−1(1) = 4(1 − 1/3 +
1/5− 1/7+ · · ·).

b. Using Maclaurin series for sin−1 x, viz. π = 6 sin−1(1/2) = 6[2−1 +
(2−3/3)1/2+ (2−5/5)(1× 3)/(2× 4)+ · · ·].

c. Approximating the area of a circle of unit radius by (n/2) sin(2π/n), the area
of an inscribed regular polygon of n = 2i sides, where sin θ is computed
from ((1− cos 2θ)/2)1/2 and cos θ from (1− sin2 θ)1/2.

d. Similar to part c, but using the circumference of a circle approximated by
2n sin(π/n).

e. Approximating the area of a quarter circle by the trapezoidal rule, using
n = 2i trapezoids.

23.22 Approximating the inverse tangent function

Consider the approximation f (x) = x/(1+ 0.28125x2) for tan−1 x.

498 Chapter 23 Variations in Function Evaluation

a. Identify the arithmetic operations needed to evaluate f (x), trying to simplify
as much as possible.

b. How can one use this approximation for computing tan−1 x when |x| > 1?
c. Plot the variations in absolute error associated with this approximation for
−1 ≤ x ≤ 1 and derive the maximum absolute error in this range.

d. Repeat part c for the relative error.

REFERENCES AND FURTHER READINGS

[Bris05] Brisebarre, N., D. Defour, P. Kornerup, J.-M. Muller, and N. Revol, “A New Range
Reduction Algorithm,” IEEE Trans. Computers, Vol. 54, No. 3, pp. 331–339, 2005.

[Chen72] Chen, T. C., “Automatic Computation of Exponentials, Logarithms, Ratios and
Square Roots,” IBM J. Research and Development, Vol. 16, pp. 380–388, 1972.

[Erce73] Ercegovac, M. D., “Radix-16 Evaluation of Certain Elementary Functions,” IEEE
Trans. Computers, Vol. 22, No. 6, pp. 561–566, 1973.

[Erce94] Ercegovac, M. D., and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations, Kluwer, 1994.

[Kore90] Koren, I., and O. Zinaty, “Evaluating Elementary Functions in a Numerical
Coprocessor Based on Rational Approximations,” IEEE Trans. Computers, Vol. 39,
No. 8, pp. 1030–1037, 1990.

[Kost91] Kostopoulos, D. K., “An Algorithm for the Computation of Binary Logarithms,”
IEEE Trans. Computers, Vol. 40, No. 11, pp. 1267–1270, 1991.

[Lee05] Lee, D.-U, A. A. Gaffar, O. Mencer, and W. Luk, “Optimizing Hardware Function
Evaluation,” IEEE Trans. Computers, Vol. 54, No. 12, pp. 1520–1531, 2005.

[Li03] Li, R.-C., S. Boldo, and M. Daumas, “Theorems on Efficient Argument Reductions,”
Proc. 16th IEEE Symp. Computer Arithmetic, pp. 129–136, June 2003.

[Lo87] Lo, H.-Y., and J.-L. Chen, “A Hardwired Generalized Algorithm for Generating the
Logarithm Base-k by Iteration,” IEEE Trans. Computers, Vol. 36, No. 11,
pp. 1363–1367, 1987.

[Lync98] Lynch, W. L., G. Lauterbach, and J. I. Chamdani, “Low Load Latency Through
Sum-Addressed Memory,” Proc. Int. Symp. Computer Architecture, pp. 369–379,
1998.

[Mull06] Muller, J.-M., Elementary Functions: Algorithms and Implementation, 2nd ed.,
Chapter 7, Birkhauser, 2006.

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture, and
Implementations, Prentice-Hall, 1994.

[Parh09] Parhami, B., “Efficient Hamming Weight Comparators for Binary Vectors Based on
Accumulative and Up/Down Parallel Counters,” IEEE Trans. Circuits and Systems II,
Vol. 56, No. 2, pp. 167–171, 2009.

[Swar80] Swartzlander, E. E., Jr., “Merged Arithmetic,” IEEE Trans. Computers, Vol. 29,
No. 10, pp. 946–950, 1980.

[Tang91] Tang, P. K. P., “Table Lookup Algorithms for Elementary Functions and Their Error
Analysis,” Proc. 10th Symp. Computer Arithmetic, pp. 232–236, 1991.

[Walt98] Walter, C. D., “Exponentiation Using Division Chains,” IEEE Trans. Computers,
Vol. 47, No. 7, pp. 757–765, 1998.

24 Arithmetic by
Table Lookup

■ ■ ■

“For any idea that does not appear bizarre at first, there is no hope”
N I E L S B O H R

■ ■ ■

I n earlier chapters we saw how table lookup can be used as an aid in arithmetic

computations. Examples include quotient digit selection in high-radix division,

root digit selection in square-rooting, speedup of iterative division, reciprocation,

or square rooting through an initial table-lookup step, and using tables to store

constants of interest in coordinate rotations digital computer (CORDIC) algorithms.

In this chapter, we deal with the use of table lookup as a primary computational

mechanism rather than in a supporting role.

24.1 Direct and Indirect Table Lookup

24.2 Binary-to-Unary Reduction

24.3 Tables in Bit-Serial Arithmetic

24.4 Interpolating Memory

24.5 Piecewise Lookup Tables

24.6 Multipartite Table Methods

24.1 DIRECT AND INDIRECT TABLE LOOKUP

Computation by table lookup is attractive because memory is much denser than random
logic in very large-scale integrated circuits. Multimegabit lookup tables are already
practical in some applications; even larger tables should become practical in the near
future as memory densities continue to improve. The use of tables reduces the costs
of hardware development (design, validation, testing), provides more flexibility for

499

500 Chapter 24 Arithmetic by Table Lookup

last-minute design changes, and reduces the number of different building blocks or
modules required for arithmetic system design.

Tables stored in read-only memories (especially if individual entries or blocks of
data are encoded in error-detecting or error-correcting codes) are more robust than com-
binational logic circuits, thus leading to improved reliability. With read/write memory
and reconfigurable peripheral logic, the same building block can be used for evaluat-
ing many different functions by simply loading appropriate values in the table(s). This
feature facilitates maintenance and repair.

Given an m-variable function f (xm−1, xm−2, . . . , x1, x0), the direct table-lookup eval-
uation of f requires the construction of a 2u × v table that holds for each combination
of input values (needing a total of u bits to represent), the desired v-bit result. The u-
bit string obtained from concatenating the input values is then used as an address into
the table, with the v-bit value read out from the table directly forwarded to the output.
Such an arrangement is quite flexible but unfortunately not very practical in most cases.
For unary (single-variable) functions such as 1/x, ln x, or x2, the table size remains
manageable when the input operand is up to 16–24 bits; table size of 64K–16M words.
Binary functions, such as xy, x mod y, or xy, can be realized with table lookup only if
the operands are very narrow (12 bits or less, say). For m > 2, the exponential growth
of the table size becomes totally intolerable.

One solution to the exponential growth of the table size is to apply preprocessing
steps to the operands and postprocessing steps to the value(s) read out from the table(s),
leading to indirect table lookup. If both the pre- and postprocessing elements are simple
and fast, this hybrid scheme (Fig. 24.1) may be more cost-effective than either the pure
table-lookup approach or the pure logic circuit implementation based on the algorithms
discussed in earlier chapters. In a multitable scheme, the tables can be physically separate
(with identical or different contents) or realized by multiple accesses to the same table.
We explore some such hybrid schemes in the rest of this chapter.

As stated earlier, in contrast to the applications discussed already, in which small
tables were used for quotient digit selection, initial approximations, or storage of a
few precomputed constants, our focus in this chapter is on the use of tables as primary
computational mechanisms.

2 ×

table

Result(s)
 bits

Prepro-
cessing
logic

Post-
processing
logic

Smaller
table(s)

Operand(s)
 bitsu u v

v

Operand(s)
 bitsu

Result(s)
 bitsv

.

.

.

. . .

Figure 24.1 Direct table lookup versus table-lookup with pre- and post-processing.

Binary-to-Unary Reduction 501

In reality, the boundary between the two uses of tables (in supporting or primary role)
is quite fuzzy. We can visualize the pure logic and pure tabular approaches as extreme
points in a spectrum of hybrid solutions. In earlier discussions, we started with the goal
of designing logic circuits for particular arithmetic computations and ended up using
tables to facilitate or speed up certain computational steps. Here, we begin with the goal
of a tabular implementation and finish by using peripheral logic circuits to reduce the
table size, thus making the approach practical. Some of the intermediate solutions can
be derived starting at either end point.

24.2 BINARY-TO-UNARY REDUCTION

One approach to reducing the table size is to evaluate a desired binary function by
means of an auxiliary unary function. The unary function requires a smaller table (2k

vs. 22k entries, say), but its output obviously is not what we are after. However, pre-
and postprocessing steps allow us to use the unary function table to compute our binary
function. In this section, we review two well-known examples of this method.

We discussed an example of this approach in connection with logarithmic number
systems in Section 18.6 To add the sign-and-logarithm numbers (Sx, Lx) and (Sy, Ly),
representing±x and±y with x ≥ y ≥ 0, we need to compute the sign Sz of the result±z
and its logarithm Lz = log z = log(x ± y). The base of the logarithm is immaterial for
this discussion, so we leave it unspecified. The computation of Lz can be transformed to
finding the sum of Lx and a unary function of � = Ly − Lx using the equality

Lz = log(x ± y) = log[x(1± y/x)]
= log x + log(1± y/x)

= Lx + log(1± log−1 �)

where log−1 � denotes the inverse logarithm function; that is, b� if the base of the
logarithm is b.

The required preprocessing steps involve identifying the input ±x with the larger
logarithm (and thus the larger magnitude), determining the sign Sz of the result, and
computing � = Ly − Lx. Postprocessing consists of adding Lx to the value read out
from the table. If the preprocessing, table access, and postprocessing steps are done by
distinct hardware elements, a pipelined implementation may be possible for which the
cycle time is dictated by the table access time. So, with many additions performed in
sequence, the preceding scheme can be as fast as a pure tabular realization and thus
considerably more cost-effective.

Our second example concerns multiplication by table lookup. Again, direct table
lookup is infeasible in most practical cases. The following identity allows us to convert
the problem to the evaluation of a unary function (in this case, squaring):

xy = 1

4
[(x + y)2 − (x − y)2]

502 Chapter 24 Arithmetic by Table Lookup

The preprocessing steps consist of computing x + y and x − y. Then, after two table
lookups yielding (x + y)2 and (x − y)2, a subtraction and a 2-bit shift complete the
computation. Again, pipelining can be used to reduce the time overhead of the peripheral
logic. Several optimizations are possible for the preceding hybrid solution. For example,
if a lower speed is acceptable, one squaring table can be used and consulted twice for
finding (x+y)2 and (x−y)2. This would allow us to share the adder/subtractor hardware
as well.

In either case, the following observation leads to hardware simplifications. Let x and
y be k-bit 2’s-complement integers (the same considerations apply to any fixed-point
format). Then, x + y and x − y are (k + 1)-bit values, and a straightforward application
of the preceding method would need one or two tables of size 2k+1 × 2k (sign bit is not
needed for table entries, since they are all positive). Closer scrutiny, however, reveals
that x + y and x – y are both even or odd. Thus, the least-significant 2 bits of (x+ y)2 and
(x − y)2 are identical (both are 00 or 01). Hence, these 2 bits always cancel each other
out, with the resulting 0s shifted out in the final division by 4, and need not be stored in
the tables. This feature reduces the required table size to 2k+1× (2k− 2) and eliminates
the 2-bit shift.

A direct hardware realization of the multiplication method just discussed is depicted
in Fig. 24.2a. The timing diagram for an implementation with a single shared
adder/subtractor and one squaring table is shown in Fig. 24.2b, under the assumption
that table access takes more time than addition. As is evident from Fig. 24.2b, under this
assumption and ignoring the control overhead, the total latency of multiplication equals
that of two additions and two table accesses. A pipelined implementation will allow a
computation rate that is dictated by the table access latency.

The aforementioned reduction in table size is relatively insignificant, but it is achieved
with no sacrifice in performance. A more significant factor-of-2 reduction in table size
can be achieved with some peripheral overhead. Let ε denote the least-significant bit

x

y

 Sub

(a) Parallel hardware realization (b) Timing with one adder and one table

g–h
Add

x + y

Sub
x – y

Squaring
table

Squaring
table

g = (x + y)2/4

h = (x – y)2/4

xy

x + y x – y

Addition

Table access

g = (x + y)2/4 h = (x – y)2/4

E
N
D

Time

S
T
A
R
T

Figure 24.2 Multiplication through squaring.

Binary-to-Unary Reduction 503

(LSB) of x + y and x − y, where ε ∈ {0, 1}. Then

x + y

2
=

⌊
x + y

2

⌋
+ ε

2

x − y

2
=

⌊
x − y

2

⌋
+ ε

2

Then, we can write

1

4
[(x + y)2 − (x − y)2] =

(⌊
x + y

2

⌋
+ ε

2

)2

−
(⌊

x − y

2

⌋
+ ε

2

)2

=
⌊

x + y

2

⌋2

−
⌊

x − y

2

⌋2

+ εy

Based on the preceding equality, upon computing x + y and x − y, we can drop the
LSB of each result, consult squaring tables of size 2k × (2k − 1), and then perform a
three-operand addition, with the third operand being 0 or y depending on the dropped
bit ε being 0 or 1. The postprocessing hardware then requires a carry-save adder (CSA),
to reduce the three values to two, followed by a carry-propagate adder.

To use a single adder and one squaring table to evaluate the preceding three-operand
sum, we simply initialize the result to εy and then overlap the first addition �(x+y)/2�2+
εy with the second table access, thus essentially hiding the delay of the extra addition
resulting from the introduction of the new εy term.

The preceding is an excellent example of the trade-offs that frequently exist
between table size and cost/delay of the required peripheral logic circuits in hybrid
implementations using a mix of lookup tables and custom logic.

When the product xy is to be rounded to a k-bit number (as for fractional operands),
the entries of the squaring table(s) can be shortened to k bits (again no sign is needed).
The extra bit guarantees that the total error remains below ulp.

An additional optimization may be applicable to some unary function tables. Assume
that a v-bit result is to be computed based on a k-bit operand. Let w bits of the result
(w < v) depend only on l bits of the operand (l < k). Then a split-table approach
can be used, with one table of size 2lw providing w bits of the result and another of
size 2k(v − w) supplying the remaining v − w bits. The total table size is reduced to
2kv − (2k − 2l)w, with the fraction of table size saved being

(2k − 2l)w

2kv
= (1− 2k−l)w

v

Application of this last optimization to squaring leads to additional savings in the table
size for multiplication via squaring [Vinn95].

504 Chapter 24 Arithmetic by Table Lookup

24.3 TABLES IN BIT-SERIAL ARITHMETIC

The many advantages of bit-serial arithmetic were discussed in Section 12.3 in connection
with bit-serial multipliers. Here, we discuss two examples of tabular implementation of
bit-serial arithmetic that are used for entirely different reasons.

The first example is found in the processors of a massively parallel computer: the
Connection Machine CM-2 of Thinking Machines Corporation. Even though CM-2 is
no longer in production, its approach to bit-serial computation is quite interesting and
potentially useful. CM-2 could have up to 64K processors, each one so simple that 16
processors fit on a single integrated circuit chip (circa mid-1980s). The processors were
bit-serial because otherwise their parallel input/output and memory access requirements
could not have been satisfied within the pin limitations of a single chip. The design
philosophy of CM-2 was that using a large number of slow, inexpensive processors is a
cost-effective alternative to a small number of very fast, expensive processors. This is
sometimes referred to as the “army of ants” approach to high-performance computing.

The arithmetic/logic unit (ALU) in a CM-2 processor received three 1-bit inputs
and produced two 1-bit outputs. For addition, the three inputs could be the operand
bits and the incoming carry, with the two outputs corresponding to the sum bit and the
outgoing carry. To provide complete flexibility in programming other computations,
CM-2 designers decided that the user should be able to specify each output of the ALU
to be any arbitrary logic function of the three input bits. There are 223 = 256 such logic
functions, leading to the requirement for an 8-bit operation code. The remaining problem
is how to encode the 256 functions within an 8-bit op code. The answer is strikingly
simple: each of the 256 functions is completely characterized by its 8-bit truth table. So
we can simply use the truth table for each function as the op code. Figure 24.3 shows
the resulting ALU, which is nothing but two 8-to-1 multiplexer (mux) units!

In the CM-2 ALU, two of the bit streams, say a and b, came from a 64K-bit memory
and read out in consecutive clock cycles. The third input, c, came from a 4-bit “flags”
register. Thus 16+ 16+ 2 bits were required to specify the addresses of these operands.
The f output was stored as a flag bit (2-bit address) and the g output replaced the a
memory operand in a third clock cycle. Three more bits were used to specify a flag bit

Figure 24.3
Bit-serial ALU with
two tables
implemented as
multiplexers.

a
b c

f Op
code

g Op
code

f(a, b, c)

g(a, b, c)

 From
memory

0
1
2
3
4
5
6
7

Mux

0
1
2
3
4
5
6
7

Mux

Flags

To memory

Tables in Bit-Serial Arithmetic 505

and a value (0 or 1) to conditionalize the operation, thus allowing some processors to
selectively ignore the common instruction broadcast to all processors, but this aspect of
the processor’s design is not relevant to our discussion here.

To perform integer addition with the CM-2 ALU shown in Fig. 24.23, the a and b
operands will correspond to the two numbers to be added, and c will be a flag bit that is
used to hold the carry from one bit position into the next. The f function op code will be
“00010111” (majority or ab ∨ bc ∨ ca) and the g function op code will be “01010101”
(three-input XOR). A k-bit addition requires 3k clock cycles and is thus quite slow. But
up to 64K additions can be performed in parallel. As for floating-point arithmetic, bit-
serial computation (which was used in CM-1) would have been too slow. So, designers
of CM-2 provided floating-point accelerator chips that were shared by 32 processors.

Programming bit-serial arithmetic operations is a tedious and error-prone task.
However, it is an easy matter to build useful “macros” that are made available to machine-
language programmers of CM-2 and other bit-serial machines. These programmers then
do not need to worry about coding the details of bit-serial arithmetic for such routine
computations as integer addition, integer multiplication, or their floating-point counter-
parts. The use of bit-level instructions will then be required only for special operations or
for hand-optimization of critical operations in the inner loops of computation-intensive
algorithms.

A second example of table-based computation with bit-serial arithmetic is provided
by modular reduction, of the type used for converting binary or decimal numbers to their
residues for residue number system (RNS) arithmetic (see Section 4.3 and Table 4.1). As
the input number enters from its least- or most-significant end, the residue of each bit or
digit xi, multiplied by its weight ri, is read out from a small table that stores the values
of f (y, j) = yrj mod m for different values of y and j. This table entry is then added,
modulo m, to a running total. Every addition, except the last one, can be performed in
carry-save form and can be fully overlapped with the next table access. So, the latency
of conversion is that of k table accesses, where k is the word width in bits or digits. By
handling more than 1 input bit or digit at once, a multitude of designs can be obtained
that represent a range of speed/cost trade-offs.

Our third and last example pertains to the evaluation of linear expressions involving
several variables and constant coefficients. We present the method by way of the simple
linear form z = ax+ by, where a and b are constants, while x and y are bit-serial inputs,
arriving LSB-first. We will examine a more elaborate application of this method, arising
in digital filter calculations, in Section 28.4. To keep things simple for now, let us assume
that x and y are k-bit unsigned integers. Then, we can write

z = ax + by = a
k−1∑
i=0

xi2
i + b

k−1∑
i=0

yi2
i =

k−1∑
i=0

(axi + byt)2
i

The expression axi + byi = f (xi, yi) assumes one of the four values 0, b, a, or a + b,
depending on the values of the 2 bits xi and yi. If we store these values in a 4-entry
table, then using the incoming bits of x and y as an address into the table, we can read
out the value of f (xi, yi). The different powers of 2 in the preceding expression can be
accommodated by keeping a residual s that is right-shifted before being combined with

506 Chapter 24 Arithmetic by Table Lookup

0

Address
b

a

Sum
C
S
A

Data

k
/

/

/

k
/

/ /

LSB

xi

yi

a + b

4-entry table

Carry

Carry-save residual

k–1

k–1
k–1 k–1

zi

Figure 24.4 Bit-serial evaluation of z = ax + by.

the next term, with the bit that is shifted out forming the next output bit:

s(i+1) = �s(i)/2� + f (xi, yi) with s(0) = 0

zi = s(i) mod 2

A hardware realization of this algorithm, with the residual kept in carry-save form, is
depicted in Fig. 24.4. It is somewhat surprising that the computation ax + by, with
two apparent multiplications and one addition, can be performed without even using a
carry-propagate adder! Note that the low latency of each iteration allows a very high
clock rate. If the result z fits in k bits, the last bit of the output is ready 1 clock cycle
after receiving the last pair of input bits. For a double-width output, we must 0-extend
the unsigned inputs to 2k bits and take the outputs in cycles 2 through 2k + 1.

24.4 INTERPOLATING MEMORY

If the value of a function f (x) is known for x = xlo and x = xhi, where xlo < xhi, the
function’s value for x in the interval [xlo, xhi] can be computed from f (xlo) and f (xhi) by
interpolation. The simplest method is linear interpolation where f (x) for x in [xlo, xhi] is
computed as follows:

f (x) = f (xlo)+ (x − xlo)[f (xhi)− f (xlo)]
xhi − xlo

On the surface, evaluating this expression requires four additions, one multiplication,
and one division. However, by choosing the end points xlo and xhi to be consecutive

Interpolating Memory 507

Add

a

Multiply

b

∆x

∆x

xhix

Initial linear
approximation

Improved linear
approximation

a + b ∆x

f(x)

xlo f(x)

Figure 24.5 Linear interpolation for computing f (x) and its hardware realization.

multiples of a power of 2, the division and two of the additions can be reduced to trivial
operations.

For example, suppose that log2 x is to be evaluated for x in [1, 2). Since f (xlo) =
log2 1 = 0 and f (xhi) = log2 2 = 1, the linear interpolation formula becomes

log2 x ≈ x − 1 = the fractional part of x

The error in this extremely simple approximation is ε = log2 x− x+ 1, which assumes
its maximum absolute value of 0.086 071 for x = log2 e = 1.442 695 and maximum
relative value of 0.061 476 for x = e/2 = 1.359 141. Errors this large are obviously
unacceptable for useful computations, but before proceeding to make the approach more
practical, let us note an improvement in the preceding linear interpolation scheme.

Instead of approximating the function f (x) with a straight line between the two end
points of f (x) at xlo and xhi, we can use another straight line that minimizes the absolute or
relative error in the worst case. Figure 24.5 depicts this strategy, along with the hardware
structure needed for its realization. We now have errors at the two end points as well as
elsewhere within the interval (xlo, xhi), but the maximum error has been reduced.

Applying the preceding strategy to computing log2 x for x in [1, 2), we can easily
derive the following straight-line approximation a+b(x−1) = a+b�x for minimizing
the absolute error (to 0.043 036 for x = 1.0, 1.442 695, or 2.0):

log2 x ≈ ln 2− ln(ln 2)− 1

2 ln 2
+ (x − 1) = 0.043 036+�x

This is better than our first try (half the error), but still too coarse an approximation to
be useful. The derivation of a straight line that minimizes the relative error in the worst
case is similar but does not lead to closed-form results for a and b.

It appears that a single straight line won’t do for the entire interval of interest and
we need to apply the interpolation method in narrower intervals to obtain acceptable
results. This observation leads to an “interpolating memory” [Noet89] that begins with
table lookup to retrieve the coefficients a(i) and b(i) of the approximating straight line
a(i) + b(i)�x, given the index i of the subinterval containing x, and then uses one

508 Chapter 24 Arithmetic by Table Lookup

Add

a(i)

Multiply

 ∆ x

x

f(x)

i = 0

a(i) + b(i) ∆x

b(i)/4

4-entry tables
2-bit address

x
i = 2

i = 3

i = 1

xmin x max

4∆x

f(x)

Figure 24.6 Linear interpolation for computing f (x) using four subintervals.

Table 24.1 Approximating log2 x for x in [1, 2) using
linear interpolation within 4 subintervals

i xlo xhi a(i) b(i)/4 Maximum error

0 1.00 1.25 0.004 487 0.321 928 ±0.004 487

1 1.25 1.50 0.324 924 0.263 034 ±0.002 996

2 1.50 1.75 0.587 105 0.222 392 ±0.002 142

3 1.75 2.00 0.808 962 0.192 645 ±0.001 607

multiplication and one addition to complete the computation (Fig. 24.6). Note that since
�x in Fig. 24.6 begins with two 0s, it would be more efficient to use 4�x, which is
representable with two fewer bits. The table entries b(i) must then be divided by 4 to
keep the products the same.

Clearly, second-degree or higher-order interpolation can be used, an approach that
involves more computation but yields correspondingly better approximations. For exam-
ple, with second-degree interpolation, the coefficients a(i), b(i), and c(i) are read out from
tables and the expression a(i)+b(i)�x+c(i)�x2 is evaluated using three multipliers and
a three-operand adder. The multiplication (squaring) to obtain �x2 can be overlapped
with table access to obtain better performance. Third- or higher-degree interpolation is
also possible but often less cost-effective than simpler linear or quadratic schemes using
narrower intervals.

If the number of subintervals is 2h then the subinterval containing x can be determined
by looking at the h most-significant bits (MSBs) of x, with the offset �x simply derived
from the remaining bits of x. Since it is more efficient to deal with 2h�x, which has h
fewer bits than �x, the tables must contain a(i), b(i)/2h, c(i)/22h, etc.

Let us now apply the method of Fig. 24.6 with four subintervals to compute log2 x
for x in [1, 2). The four subintervals are [1.00, 1.25), [1.25, 1.50), [1.50, 1.75), and
[1.75, 2.00). Table 24.1 lists the parameters of the best linear approximation, along with
its worst-case error, for each subinterval.

Interpolating Memory 509

We see from Table 24.1 that the maximum error is now much less than for simple
linear interpolation. We can improve the quality of approximation even further by using
more intervals (larger tables) or superlinear interpolation (more tables and peripheral
arithmetic computations). The optimal choice will be different for each problem and
must be determined by careful analysis based on a reasonably realistic cost model.
Generally, the higher the order of interpolation, the smaller the number of subintervals
needed to guarantee a given precision for the results (smaller tables). However, it is
seldom cost-effective to go beyond second-degree interpolation.

As an example of such trade-offs, Fig. 24.7 shows the maximum absolute error in an
interpolating memory unit computing log2 x for various numbers h of address bits using
mth-degree interpolation, with m = 1, 2, or 3. With these parameters, the total number
of table entries is (m+ 1)2h.

Figure 24.7 can be used in two ways to implement an appropriate interpolating mem-
ory unit for evaluating log2 x. First, if the table size is limited by component availability
or chip area to a total of 256 words, say, then 7 address bits can be used with linear,
and 6 bits with either second- or third-degree interpolation, which require three and four
tables, respectively. This leads to worst-case absolute errors of about 10−5, 10−7, and
10−10, respectively. Of course if the table size is limited by chip area, then it is unlikely
that the second- or third-order schemes can be implemented, since they require multiple
adders and multipliers. So, we have an accuracy/speed trade-off to consider.

If a maximum tolerable error of 10−6, say, is given, then Fig. 24.7 tells us that we
can use linear interpolation with 9 address bits (two 512-entry tables), second-degree
interpolation with 5 address bits (three 32-entry tables), or third-degree interpolation
with 3 address bits (four 8-entry tables). Since 32-entry tables are already small enough,

Figure 24.7
Maximum absolute
error in computing
log2 x as a function of
number h of address
bits for the tables
with linear, quadratic
(second-degree), and
cubic (third-degree)
interpolations
[Noet89].

10

10

10

10

10

10

10

10

10

–1

–2

–3

–4

–5

–6

–7

–8

–9

Number of address bits, h

Linear

2nd
degree

3rd
degree

104 8620

W
or

st
-c

as
e

ab
so

lu
te

 e
rr

or

510 Chapter 24 Arithmetic by Table Lookup

little is gained from using third-degree interpolation, which requires significantly more
complex and slower peripheral logic.

Except for slight upward or downward shifting of the curves, the shapes of error
curves for other functions of interest are quite similar to the ones for log2 x shown
in Fig. 24.7. In most cases, the number of address bits required for a given precision
is within ±1 of that needed for the log2 function. This makes it practical to build a
general-purpose interpolating memory unit that can be customized for various functions
of interest by plugging in ROMs with appropriate contents or by dynamically loading
its RAM tables.

A possible improvement to the interpolating memory scheme with uniform intervals
is to adapt the widths of the intervals to the curvature of the function in various regions
[Lee03]. For example, the function depicted in Fig. 24.6 has a greater curvature near
xmax, leading to higher error in that region with uniform intervals. Thus, if we used nar-
rower intervals near xmax and wider ones near xmin, the overall accuracy might improve.
However, whereas equal-width intervals can be associated with the leading bits of x,
there is no such direct procedure for distinguishing nonuniform intervals. We show, via
a very simple example, that nonuniform intervals can sometimes be used with small cost
and time overhead (preprocessing logic). Consider the case of four intervals covering
the range [0, 1), in a way that we have wider intervals near 0 and narrower ones near 1.
One way to do this is to associate the intervals with the leading bits 0xx, 10x, 110, and
111, where “x” represents any bit value (don’t-care). These intervals cover 1/2, 1/4, 1/8,
and 1/8 of the range, respectively, going from 0 to 1. It is readily seen that we need only a
few logic gates to translate a 3-bit interval index to one of the addresses 00, 01, 10, or 11
for table access. Note that the value of �x is also derived differently in the four intervals.

24.5 PIECEWISE LOOKUP TABLES

Several practical methods for function evaluation are based on table lookup using frag-
ments of the operands. These methods essentially fall between the two extremes of direct
table lookup and the bit-serial methods discussed in Section 24.3. Here, we review two
such methods as representative examples.

The first method deals with evaluating elementary functions in single-precision IEEE
754-2008 format. We ignore the sign and exponent in this brief discussion. For details
of how the exponent affects the evaluation process, see [Wong95].

Let us divide the 26-bit significand x (with 2 whole and 24 fractional bits) into four
sections:

x = t + λu + λ2v + λ3w = t + 2−6u + 2−12v + 2−18w

Each of the components u, v, and w is a 6-bit fraction in [0, 1) and t, with up to 8 bits
depending on the function being evaluated, is in [0, 4). The Taylor polynomial for f (x) is

f (x) =
∞∑

i=0

f (i)(t + λu)
(λ2v + λ3w)i

i!

Piecewise Lookup Tables 511

The value of f (x) can be approximated by ignoring terms smaller than λ5 = 2−30. Using
the Taylor polynomial, we can obtain the following approximation to f (x), which is
accurate to O(λ5):

f (x) ≈ f (t + λu)+ λ

2
[f (t + λu + λv)− f (t + λu − λv)]

+ λ2

2
[f (t + λu + λw)− f (t + λu − λw)] + λ4

[
v2

2
f (2)(t)− v3

6
f (3)(t)

]

The tedious analysis needed to derive the preceding formula, and its associated error
bound, are not presented here. With this method, computing f (x) reduces to:

1. Deriving the four 14-bit values t + λu + λv, t + λu − λv, t + λu + λw, and
t + λu − λw using four additions (t + λu needs no computation).

2. Reading the five values of f from a single table or from parallel tables (for higher
speed).

3. Reading the value of the last term λ4[(v2/2)f (2)(t) − (v3/6)f (3)(t)], which is a
function of t and v, from a different table.

4. Performing a six-operand addition.

Analytical evaluation has shown that the error in the preceding computation is guaranteed
to be less than the upper bound ulp/2 = 2−24. In fact, exhaustive search with all possible
24-bit operands has revealed that the results are accurate to anywhere from 27.3 to 33.3
bits for elementary functions of interest [Wong95].

Our second example of piecewise lookup tables is for modular reduction, that is,
finding the d -bit residue modulo p of a given b-bit number z in the range [0, m), where
b = 	log2 m
 and d = 	log2 p
. Dividing z into two segments with b− g and g bits, we
write

z = 2g�z/2g� + z mod 2g = 2gz[b−1,g] + z[g−1,0]

For g ≥ d , the preceding equation leads to a two-table method. The most-significant
b − g bits, z[b−1,g], index a table with vH = 	m/2g
 words to obtain a d -bit residue.
The least-significant g bits of z, namely, z[g−1,0], index a vL-word table (vL = 2g) to
obtain another d -bit residue. These residues are then added and the final d -bit residue is
obtained by the standard method of trial subtraction followed by selection, as shown in
Fig. 24.8a. The total table size, in bits, is

Bdivide = d(vH + vL) = d(m/2g
 + 2g)

which is minimized if we choose g = �	log2 m
/2� = �b/2�. Note that the lower adder
and the multiplexer can be replaced by a 2d+1 × d table. Alternatively, both adders and
the multiplexer in Fig. 24.8a can be replaced by a 22d × d table.

For example, with p = 13, m = 216, d = 4, and b = 16, the aforementioned
optimization leads to tables of total size of 2048 bits—a factor of 128 improvement over
direct table lookup.

512 Chapter 24 Arithmetic by Table Lookup

Table
 1

Table
 2

v

d d

Adder

(a) Divide-and-conquer

Adder

–p

Mux+ –

d -bit output

b-bit input

b – g
g

d d

d + 1

dd

Sign

d + 1

z

z mod p

LvH

Table

(b) Successive refinement

 2 m*

d

d -bit output

b – h h

z mod p

b-bit
input

z

Adder

Table
 1

d* – h h d*

d*

v

d*

Figure 24.8 Alternative two-table modular reduction schemes.

An alternate two-phase (successive refinement) approach is depicted in Fig. 24.8b.
First, several high-order bits of z in [0, m) are used to determine what negative multiple of
p should be added to z to yield a d*-bit result z* in the range [0, m*), where p < m∗ < m,
z mod p = z∗ mod p, and d∗ = 	log2 m∗
. Then, the simpler computation z* mod p is
performed by direct table lookup.

The most-significant b − h bits of z, namely, z[b−1,h], are used to access a v-word
table (v = 	m/2h
) to obtain a d*-bit value. This value is the least-significant d* bits
of a negative multiple of p such that when it is added to z, the result z* is guaranteed to
satisfy 0 ≤ z∗ ≤ m∗. A second m*-word table is used to obtain the d -bit final result z*
mod p. The total table size, in bits, is

Brefine = d∗v + dm∗ = d∗	m/2h
 + dm∗

In the special case of m∗ < 2p, the second table can be eliminated and replaced by a
subtractor and a multiplexer if desired, thus leading to a single-table scheme.

We see that the total table size is dependent on the parameter m*. We can prove that
the total table size Brefine is minimized if d* is chosen to minimize the objective function
f (d∗) = d∗	m/2d∗−1
 + (d × 2d∗−1) and m* is chosen to be m∗ = 2d∗−1 + p. For our
earlier example with p = 13, m = 216, d = 4, b = 16, the optimal values for d* and
m* are 9 and 269, respectively, leading to a total table size of 3380 bits. The resulting
tables in this case are larger than for the divide-and-conquer scheme in Fig. 24.8a, but
the simplicity of the peripheral circuitry (only a single adder besides the tables) can make
up for the larger tables.

Modular reduction finds applications in converting numbers from binary or decimal
representation to RNS [Parh93a], [Parh94] and in certain error-coding schemes that are

Multipartite Table Methods 513

based on residues. Details of the preceding methods, including proofs of the results used
here, can be found elsewhere [Parh94a], [Parh97].

24.6 MULTIPARTITE TABLE METHODS

A particular instance of the piecewise lookup table method, first described by Das Sarma
and Matula in connection with reciprocal approximation [DasS95], merits special atten-
tion, in view of its simplicity and practical applicability in many different contexts. In
what follows, we describe this bipartite table method in its simplest form, followed
by brief discussions of improvements in the form of symmetric bipartite tables and
extensions to multipartite tables.

Let the domain of interest for the evaluation of a function f (x), for 0 ≤ x < 1, be
divided into a number of intervals, each of which is further split into smaller subintervals,
with the number of subdivisions being a power of 2 in both cases. In this way, a high-
order bits of x specify an interval that begins at x0, the next b bits specify a subinterval
beginning at x0+ x1, and the remaining k−a−b bits identify the point x = x0+ x1+ x2
within the subinterval (see Fig. 24.9). The trick is to use linear interpolation, with a
constant term determined for each subinterval and a common slope for each of the larger
intervals (Fig. 24.9b). Taking the slope within each interval to be a constant, that is,
ignoring the b-bit middle segment of x, allows us to incorporate the remaining k− a− b
bits as inputs to the second table, thus obviating the need for a multiplication that would
be needed in a linear approximation (see Fig. 24.6). As shown in Fig. 24.9a, the bipartite
table method uses only an adder and two tables: one of size 2a+b words, to provide the
constant term u(x0, x1), and another of size 2k−b words, for the interval slope multiplied
by x2. We thus have

f (x) ≈ Subinterval constant+ Interval slope× x2 = u(x0, x1)+ v(x0, x2)

Note that the use of an adder, and its associated delay, can be avoided by taking the
outputs of the two tables in Fig. 24.9 as a carry-save representation for the result, and
using it in this form for subsequent computation steps.

a

Add

u Table

v Table

b

k-bit output y

x0

x1

x2

 u(x0, x1)

 v(x0, x2)

≈f(x)

Subintervals

An interval

 f (x)

 x

(a) Hardware realization (b) Linear approximation

Common
Slope

k-bit input x

k–a–b

Figure 24.9 The bipartite table method.

514 Chapter 24 Arithmetic by Table Lookup

The bipartite table method represents a substantial improvement over the table size
of 2k words, which would be needed with direct table lookup. The following example
quantifies the savings.

■ EXAMPLE 24.1 Consider the computation of f (x), where both x and f (x) are 24-bit
fixed-point unsigned numbers. Setting a = b = 8 bits in Fig. 24.9 results in two 216-entry
tables, for a total of 217 words, whereas direct table lookup would have required a table
with 224 entries. The compression factor, which is achieved at the expense of an adder and
its associated delay, is 224/217 = 128. We can improve the compression factor by choosing
a smaller value for a. For example, a = 7 and b = 8 yield a higher compression factor
of 224/(215 + 216) ∼= 170.7, sacrificing some accuracy in the process. On the other hand,
a = 10 and b = 7 produce better accuracy, with a correspondingly lower compression
factor of 224/(217 + 217) = 64. The resulting accuracy in each case can be readily derived
for any specific function f , using the Taylor-series expansion of f at the point x0 + x12−a .

The error in computing f (x) via the bipartite table method has four distinct sources:

1. Linear approximation (i.e., taking only the first two terms in the Taylor series
expansion)

2. Using a common slope for all subintervals within an interval
3. Rounding of the table entries to k + g bits (using g guard bits)
4. Final rounding after the addition

The main design challenge for using the bipartite table method is thus the determi-
nation of the parameters a and b, and the widths of the table entries (parameter g), to
achieve a desired error bound with reasonable cost (measured by the total table size).
Analyses and experimental evaluations have shown that an error bound of 1 ulp can
be readily achieved for most elementary functions of practical interest. This level of
accuracy is sometimes referred to as faithful rounding, in contrast to exact rounding,
which has a worst-case error of 1

2 ulp. Both types of rounding can have errors in either
direction. Exact rounding guarantees the least possible error in either direction. Faithful
rounding, on the other hand, only guarantees the error to be the least possible in the
particular direction that it happens to fall.

The symmetric bipartite table method [Stin99] halves the table size by taking advan-
tage of the (approximate) symmetry of the function value in each subinterval around
its midpoint (see Fig. 24.9b). Thus, for each subinterval, one can store the value at its
midpoint, adding (subtracting) the product of the common slope and the displacement
of x from the midpoint, depending on whether x falls to the right (MSB of x2 = 1) or to
the left (MSB of x2 = 0) of the midpoint. This method implies the added cost/delay of
two rows of XOR gates for selective complementation and a very slight extra error due
to the assumption of symmetry.

The bipartite table method has been extended to a general multipartite scheme. For
example, in the tripartite table method, the argument x is divided into four segments
x0, x1, x2, x3, of widths a, b, c, and k − a − b− c. The three tables are then accessed by

Problems 515

supplying them with the a + b bits of x0 and x1, a + c bits of x0 and x2, and k − b− c
bits of x0 and x3.

The brief treatment of multipartite table methods presented in this section is inade-
quate for the practical application of such table size reduction schemes. Interested readers
should consult the cited references to learn about the details of error estimation (both
absolute and relative errors) and the use of various search-based strategies for optimizing
the table contents.

PROBLEMS 24.1 Squaring by table lookup

Show that if the integers x and y are identical in their least-significant h bits, their
squares will be identical in h + 1 bits. Use this result to propose a split-table
method (as discussed at the end of Section 24.2) for squaring and estimate the
extent of savings in the total table size [Vinn95].

24.2 Squaring by table lookup

Consider the following scheme for squaring a k-bit integer x by using much
smaller squaring tables. Divide x into two equal-width parts xH and xL. Then
use the identity (2k/2xH + xL)2 = 2kx2

H + 2k/2+1xHxL + x2
L and perform the

multiplication xHxL through squaring. Supply the details of the preceding table-
lookup scheme for squaring and discuss its speed and cost compared with other
methods based on table lookup.

24.3 Squaring by table lookup

In Section 24.2, we saw that the table size for squaring can be reduced by a factor
of about 2 if the LSB ε of x+ y and x− y is handled in a specific way. Consider
γ and δ, the second LSB of x + y and x − y, respectively. Would more complex
pre- and postprocessing steps allow us to ignore these bits in table lookup, thus
reducing the table size by another factor of 2? Investigate this question, and
comment on the cost-effectiveness of the resulting scheme.

24.4 Binary-to-unary reduction method

a. Use the binary-to-unary reduction approach of Section 24.2 to devise a
method for computing xey via table lookup with pre- and/or postprocessing
elements.

b. Repeat part a for the function xy.

24.5 Evaluation of linear expressions

Consider the recurrence z(i+1) = az(i) + bx(i), with z(0) = 0.

a. Using the scheme of Fig. 24.4, show a bit-serial implementation of the recur-
rence, assuming unsigned values, with as little hardware as possible. Hint:
Replace the single flip-flop for zi with a shift register.

b. What is the input-to-output latency of the design of part a?
c. How should the design of part a be modified for signed inputs?

516 Chapter 24 Arithmetic by Table Lookup

24.6 Interpolating memory with nonuniform intervals

At the end of Section 24.4, a scheme was described to allow the use of nonuniform
intervals for an interpolating memory.

a. Design the required hardware circuit to select one of four table entries based
on 3 leading bits of x, as described.

b. How would the design of part a change if we wanted the intervals to be wider
on the xmax side and narrower near xmin?

c. Generalize the design of part a to the case of 2h nonuniform intervals based
on the h+ 1 leading bits of x.

d. Design an address formation circuit for nonuniform intervals of widths
4a, 2a, a, a, a, a, 2a, 4a, in order from left to right; i.e., narrower intervals
in the middle and wider ones near the two extremes.

e. Repeat part d for the reverse situation of wider intervals in the middle and
narrower ones near the two extremes.

24.7 Bipartite table method

Consider approximating the reciprocal function 1/d with a maximum error of
2−8, for 0 ≤ d < 1.

a. Derive the total table size in bits for the bipartite table method.
b. What is the required table size in a direct single-table implementation?
c. Compare the results of parts a and b and comment on their relative cost-

effectiveness.

24.8 Function evaluation by table lookup

Base-2 logarithm of 16-bit unsigned fractions is to be computed at the input
interface of a logarithmic number system processor in which the logarithm is rep-
resented as a 12-bit, fixed-point, 2’s-complement number with 5 whole (including
the sign position) and 7 fractional bits. Using a single table of size 216 × 12 bits
is impractical. Suggest a method that can use smaller tables (say, up to 10K bits
in all) and is also quite fast compared with convergence schemes. Analyze your
method with respect to representation error and hardware requirements.

24.9 Interpolating memory for computing sin x

Let angles be represented as 8-bit unsigned fractions x in units of π radians;
for example, (.1000 0000)two represents the angle π/2. Consider the following
“interpolating memory” scheme for computing sin x. Two four-word memories
are used to store 10-bit, 2’s-complement fractions a(i) and b(i)/4, 0 ≤ i ≤ 3.
The function sin x is then computed by using the linear interpolation formula
sin x ≈ a(i) + b(i)�x, where i = (x−1x−2)two is the interval index and 4 �x =
(0.x−3x−4x−5x−6x−7x−8)two is the scaled offset.

a. Determine the contents of the two tables to minimize the maximum absolute
error in computing sin x for 0 ≤ x ≤ 1.

b. Compute the maximum absolute and relative errors implied by your
tables.

Problems 517

c. Compare these errors and the implementation cost of your scheme to those
of a straight table-lookup scheme, where x is used to access a 256× 8 table,
and discuss.

24.10 Interpolating memory

a. Construct a table similar to Table 24.1 corresponding to the tabular evaluation
of the function ex for x in [1, 2). Compare the absolute and relative errors for
this function to those in Table 24.1 and discuss.

b. Repeat part a for the function 1/x, with x in [1, 2).
c. Repeat part a for the function

√
x, where x in [1, 4).

24.11 Accuracy of interpolating memory

a. Extend the linear interpolation part of Fig. 24.7 for h up to 16 bits. Show your
analysis in full and present the resulting data in tabular as well as graphic
form.

b. Repeat part a for linear interpolation applied to the function sin x.
c. Repeat part a for linear interpolation applied to the function ex.
d. Discuss and compare the observed trends in parts a, b, and c.

24.12 Piecewise table lookup

For the piecewise table-lookup method of function evaluation, presented at
the beginning of Section 24.5, discuss how the exponent and sign are handled
[Wong95].

24.13 Modular reduction with a single table

In the description of Fig. 24.8a, it was mentioned that for g ≥ d , two tables are
required. For g < d , Table 2 of Fig. 24.8a can be eliminated. Derive conditions
under which such a single-table realization leads to a smaller total table size.

24.14 Modular reduction by two-step refinement

In the two-table modular reduction method shown in Fig. 24.8b, it is possible to
modify the contents of Table 1 (without increasing its size) in such a way that
the d*-bit adder can be replaced by an h-bit adder plus some extra logic. Show
how this can be accomplished and discuss the speed and cost implications of the
modified design.

24.15 Modular reduction using tables only

Consider tabular reduction by multilevel table lookup using no component other
than tables. Figures 24.8a and 24.8b can both be converted to such pure tabular
realizations by replacing the adders with tables. Note that other simplifications
might occur once the adders have been removed.

a. Derive the total table size for the pure tabular version of Fig. 24.8a.
b. Derive the total table size for the pure tabular version of Fig. 24.8b.
c. Compare the results of parts a and b and discuss.

518 Chapter 24 Arithmetic by Table Lookup

24.16 Multilevel modular reduction

a. Generalize the two-level table-lookup scheme of Fig. 24.8a to more than two
tables in level 1 followed by a single table, and no other component, in level
2. Discuss how the optimal number of tables in level 1 can be determined.

b. Show how the scheme of part a can be extended to three or more levels.
c. Is the scheme of Fig. 24.8b generalizable to more than two levels?

24.17 Reduced tables for RNS multiplication

a. By relating the mod-p product of p − x and p − y to xy mod p, show that
the size of a mod-p multiplication table can be reduced by a factor of about
4 [Parh93b].

b. Show that an additional twofold reduction in table size is possible because of
the commutativity of modular multiplication, namely, xy mod p = yx mod
p. Explain how the reduced table is addressed.

24.18 Squaring by table lookup

Given a k-bit unsigned binary integer x = (xk−1xk−2xk−3 · · · x1x0)two, prove the
equality

(xk−1xk−2xk−3 · · · x1x0)
2

= (xk−2xk−3 · · · x1x0)
2 + xk−1(xk−2x̄k−2xk−3 · · · x1x0)2

k

and show that its repeated application allows us to compute x2 using small lookup
tables and multioperand addition.

24.19 Interpolating memory for computing log2x

Design a hardware unit based on an interpolating memory (with linear interpola-
tion), and other components as required, to compute log2 x, where x is a nonnega-
tive floating-point number in the IEEE 754-2008 single-precision binary format.

24.20 Interpolating memory for computing log2x

Using the error plots given in Fig. 24.7, derive the hardware requirements for
computing log2 x with a maximum error of at most 10−7 based on linear, second-
degree, and third-degree interpolation. Which of the three schemes appears to be
the most cost-effective?

24.21 Division speedup via a reciprocal cache

In computers that have fast multipliers and perform division via reciprocation,
division can be speeded up by using a small reciprocal memo table (RMT). When
a division z/d is to be performed, RMT is first consulted to see if 1/d has been
computed in the recent past. If so, the value of 1/d is read out from the table and
the multiplication z× (1/d) is performed. Otherwise, 1/d is obtained by a recip-
rocal computation unit, stored in RMT, and also multiplied by z. The relationship

References and Further Readings 519

between RMT and the reciprocation unit is basically the same as that between
cache and main memories.

a. Discuss how a 64-entry direct-mapped or two-way set-associative RMT
might work (pick one of the two schemes and describe RMT contents, access
method, etc.).

b. If multiplication takes 3 clock cycles, reciprocal computation 20 cycles,
instruction decoding 1 cycle, and table lookup 2 cycles, express the aver-
age division time as a function of hit rate h in the RMT. State any additional
assumptions that are needed to derive the answer.

c. What hit rate h would be required for this arrangement to yield a factor of 3
speedup for division? What types of applications do you think might lead to
such a hit rate with a small 64-entry RMT?

24.22 Fast division with small table

To compute z/d , where d = dH + dL, one can use the approximation z/d =
z(dH − dL)/d2

H. The term 1/d2
H is found by table lookup and dH − dL is formed

by a modified form of Booth’s recoding without an actual subtraction. Thus, only
two multiplications and a table lookup are needed. Supply the implementation
details for the algorithm above and discuss its error characteristics [Hung99].

24.23 Multiplierless piecewise linear approximation

It has been observed that if in the linear interpolation scheme of Fig. 24.6,
we limit the coefficients b(i) to having a certain maximum number of 1s and
−1s in their binary signed-digit representations, the multiplier can be replaced
by a configurable shift-add network of much lower cost and latency [Gust06].
Study this method and write a two-page report about its strengths and potential
weaknesses.

REFERENCES AND FURTHER READINGS

[DasS95] Das Sarma, D., and D. W. Matula, “Faithful Bipartite ROM Reciprocal Tables,” Proc.
12th Symp. Computer Arithmetic, pp. 17–28, 1995.

[deDi05] de Dinechin, F., and A. Tisserand, “Multipartite Table Methods,” IEEE Trans.
Computers, Vol. 54, No. 3, pp. 319–330, 2005.

[Ferg91] Ferguson, W. E., Jr., and T. Brightman, “Accurate and Monotone Approximations of
Some Transcendental Functions,” Proc. 10th Symp. Computer Arithmetic,
pp. 237–244, 1991.

[Gust06] Gustafsson, O., and K. Johanson, “Multiplierless Piecewise Linear Approximation of
Elementary Functions,” Proc. 40th Asilomar Conf. Signals, Systems, and Computers,
pp. 1678–1681, 2006.

[Hung99] Hung, P. J., H. Fahmy, O. Mencer, and M. J. Flynn, “Fast Division Algorithm with
Small Lookup Table,” Proc. 33rd Asilomar Conf. Signals Systems and Computers,
pp. 1465–1468, 1999.

520 Chapter 24 Arithmetic by Table Lookup

[Korn05] Kornerup, P., and D. W. Matula, “Single Precision Reciprocals by Multipartite Table
Lookup,” Proc. 17th Symp. Computer Arithmetic, pp. 240–248, 2005.

[Lee03] Lee, D.-U, W. Luk, J. Villasenor, and P. Y. K. Cheung, “Non-Uniform Segmentation
for Hardware Function Evaluation,” Proc. 13th Int’l Conf. Field-Programmable
Logic and Applications, LNCS #2778, pp. 796–807, 2003.

[Ling90] Ling, H., “An Approach to Implementing Multiplication with Small Tables,” IEEE
Trans. Computers, Vol. 39, No. 5, pp. 717–718, 1990.

[Mull99] Muller, J.-M., “A Few Results on Table-Based Methods,” Reliable Computing, Vol. 5,
pp. 279–288, 1999.

[Noet89] Noetzel, A. S., “An Interpolating Memory Unit for Function Evaluation: Analysis and
Design,” IEEE Trans. Computers, Vol. 38, No. 3, pp. 377–384, 1989.

[Parh93a] Parhami, B., “Optimal Table-Lookup Schemes for Binary-to-Residue and
Residue-to-Binary Conversions,” Proc. 27th Asilomar Conf. Signals, Systems, and
Computers, Vol. 1, pp. 812–816, 1993.

[Parh93b] Parhami, B., and H.-F. Lai, “Alternate Memory Compression Schemes for Modular
Multiplication,” IEEE Trans. Signal Processing, Vol. 41, pp. 1378–1385, 1993.

[Parh94a] Parhami, B., “Analysis of Tabular Methods for Modular Reduction,” Proc. 28th
Asilomar Conf. Signals, Systems, and Computers, pp. 526–530, 1994.

[Parh94b] Parhami, B., and C. Y. Hung, “Optimal Table Lookup Schemes for VLSI
Implementation of Input/Output Conversions and Other Residue Number Operations,”
VLSI Signal Processing VII (Proceedings of an IEEE workshop), pp. 470–481, 1994.

[Parh97] Parhami, B., “Modular Reduction by Multi-Level Table Lookup,” Proc. 40th Midwest
Symp. Circuits and Systems, Vol. 1, pp. 381–384, 1997.

[Schu99] Schulte, M. J., and J. E. Stine, “Approximating Elementary Functions with Symmetric
Bipartite Tables,” IEEE Trans. Computers, Vol. 48, No. 8, pp. 842–847, 1999.

[Stin99] Stine, J. E., and M. J. Schulte, “The Symmetric Table Addition Method for Accurate
Function Approximation,” J. VLSI Signal Processing, Vol. 21, pp. 167–177, 1999.

[Tang91] Tang, P. T. P., “Table-Lookup Algorithms for Elementary Functions and Their Error
Analysis,” Proc. Symp. Computer Arithmetic, pp. 232–236, 1991.

[Vinn95] Vinnakota, B., “Implementing Multiplication with Split Read-Only Memory,” IEEE
Trans. Computers, Vol. 44, No. 11, pp. 1352–1356, 1995.

[Wong95] Wong, W. F., and E. Goto, “Fast Evaluation of the Elementary Functions in Single
Precision,” IEEE Trans. Computers, Vol. 44, No. 3, pp. 453–457, 1995.

VII
IMPLEMENTATION
TOPICS

■ ■ ■

“The scientist describes what is; the engineer creates what never was.”
T H E O D O R E V O N K A R M A N

“Always design a thing by considering it in its next larger context — a chair in a room, a room in a house,
a house in an environment, an environment in a city plan.”

E L I E L S A A R I N E N

■ ■ ■

W E HAVE THUS FAR IGNORED SEVERAL IMPORTANT TOPICS THAT BEAR ON THE

usefulness and overall quality of computer arithmetic units.

In some contexts—say, when we want the hardware to support

two floating-point arithmetic operations per cycle on the aver-

age and do not mind that the result of each operation becomes

available after many cycles—throughput might be more impor-

tant than latency. Pipelining is the mechanism used to achieve

high throughput while keeping the cost and size of the circuits

in check. In other contexts, the size or power requirements of the

arithmetic circuits are of primary concern. In some critical applica-

tions, or in harsh operating environments, tolerance to permanent

and transient hardware faults might be required. Finally, ease of

implementation with flexible hardware components,such as field-

programmable gate arrays, rests upon certain special provisions

in the design. Our discussions in this part should be viewed as

windows into advanced implementation techniques. Each of the

following four chapters could be expanded into a book.

C H A P T E R 25
High-Throughput Arithmetic

C H A P T E R 26
Low-Power Arithmetic

C H A P T E R 27
Fault-Tolerant Arithmetic

C H A P T E R 28
Reconfigurable Arithmetic

521

25 High-Throughput
Arithmetic

■ ■ ■

“The HMO maternity ward, drive-through procedure: (1) Pull up to the delivery window, (2)
Push, (3) Pay at the cashier window, (4) Pick up baby. Have a nice day!”

B A S E D O N A ’ N O N S E Q U I T U R ’ C A R T O O N B Y W I L E Y

■ ■ ■

W ith very few exceptions, our discussions to this point have focused on

methods of speeding up arithmetic computations by reducing the input-

to-output latency, defined as the time interval between the application of inputs

and the availability of outputs.When two equal-cost implementations were possible,

we always chose the one offering a smaller latency. Once we look beyond individ-

ual operations, however, latency ceases to be the only indicator of performance.

In pipelined mode of operation, arithmetic operations may have higher latencies

owing to pipelining overhead. However, one hardware unit can perform multiple

overlapped operations at once. This concurrency often more than makes up for the

higher latency. Chapter topics include:

25.1 Pipelining of Arithmetic Functions

25.2 Clock Rate and Throughput

25.3 The Earle Latch

25.4 Parallel and Digit-Serial Pipelines

25.5 On-Line or Digit-Pipelined Arithmetic

25.6 Systolic Arithmetic Units

25.1 PIPELINING OF ARITHMETIC FUNCTIONS

The key figure of merit for a pipelined implementation is its computational throughput,
defined as the number of operations that can be performed per unit of time. The inverse

523

524 Chapter 25 High-Throughput Arithmetic

of throughput, the pipelining period, is the time interval between the application of
successive input data sets for proper overlapped computation. Latency is still important
for two reasons:

1. There may be an occasional need to perform single operations that are not
immediately followed by others of the same type.

2. Data dependencies or conditional execution (pipeline hazards) may force us to
insert bubbles into the pipeline or to drain it altogether.

However, in pipelined arithmetic, latency assumes a secondary role. We will see later
in this chapter that at times, a pipelined implementation may improve the latency of a
multistep arithmetic computation while also reducing its hardware cost. In such a case,
pipelining is obviously the preferred method, offering the best of all worlds.

Note that we have already discussed several pipelined implementations of arithmetic
operations. The reader should refer to Fig. 11.17 for a pipelined partial-tree multiplier
with a stage latency of two full-adder levels and to Fig. 11.18 for flexible pipelining
of an array multiplier, with a desired number of full-adder levels in each stage. Similar
pipelining strategies are applicable to the array dividers of Figs. 15.2 and 15.3 and to the
array square-rooter of Fig. 21.8. Finally, in Section 16.5, we indicated how a two-stage
pipelined multiplier can nearly double the speed of division via repeated multiplications
(see Fig. 16.6). In the first three sections of this chapter, we present some general
design considerations for effective pipelining. The reader should be able to apply these
methods to designs of the types just mentioned with no difficulty. Some possibilities
are explored in the end-of-chapter problems. Applications of pipelining methods to bit-
or digit-serial computation, and the design of systolic arithmetic units, are covered in
Sections 25.4–25.6.

Figure 25.1 shows the structure of a σ -stage arithmetic pipeline. Before considering
a number of practical issues in the design of arithmetic pipelines, it is instructive to study
the trade-offs among throughput, latency, and implementation cost.

Consider an arithmetic function unit whose initial cost is g (in number of logic gates,
say) and has a latency of t. Our analysis will be based on a number of simplifying
assumptions:

1. The pipelining time overhead per stage is τ (latching time delay).
2. The pipelining cost overhead per stage is γ (latching cost).
3. The function can be divided into σ stages of equal latency for any σ .

Figure 25.1 An
arithmetic function
unit and its σ -stage
pipelined version.

In Out
1 . . .

Interstage latchesInput
latches

Output
latches

In Out
Nonpipelined

(t/σ) + τ

2 σ3

t + στ

t

Pipelining of Arithmetic Functions 525

Then, the latency T , throughput R, and cost G of the pipelined implementation are

Latency T = t + στ

Throughput R = 1

T/σ
= 1

t/σ + τ
Cost G = g + σγ

We see that, theoretically, throughput approaches its maximum possible value of 1/τ

when σ becomes very large. In practice, however, it does not pay to reduce t/σ below
a certain threshold; typically four logic gate levels. Even then, one seldom divides the
logic into four-level slices blindly; rather, one looks for natural boundaries at which
interstage signals (and thus latching costs) will be minimized, even though this may lead
to additional stage delay. But let us assume, for the sake of simplifying our analysis, that
pipeline stage delay is uniformly equal to four gate delays (4δ). Then, σ = t/(4δ) and

Latency T = t
(

1+ τ

4δ

)

Throughput R = 1

T/σ
= 1

4δ + τ

Cost G = g

(
1+ tγ

4gδ

)

The preceding equalities give us an idea of the overhead in latency, τ/(4δ), and imple-
mentation cost, tγ /(4gδ), to maximize the computational throughput within practical
limits.

If throughput is not the single most important factor, one might try to maximize
a composite figure of merit. For example, throughput per unit cost may be taken as
representing cost-effectiveness:

E = R

G
= σ

(t + στ)(g + σγ)

To maximize E, we compute dE/dσ :

dE

dσ
= tg − σ 2τγ

(t + στ)2(g + σγ)2

Equating dE/dσ with 0 yields

σ opt =
(

tg

τγ

)1/2

Our simplified analysis thus suggests that the optimal number of pipeline stages for
maximal cost-effectiveness is directly related to the latency and cost of the original
function and inversely related to pipelining delay and cost overheads: it pays to have
many pipeline stages if the function to be implemented is very slow or highly complex,
but few pipeline stages are in order if the time and/or cost overhead of pipelining is too
high. All in all, not a surprising result!

As an example, with t = 40δ, g = 500 gates, τ = 4δ, and γ = 50 gates, we obtain
σ opt = 10 stages. The result of pipelining is that both cost and latency increase by a
factor of 2 and throughput improves by a factor of 5. When pipeline hazards are factored
in, the optimal number of stages will be much smaller.

526 Chapter 25 High-Throughput Arithmetic

25.2 CLOCK RATE AND THROUGHPUT

Consider a σ -stage pipeline and let the worst-case pipeline stage delay be tstage. Suppose
one set of inputs is applied to the pipeline at time t1. At time t1+ tstage+ τ , the results of
this set are safely stored in output latches for the stage. Applying the next set of inputs at
time t2 satisfying t2 ≥ t1+ tstage+ τ is enough to ensure proper pipeline operation. With
the preceding condition, one set of inputs can be applied to the pipeline every tstage + τ

time units:

Clock period = �t = t2 − t1 ≥ tstage + τ

Pipeline throughput is simply the inverse of the clock period:

Throughput = 1

clock period
≤ 1

tstage + τ

The preceding analysis assumes that a single clock signal is distributed to all circuit
elements and that all latches are clocked at precisely the same time. In reality, we have
some uncontrolled or random clock skew that may cause the clock signal to arrive at
point B before or after its arrival at point A. With proper design of the clock distribution
network, we can place an upper bound ±ε on the amount of uncontrolled clock skew at
the input and output latches of a pipeline stage. Then, the clock period is lower-bounded
as follows:

Clock period = �t = t2 − t1 ≥ tstage + τ + 2ε

The term 2ε is included because we must assume the worst case when input latches
are clocked later and the output latches earlier than planned, reducing the time that is
available for stage computation by 2ε. We thus see that uncontrolled clock skew degrades
the throughput that would otherwise be achievable.

For a more detailed examination of pipelining, we note that the stage delay tstage
is really not a constant but varies from tmin to tmax, say; tmin corresponds to fast paths
through the logic (fewer gates or faster gates on the path) and tmax to slow paths. Suppose
that one set of inputs is applied at time t1. At time t1 + tmax + τ , the results of this set
are safely stored in output latches for the stage. Assuming that the next set of inputs are
applied at time t2, we must have

t2 + tmin ≥ t1 + tmax + τ

if the signals for the second set of inputs are not to get intermixed with those of the
preceding inputs. This places a lower bound on the clock period:

Clock period = �t = t2 − t1 ≥ tmax − tmin + τ

The preceding inequality suggests that we can approach the maximum possible through-
put of 1/τ without necessarily requiring very small stage delay. All that is required is to
have a very small delay variance tmax − tmin.

Clock Rate and Throughput 527

Wave front
i

Wave front
i + 1

Wave front
i + 2

Faster signals

Slower signals

Allowance for
latching, skew, etc.

Wave front
i + 3

(just arriving at stage output)

t – tmax min

(not yet applied)

S
ta

ge
 o

ut
pu

t

S
ta

ge
 In

pu
t

Figure 25.2 Wave pipelining allows multiple computational wave fronts to coexist in a single
pipeline stage.

Stage
input

Stage
output

Time

Lo
gi

c
de

pt
h

t min t max

Clock cycle

 Controlled
clock skew

Stage
input

Stage
output

Time

t min t max

Clock cycle

Stationary
region
(unshaded)

Transient
region
(shaded)

Lo
gi

c
de

pt
h

(a) Ordinary pipelining

(b) Wave pipelining

Figure 25.3 An alternate view of the throughput advantage of wave pipelining over ordinary
pipelining using a time-space representation.

Using the delay through a pipeline segment as a kind of temporary storage, thus
allowing “waves” of unlatched data to travel through the pipeline, is known as wave
pipelining [Flyn95]. The concept of wave pipelining is depicted in Fig. 25.2, with the
wave fronts showing the spatial distribution of fast and slow signals at a given instant.
Figure 25.3, an alternate representation of wave pipelining, shows why it is acceptable
for the transient regions of consecutive input sets to overlap in time (horizontally) as long

528 Chapter 25 High-Throughput Arithmetic

as they are separated in space (vertically). Note that conventional pipelining provides
separation in both time and space.

The preceding discussion reveals two distinct strategies for increasing the throughput
of a pipelined function unit: (1) the traditional method of reducing tmax, and (2) the
counterintuitive method of increasing tmin so that it is as close to tmax as possible. In the
latter method, reducing tmax is beneficial only to the extent that such reduction softens
the performance penalty of pipeline hazards.

Suppose, for the moment, that tmax − tmin = 0. Then, the clock period can be taken
to be �t ≥ τ and the throughput becomes 1/�t ≤ 1/τ . Since a new input enters the
pipeline stage every �t time units and the stage latency is tmax+τ , the clock application
at the output latch must be skewed by (tmax + τ) mod �t to ensure proper sampling of
the results. For example, if tmax + τ = 12 ns and �t = 5 ns, then a clock skew of+2 ns
is required at the stage output latches relative to the input latches. This controlled clock
skew is a necessary part of wave pipelining.

More generally, tmax − tmin is nonzero and perhaps different for the various pipeline
stages. Then, the clock period �t is lower-bounded as

�t ≥ max
1≤i≤σ

(
t(i)max − t(i)min + τ

)

and the controlled clock skew at the output of stage i will be

S(i) =
i∑

j=1

(
t(j)max + τ

)
mod �t

We still need to worry about uncontrolled or random clock skew. With the amount of
uncontrolled skew upper-bounded by ±ε, we must have

Clock period = �t = t2 − t1 ≥ tmax − tmin + τ + 4ε

We include the term 4ε because at input, the clocking of the first set of inputs may lag by
ε, while that of the second set leads by ε (a net difference of 2ε). In the worst case, the
same difference of 2ε may exist at the output, but in the opposite direction. We thus see
that uncontrolled clock skew has a larger effect on the performance of wave pipelining
than on standard pipelining, especially in relative terms (ε is now a larger fraction of the
clock period).

25.3 THE EARLE LATCH

The Earle latch, named after its inventor, J. G. Earle, is a storage element whose output
z follows the data input d whenever the clock input C becomes 1. The input data is thus
sampled and held in the latch as the clock goes from 1 to 0. Once the input has been
sampled, the latch is insensitive to further changes in d as long as the clock C remains
at 0. Earle designed the latch of Fig. 25.4 specifically for latching carry-save adders.

Earlier, we derived constraints on the minimum clock period �t or maximum clock
rate 1/�t. The clock period �t has two parts: the duration of the clock being high, Chigh,

The Earle Latch 529

Figure 25.4
Two-level AND-OR
realization of the
Earle latch.

d
C

C
–

z

w

x

y

and duration of the clock being low, Clow.

�t = Chigh + Clow

Now, consider a pipeline stage that is preceded and followed by Earle latches. The
duration of the clock being high in each period, Chigh, must satisfy the inequalities

3δmax − δmin + Smax(C↑, C̄↓) ≤ Chigh ≤ 2δmin + tmin

where δmax and δmin are maximum and minimum gate delays and Smax(C↑, C̄↓) ≥ 0
is the maximum skew between C going high and C̄ going low at the latch input. The
right-hand inequality, constraining the maximum width of the clock pulse, simply asserts
that the clock must go low before the fastest signals from the next input data set can
affect the input z of the Earle latch at the end of the stage. The left-hand inequality asserts
that the clock pulse must be wide enough to ensure that valid data is stored in the output
latch and to avoid logic hazard, should the 0-to-1 transition of C slightly lead the 1-to-0
transition of C̄ at the latch inputs.

The constraints given in the preceding paragraph must be augmented with additional
terms to account for clock skew between pipeline segments and to ensure that logic
hazards do not lead to the latching of erroneous data. For a more detailed discussion, see
[Flyn82, pp. 221–222].

An attractive property of the Earle latch is that it can be merged with the two-level
AND-OR logic that precedes it. For example, to latch

d = vw ∨ xy

coming from a two-level AND-OR circuit, we substitute for d in the equation for the
Earle latch

z = dC ∨ dz ∨ Cz

to get the following combined (logic and latch) circuit implementing z = vw ∨ xy:

z = (vw ∨ xy)C ∨ (vw ∨ xy)z ∨ Cz

= vwC ∨ xyC ∨ vwz ∨ xyz ∨ Cz

The resulting two-level AND-OR circuit is shown in Fig. 25.5.

530 Chapter 25 High-Throughput Arithmetic

Figure 25.5
Two-level AND-OR
latched realization of
the function
z = vw ∨ xy.

C

C

z

v
w

x
y

Alternate designs for the Earle latch exist. These designs optimize the latch for
specific applications or for ease of implementation with target technologies. For example,
a modified Earle latch has been designed [Yang02] that does not require the data input
d to be fanned out, as in the original Earle latch of Fig. 25.4. This feature leads to some
simplifications when the latching function is merged with a two-level AND-OR logic
circuit that precedes it (see Fig. 25.5).

25.4 PARALLEL AND DIGIT-SERIAL PIPELINES

Consider the computation

z =
[
(a + b)cd

e − f

]1/2

To compute z, we need to perform two additions, two multiplications, a division,
and a square-root extraction, in the order prescribed by the flow graph shown in Fig.
25.6a. Assuming that multiplication, division, and square-rooting take roughly the same
amount of time and that addition is much faster, a timing diagram for the computation
can be drawn as shown in Fig. 25.6b. In deriving this timing diagram, it is assumed
that enough hardware components are available to do the computation with maximum
possible parallelism. This implies the availability of one adder and perhaps a shared
multiply/divide/square-root unit.

If the preceding computation is to be performed repeatedly, a pipelined implementa-
tion might be contemplated. By using a separate function unit for each node in the flow
graph of Fig. 25.6a and inserting latches between consecutive operations, the through-
put can be increased by roughly a factor of 4. However, the requirement for separate
multiply, divide, and square-root units would cause the implementation cost to become
quite high.

How would one go about doing this computation bit-serially? Bit-serial addition,
with the inputs supplied beginning from the least-significant bit (LSB), is easy. We also

Parallel and Digit-Serial Pipelines 531

+

–

×

×

√

a
b

c
d

e

f

z/

(a + b) c d

e – f

Latch positions in a four-stage pipeline
(a) Flow graph

+
×

– ×

√

 Output
available

t = 0
Latency (nonpipelined)

Time

/

Pipelining period

(b) Timing diagram

Figure 25.6 Flow graph representation of an arithmetic expression and the associated
timing diagram for its evaluation with digit-parallel computation.

know how to design an LSB-first, bit-serial multiplier (Section 12.3). With LSB-first,
bit-serial computation, as soon as the LSBs of a + b and c × d are produced, a second
bit-serial multiplier can begin the computation of (a+b)×(cd). This bit-level pipelining
is attractive because each additional function unit on the critical path adds very little to
the overall latency.

Unfortunately, however, both division and square-rooting must be performed begin-
ning from the most-significant bit (MSB). So, we cannot begin the division operation
in Fig. 25.6a until the results of (a + b) × (cd) and e − f are available in full. Even
then, the division operation cannot be performed in an MSB-first, bit-serial fashion since
the MSB of the quotient q in general depends on all the bits of dividend and divisor.
To see this, consider the decimal division example 0.1234/0.2469. After inspecting the
most-significant digits of the two operands, we cannot tell what the MSD of the quotient
should be, since

0.1xxx

0.2xxx

can be as large as 0.1999/0.2000 ≈ 0.9995 or as small as 0.1000/0.2999 ≈ 0.3334 (the
MSD of the quotient can thus assume any value in [3, 9]). After seeing the second digit
of each operand, the ambiguity is still not resolved, since

0.12xx

0.24xx

can be as large as 0.1299/0.2400 ≈ 0.5413 or as small as 0.1200/0.2499 ≈ 0.4802. The
next pair of digits further restricts the quotient value to the interval from 0.1239/0.2460

532 Chapter 25 High-Throughput Arithmetic

≈ 0.5037 to 0.1230/0.2469 ≈ 0.4982 but does not resolve the ambiguity in the MSD
of q. Only after seeing all digits of both operands are we able to decide that q−1 = 4.

To summarize the preceding discussion, with standard number representations,
pipelined bit-serial or digit-serial arithmetic is feasible only for computations involv-
ing additions and multiplications. These operations are done in LSB-first order, with the
output from one block immediately fed to the next block. Division and square-rooting
force us to assemble the entire operand(s) and then use one of the algorithms discussed
earlier in the book.

If we are allowed to produce the output in a redundant format, quotient/root digits can
be produced after only a few bits of each operand have been seen, since the precision
required for selecting the next quotient digit is limited. This is essentially because a
redundant representation allows us to recover from an underestimated or overestimated
quotient or root digit. However, the fundamental difference between LSB-first addition
and multiplication and MSB-first division and square-rooting remains and renders a
bit-serial approach unattractive.

25.5 ON-LINE OR DIGIT-PIPELINED ARITHMETIC

Redundant number representation can be used to solve the problems discussed at the end
of Section 25.4. With redundant numbers, not only can we perform division and square-
rooting digit-serially, but we can also convert addition and multiplication to MSD-first
operations, thus allowing for smooth flow of data in a pipelined digit-serial fashion
[Erce84], [Erce88].

Figure 25.7 contrasts the timing of the digit-parallel computation scheme (Fig. 25.6)
to that of a digit-pipelined scheme. Operations now take somewhat longer to complete

Latencies associated with
various operations

–
Digit-pipelined

 √

 Output
complete

Output

×

×

Begin next computation

+
×

– ×

 Output
available

t = 0

Time

(a + b) cd

e –f

/

Digit-parallel

+

/

 √

Figure 25.7 Digit-parallel versus digit-pipelined computation.

On-Line or Digit-Pipelined Arithmetic 533

(though not much longer, since the larger number of cycles required is partially offset by
the higher clock rate allowed for the simpler incremental computation steps). However,
the various computation steps are almost completely overlapped, leading to smaller
overall latency despite the simpler hardware. The reason for varying operation latencies,
defined as the time interval between receiving the ith input digits and producing the ith
output digit, will become clear later in this section.

Again, if the computation is to be performed repeatedly, the pattern shown in the
digit-pipelined part of Fig. 25.7 can be repeated in time (with a small gap for resetting of
the storage elements). Thus, the second computation can begin as soon as all the digits
of the current inputs have been used up.

All that remains is to show that arithmetic operations can be performed in a digit-
serial MSD-first fashion, producing the stream of output digits with a small, fixed
latency in each case. Binary signed-digit (BSD) operands, using the digit set [−1, 1]
in radix 2, result in the simplest digit-pipelined arithmetic hardware. A higher radix r,
with its correspondingly larger digit set, leads to greater circuit complexity, as well
as higher pin count, but may improve the performance, given the smaller number
of cycles required to supply the inputs. An improvement in performance is uncertain
because the more complicated circuit will likely dictate a lower clock rate, thus nulli-
fying some or all of the gain due to reduced cycle count. In practice, r > 16 is seldom
cost-effective.

Floating-point numbers present additional problems in that the exponents must arrive
first and the significands must be processed according to the result of the exponent
preprocessing. However, the adjustments needed are straightforward and do not affect the
fundamental notions being emphasized here. In what follows, we will deal exclusively
with fractional signed-digit operands in the range (−1, 1).

Addition is the simplest operation. We already know that in carry-free addition, the
(−i)th result digit is a function of the (−i)th and (−i − 1)th operand digits. Thus, upon
receiving the two MSDs of the input operands, we have all the information that we need
to produce the MSD of the sum/difference.

Figure 25.8 shows a digit-serial MSD-first implementation of carry-free addition.
The circuit shown in Fig. 25.8 essentially corresponds to a diagonal slice of Fig. 3.2b
and imposes a latency of 1 clock cycle between its input and output.

When carry-free addition is inapplicable (e.g., as is the case for BSD inputs), a
limited-carry addition algorithm must be implemented. For example, using a diagonal

Decimal example:

.1 8

.4 2
- - - - - - - - - - - - - - - -
.5

Shaded boxes show the
“unseen” or unprocessed
parts of the operands and
unknown part of the sum

+

x

y
t

w

s

w

–i+1

–i+1

–i+1

–i

–i

–i

Latch
Latch

(interim sum)

-

Figure 25.8 Digit-pipelined MSD-first carry-free addition.

534 Chapter 25 High-Throughput Arithmetic

BSD example:

.1 0 1

.0 1 1
- - - - - - - - - - - - - - - -

.1

Shaded boxes show the
“unseen” or unprocessed
parts of the operands and
unknown part of the sum

+

x

y
e
p

s

p

–i+2

–i +1

–i+1

–i

–i

–i

Latch

Latch

(position sum)

w–i+1(interim sum)

w–i+2

Latch

t –i+2
-

Figure 25.9 Digit-pipelined MSD-first limited-carry addition.

Figure 25.10
Digit-pipelined
MSD-first
multiplication
process.

. 1 0 1

. 1 1 1
- - - - - - - - - - - - - - - -
. 1 0 1
. -1 0 -1
. 1 0 1

×

- -
. 0

 Already
Unknown

Being processed

a
x-

 processed

slice of Fig. 3.12a, we obtain the design shown in Fig. 25.9 for digit-pipelined limited-
carry addition with a latency of 2 clock cycles.

Multiplication can also be done with a delay of 1 or 2 clock cycles, depending on
whether the chosen representation supports carry-free addition. Figure 25.10 depicts
the process. In the ith cycle, i − 1 digits of the operands a and x have already been
received and are available in internal registers; call these a[−1,−i+1] and x[−1,−i+1].
Also an accumulated partial product p(i−1) (true sum of the processed terms, minus
the digits that have already been output) is available. When a−i and x−i are received,
the three terms x−ia[−1,−i+1] (two-digit horizontal value in Fig. 25.10), a−ix[−1,−i+1]
(two-digit diagonal value in Fig. 25.10), and a−ix−i (circled term in Fig. 25.10) are
computed and combined with the left-shifted p(i−1) to produce an interim partial prod-
uct by a fast carry-free (limited-carry) addition process. The MSD of this result is
the next output digit and is thus discarded before the next step. The remaining digits
form p(i).

Figure 25.11 depicts a possible hardware realization for digit-pipelined multiplication
of BSD fractions. The partial multiplicand a[−1,−i+1] and partial multiplier x[−1,−i+1]
are held in registers and the incoming digits a−i and x−i are used to select the appropriate
multiples of the two for combining with the product residual p(i−1). This three-operand
carry-free addition yields an output digit and a new product residual p(i) to be used

On-Line or Digit-Pipelined Arithmetic 535

a

Mux
–1 1 0

0

x

Mux

0

p

Three-operand carry-free adder

Partial multiplicand Partial multiplier

Product residual

Shift

–i+2

–i–i

–1 1 0

MSD

Figure 25.11 Digit-pipelined MSD-first BSD multiplier.

Table 25.1 Example of digit-pipelined division showing the requirement for 3
cycles of delay before quotient digits can be output (radix = 4, digit set = [−2, 2])

Cycle Dividend Divisor q Range q−1 Range

1 (.0 · · ·)four (.1 · · ·)four (−2/3, 2/3) [−2, 2]

2 (.0 0 · · ·)four (.1-2 · · ·)four (−2/4, 2/4) [−2, 2]

3 (.0 0 1 · · ·)four (.1-2-2 · · ·)four (1/16, 5/16) [0, 1]

4 (.0 0 1 0 · · ·)four (.1-2-2-2 · · ·)four (10/64, 14/64) 1

for the next step. Note that if the digit-pipelined multiplier is implemented based on
Fig. 25.10, then a−i and x−i must be inserted into the appropriate position in their
respective registers. Alternatively, each of the digits a−i and x−i may be inserted into
the least-significant digit (LSD) of its respective register, with p−i+2 extracted from the
appropriate position of the three-operand sum.

Digit-pipelined division is more complicated and involves a delay of 3–4 cycles.
Intuitively, the reason for the higher delay in division is seen to lie in the uncertainties
in the dividend and divisor, which affect the result in opposite directions. The division
example of Table 25.1 shows that with r = 4 and digit set [−2, 2], the first quotient
digit q−1 may remain ambiguous until the fourth digit in the dividend and divisor have
appeared. Note that with the given digit set, only fractions in the range (−2/3, 2/3)
are representable (we have assumed that overflow is impossible and that the quotient is
indeed a fraction).

Note that the example in Table 25.1 shows only that the worst-case delay with this
particular representation is at least 3 cycles. One can in fact prove that 3 cycles of delay
always is sufficient, provided the number representation system used supports carry-
free addition. If limited-carry addition is called for, 4 cycles of delay is necessary and
sufficient.

536 Chapter 25 High-Throughput Arithmetic

Output already
produced

On-line arithmetic unit

Processed
input parts

Unprocessed
input parts

Residual

Figure 25.12 Conceptual view of on-line or digit-pipelined arithmetic.

Table 25.2 Examples of digit-pipelined square-root computation
showing the requirement for 1–2 cycles of delay before root digits
can be output (radix = 10, digit set = [−6, 6], and radix = 2, digit
set = [−1, 1])

Cycle Radicand q Range q−1 Range

1 (.3 · · ·)ten (
√

7/30,
√

11/30) [5, 6]

2 (.3 4 · · ·)ten (
√

1/3,
√

26/75) 6

1 (.0 · · ·)two (0,
√

1/2) [0, 1]

2 (.0 1 · · ·)two (0,
√

1/2) [0, 1]

3 (.0 1 1 · · ·)two (1/2,
√

1/2) 1

The algorithm for digit-pipelined division and its hardware implementation are sim-
ilar to those of multiplication; both follow the general flow of on-line arithmetic, shown
schematically in Fig. 25.12. A residual is maintained that is in effect the result of sub-
tracting the product of the known digits of the quotient q and the known digits of the
divisor d from the dividend z. With each new digit of q that becomes known, the product
of that digit and the partial divisor, as well as the product of the new digit of d and the
partial quotient, must be subtracted from the residual. A few bits of the residual, and of
the divisor d , may then be used to estimate the next quotient digit.

Square-rooting can be done with a delay of 1–2 cycles, depending on the number
representation system used. The first square-rooting example in Table 25.2 shows that,
with r = 10 and digit set [−6, 6], the first root digit q−1 may remain ambiguous until
the second digit in the radicand has appeared. The second example, with r = 2 and
digit set [−1, 1], shows that 2 cycles of delay may be needed in some cases. Again the
algorithm and required hardware for digit-pipelined square-rooting are similar to those
for digit-pipelined multiplication and division.

25.6 SYSTOLIC ARITHMETIC UNITS

In our discussion of the design of semisystolic and systolic bit-serial unsigned or 2’s-
complement multipliers (Section 12.3), we noted that the systolic design paradigm allows
us to implement certain functions of interest as regular arrays of simple cells (ideally,

Systolic Arithmetic Units 537

all identical) with intercell signals carried by short, local wires. To be more precise, we
must add to the requirements above the following: no unlatched signal can be allowed
to propagate across multiple cells (for otherwise a ripple-carry adder would qualify as a
systolic design).

The term “systolic arrays” [Kung82] was coined to characterize cellular circuits in
which data elements, entering at the boundaries, advance from cell to cell, are trans-
formed in an incremental fashion, and eventually exit the array, with the lock-step data
movement across the array likened to the rhythmic pumping of blood in the veins. As
digital circuits have become faster and denser, we can no longer ignore the contribu-
tion of signal propagation delay on long wires to the latency of various computational
circuits. In fact, propagation delay, as opposed to switching or gate delays, is now the
main source of latency in modern digital design. Thus, any high-performance design
requires great attention to minimizing wire length, and in the extreme, adherence to
systolic design principles.

Fortunately, we already have all the tools needed to design high-performance systolic
arithmetic circuits. In what follows, we present four examples.

An array multiplier can be transformed into a bit-parallel systolic multiplier through
the application of pipelining methods discussed earlier in this chapter. Referring to the
pipelined 5× 5 array multiplier in Fig. 11.18, we note that it requires the bits ai and xj

to be broadcast within the cells of the same column and row, respectively. Now, if ai is
supplied to the cell at the top row and is then passed from cell to cell in the same column
on successive clock ticks, the operation of each cell will be delayed by one time step with
respect to the cell immediately above it. If the timing of the elements is adjusted, through
insertion of latches where needed, such that all other inputs to the cell experience the
same added delay, the function realized by the circuit will be unaffected. This type of
transformation is known as systolic retiming. Additional delays must be inserted on the
p outputs if all bits of the product are to become available at once. A similar modification
to remove the broadcasting of the xj signals completes the design.

Similarly, a digit-pipelined multiplier can be designed in systolic form to maximize
the clock rate and thus the computation speed. Since in the design shown in Fig. 25.11,
a−i and x−i are effectively broadcast to a set of 2-to-1 multiplexers (muxes), long wires
and large fan-outs are involved. Since, however, not all the digits of x−ia[−1,−i+1] and
a−ix[−1,−i+1] are needed right away, we can convert the design into a cellular array
(Fig. 25.13) in which only the MSDs of x−ia[−1,−i+1] and a−ix[−1,−i+1] are immediately
formed at the head cell, with a−i and x−i passed on to the right on the next clock tick to
allow the formation of other digits in subsequent clock cycles and passing of the results
to the left when they are needed. Supplying the details of this systolic design is left as
an exercise.

a

x–i

–i . . .

. . .

. . .p–i+1

Head
cell

Figure 25.13 High-level design of a systolic radix-4, digit-pipelined multiplier.

538 Chapter 25 High-Throughput Arithmetic

x input

x input

D D D

2D2D2D

DDD

h(1)

h(1)h(0)

h(0)

� �

� �

�

�

��

��

��

�

�h input

y output

y output

enable

enable

(a) Conventional: Broadcast control, broadcast data

(b) Systolic: Pipelined control, Pipelined data

Figure 25.14 Conventional and systolic realizations of a programmable FIR filter.

It has been observed that the Montgomery modular multiplication algorithm lends
itself quite well to systolic realization [Walt93], because it resolves the conflict between
the direction of movement of the carry signals (LSB to MSB) and the decision process
for taking away multiples of the modulus m (MSBs). Recall from our discussion at the
end of Section 15.4 that the choice of whether to modify an obtained partial result in
Montgomery modular multiplication is based on its LSB (LSD in higher radices). Thus,
a structure similar to an array multiplier, with more complex cells to accommodate the
storage of partial-product bits and the operation of adding m, can be used to perform the
process in a systolic fashion, at very high clock rates. Several systolic modular multiplier
designs have been proposed over the years. Example designs can be found elsewhere
[Nedj06], [Walt93].

Our final example pertains to the design of programmable finite impulse response
(FIR) filters, traditionally realized as in Fig. 25.14a. The computation of an N -tap FIR
filter is as follows:

y(t) =
N−1∑
i=0

h(i)x(t − i)

Thus, the output y at time step t is a function of the filter inputs at time steps t − i, for
0 ≤ i ≤ N − 1. Programmability means that the coefficients h(i) can be dynamically
modified to adapt to changing conditions. A special control signal allows the filter to
switch between programming (adaptation) and normal operation modes when desired.
A systolic version of the FIR filter, with pipelined data and control, is depicted in Fig.
25.14b [Parh03]. Detailed modeling has shown that as integrated circuit speed improves
via technology scaling, the systolic design of Fig. 25.14b preserves nearly all the speed
benefits, whereas the conventional design loses nearly 50% of the advantage with as few
as 20 taps and almost all of it with 200 taps, owing to interconnect delays and effects of
loading [Parh03].

Problems 539

PROBLEMS 25.1 Maximizing a pipeline’s throughput

The assertion in Section 25.1 that the throughput of a pipeline is the inverse of its
clock period (which is the sum of the stage delay and latching overhead) is based
on the implicit assumption that the pipeline will be utilized continuously for a
long period of time. Let φ be the probability that a computation is dependent
on the preceding computation so that it cannot be initiated until the results of
its predecessor have emerged from the pipeline. For each such computation
encountered, the pipeline will go unused for σ −1 cycles, where σ is the number
of stages. Derive the optimal number of pipeline stages to maximize the effective
throughput of a pipeline under these conditions.

25.2 Clock rate and pipeline throughput

A four-stage pipeline has stage delays of 17, 15, 19, and 14 ns and a fixed per-
stage latching overhead of 2 ns. The parameter φ, defined as the fraction of
operations that cannot enter the pipeline before the preceding operation has been
completed, is 0.2.

a. What clock cycle time maximizes throughput if stages cannot be further
subdivided? Assume that there is no uncontrolled clock skew.

b. Compare the throughput of part a to the throughput without pipelining.
c. What is the total latency through the pipeline with the cycle time of

part a?
d. What clock cycle time maximizes the throughput with arbitrary subdivisions

allowed within stages? Latches at the natural boundaries above are not to
be removed, but additional latches can be inserted wherever they would be
beneficial.

e. What is the total latency through the pipeline with the assumptions of
part d?

f. Repeat parts a–e, this time assuming an uncontrolled skew of ±1 ns in the
arrival of each clock pulse.

g. The use of a more elaborate clock distribution network, doubling the clock
wiring area (cost) from 20% to 40% of the unpipelined cost g, can virtually
eliminate the uncontrolled clock skew of part f. Would you use the alternate
network? Explain.

25.3 Optimal pipelining

In the analysis of optimal pipelining in Section 25.1, we assumed that pipelining
time and cost overhead per stage are constants. These are simplifying assump-
tions: in fact, the effects of clock skew intensify for longer, more complex stages
and latching overhead increases if the function is sliced indiscriminately at a
large number of points. Discuss the optimal number of pipeline stages with each
of the following modifications to our original simplifying assumptions.

a. Clock skew increases linearly with stage delay, so that the time or clocking
overhead per stage is τ + tα/σ .

540 Chapter 25 High-Throughput Arithmetic

b. Cost overhead per stage, which grows if the logic function is cut at points
other than natural subfunction boundaries, is modeled as a linear function
γ + βσ of the number of stages.

c. Both modifications given in parts a and b are in effect.

25.4 Wave pipelining

A four-stage pipeline has maximum stage delays of 14, 12, 16, 11 ns, minimum
stage delays of 7, 9, 10, 5 ns, and a fixed per-stage overhead of 3 ns. The parameter
φ defined as the fraction of operations that cannot enter the pipeline before the
preceding operation has been completed, is 0.2.

a. With no controlled clock skew allowed, what are the minimum cycle time
and the resulting latency?

b. If we allow controlled clock skew, what are the minimum cycle time, clock
skews required at the end of each of the four stages, and the overall latency?

c. Repeat parts a and b, this time assuming an uncontrolled skew of ±1 ns in
the arrival of each clock pulse.

25.5 Earle latch logic hazard

The Earle latch shown in Fig. 25.4 has a logic hazard.

a. Show the hazard on a Karnaugh map and determine when it leads to failure.
b. Propose a modified latch without a hazard and discuss its practicality.

25.6 Latched full adders

a. Present the complete design of a binary full adder with its sum and carry
computations merged with Earle latches.

b. Derive the latching cost overhead with respect to an unlatched full adder and
full adder followed by separate Earle latches.

25.7 Evaluating a pipelined array multiplier

For the pipelined array multiplier design of Fig. 11.18, assume that the full-adder
delay is 8 ns and latching overhead is 3 ns.

a. Find the throughput of the design as shown in Fig. 11.18.
b. Modify the design of Fig. 11.18 to have latches following every 2 full adders

and repeat part a.
c. Modify the design to have latches following every 3 full adders and repeat

part a.
d. Compare the cost-effectiveness of the designs of parts a–c and discuss.
e. The design of Fig. 11.18 can be modified so that the lower part uses half-

adders instead of full adders. Show how the modification should be done and
discuss its implications on optimal pipelining. Assume that the half-adder
delay is 4 ns.

Problems 541

25.8 Pipelined ripple-carry adders

In designing a deeply pipelined adder, the ripple-carry design provides a good
starting point. Study the variations in pipelined ripple-carry adders and their
cost-performance implications [Dadd96].

25.9 Optimally pipelined adders

In a particular application, 80% of all additions result from operations on long
vectors and can thus be performed with full pipeline utilization, leading to a
throughput of one addition per clock cycle. The remaining 20% are individ-
ual additions for which the total latency of the pipelined adder determines the
execution rate. Considering each adder type discussed in Chapters 5–7, derive
an optimally pipelined design for the preceding application so that the average
addition time is minimized. Is there any adder type that cannot be effectively
pipelined? Discuss.

25.10 Pipelined multioperand adders

Show that pipelined implementation of a multioperand adder with binary inputs
is possible so that the clock period is dictated by the latency of one full adder
[Yeh96].

25.11 Digit-pipelined incrementer/decrementer

To compute the expression (x − 1)/(x + 1) in digit-pipelined fashion, we need
to use an incrementer and a decrementer that feed a divider. Assume the use of
BSD numbers.

a. Present the design of a combined digit-pipelined incrementer/decrementer
unit.

b. Compare your design to a digit-pipelined BSD adder and discuss.

25.12 Digit-pipelined multiplier

The multiplier design shown in Fig. 25.11 is incomplete in two respects. First, it
does not show how the term a−ix−i is accommodated. Second, it does not specify
the alignment of the operands in the three-operand addition or even the width of
the adder.

a. Complete the design of Fig. 25.11 by taking care of the problems just
identified.

b. Specify additions and modifications to the design for radix-4 multiplication
using the digit set [−2, 2].

25.13 Digit-pipelined voting circuits

An n-input majority voter produces an output that is equal to a majority of its n
inputs, if such a majority exists; otherwise it produces an error signal. A median
(mean) voter outputs the median (numerical average) of its n inputs.

542 Chapter 25 High-Throughput Arithmetic

a. Show how a three-input digit-serial mean voter can be designed if the inputs
are presented in BSD form. What is the latency of your design?

b. Under what conditions can a bit-serial mean voter, with standard binary
inputs, be designed and what would be its latency?

c. Discuss whether, and if so, how a digit-serial majority or median voter with
BSD inputs can be implemented.

d. Repeat part c with standard binary inputs.

25.14 Systolic digit-pipelined multiplier

Design a systolic radix-4 digit-pipelined multiplier structured as in Fig. 25.13
based on the ideas presented in Section 25.6.

25.15 Systolic array multiplier

a. Based on the discussions in Section 25.6, convert the pipelined array
multiplier design of Fig. 11.18 into a fully pipelined systolic array multiplier.

b. Repeat part a, this time assuming that propagation across two cells is
acceptable.

25.16 Delays in on-line arithmetic

That digit-pipelined addition can be performed with 1 or 2 cycles of delay between
input arrival and output production is a direct result of the theories of carry-free
and limited-carry addition developed in Chapter 3.

a. With reference to Fig. 25.10 for digit-pipelined multiplication of BSD
numbers, show that 2 cycles of delay is adequate.

b. Show that digit-pipelined multiplication can be performed with 2–3 cycles
of delay.

c. What would be the delay of a digit-pipelined fused multiply-add unit?
d. Show that digit-pipelined square-rooting can be performed with 1–2 cycles

of delay.
e. Show that digit-pipelined division can be performed with 3–4 cycles of delay.

25.17 On-line adder for BSD numbers

Full adders can be designed to have one or two negatively weighted inputs. The
former (type 1) will have its sum output weighted negatively while the latter
(type 2) will have a negatively weighted carry. Show that one circuit of each of
the two types plus three D latches can be used to implement an on-line adder for
BSD numbers using the (n, p) encoding for the inputs and output.

25.18 On-line arithmetic on complex numbers

Consider numbers represented in radix 2j using the digit set [−2, 2]. This
allows the representation of complex values as a single number. Derive on-line
arithmetic algorithms for operating on such numbers.

References and Further Readings 543

25.19 Pipelining throughput

At the beginning of Section 25.1, the latency and cost of a pipelined implemen-
tation were related to the respective parameters of the nonpipelined version as
T = t + στ and G = g + σγ (along with their specific instances pertaining
to a stage logic delay of 4δ), clearly showing the change in latency and cost.
Write both versions of the equation provided for R in a manner that highlights
the throughput improvement. Discuss.

25.20 Pipelined floating-point addition

a. You are asked to design a floating-point adder as a four-stage pipeline. Which
functions would you include in each of the four stages? Fully justify your
answer.

b. Based on your answer to part a, estimate the throughput of your floating-point
adder.

c. Repeat part a for a four-stage pipelined fused multiply-add unit.
d. Repeat part b for the four-stage pipelined fused multiply-add unit of part c.

25.21 Modified Earle latch

a. Offer an intuitive explanation as to how the fanning out of the input data d
is avoided in the modified Earle latch design of [Yang02].

b. Merge the two-level logic function of Fig. 25.5 with the modified Earle latch
and draw the resulting logic circuit.

c. Compare the circuit of part b with the original design in Fig. 25.5 and
discuss.

REFERENCES AND FURTHER READINGS

[Burl98] Burleson, W. P., M. Ciesielski, F. Klass, and W. Liu, “Wave Pipelining: A Tutorial and
Research Survey,” IEEE Trans. Very Large Scale Integrated Systems, Vol. 6, No. 3,
pp. 464–474, 1998.

[Dadd96] Dadda, L., and V. Piuri, “Pipelined Adders,” IEEE Trans. Computers, Vol. 45, No. 3,
pp. 348–356, 1996.

[Davi97] Davidovic, G., J. Ciric, J. Ristic-Djurovic, V. Milutinovic, and M. Flynn,
“A Comparative Study of Adders: Wave Pipelining vs. Classical Design,” IEEE
Computer Architecture Technical Committee Newsletter, pp. 64–71, 1997.

[Dube90] Dubey, P. K., and M. J. Flynn, “Optimal Pipelining,” J. Parallel and Distributed
Computing, Vol. 8, pp. 10–19, 1990.

[Erce84] Ercegovac, M. D., “On-Line Arithmetic: An Overview,” Real-Time Signal Processing
VII, SPIE Conference Proceedings, Vol. 495, pp. 86–92, 1984.

[Erce88] Ercegovac, M. D., and T. Lang, “On-Line Arithmetic: A Design Methodology and
Applications,” VLSI Signal Processing III (Proceedings of an IEEE workshop),
pp. 252–263, 1988.

544 Chapter 25 High-Throughput Arithmetic

[Flyn82] Flynn, M. J., and S. Waser, Introduction to Arithmetic for Digital Systems Designers,
Holt, Rinehart, & Winston, 1982.

[Flyn95] Flynn, M. J., Computer Architecture: Pipelined and Parallel Processor Design, Jones
and Bartlett, 1995.

[Frie94] Friedman, G., and J. H. Mulligan, Jr., “Pipelining and Clocking of High Performance
Synchronous Digital Systems,” in VLSI Signal Processing Technology, M.A.
Bayoumi and E. E. Swartzlander, Jr., (eds.), Kluwer, pp. 97–133, 1994.

[Irwi87] Irwin, M. J., and R. M. Owens, “Digit-Pipelined Arithmetic as Illustrated by the
Paste-Up System: A Tutorial,” IEEE Computer, Vol. 20, No. 4, pp. 61–73, 1987.

[Kung82] Kung, H. T., “Why Systolic Architectures?” IEEE Computer, Vol. 15, No. 1,
pp. 37–46, 1982.

[Nedj06] Nedjah, N., and L. de Macedo Mourelle, “A Review of Modular Multiplication
Methods and Respective Hardware Implementations,” Informatica, Vol. 30,
pp. 111–129, 2006.

[Parh03] Parhami, B., and D.-M. Kwai, “Parallel Architectures and Adaptation Algorithms for
Programmable FIR Digital Filters with Fully Pipelined Data and Control Flows,”
J. Information Science and Engineering, Vol. 19, No. 1, pp. 59–74, 2003.

[Walt93] Walter, C. D., “Systolic Modular Multiplication,” IEEE Trans. Computers, Vol. 42,
No. 3, pp. 376–378, 1993.

[Yang02] Yang, S.-S., H.-Y. Lo, T.-Y. Chang, and T.-L. Jong, “Earle Latch Design for High
Performance Pipeline,” IEE Proc. Computers and Digital Techniques, Vol. 149,
No. 6, pp. 245–248, 2002.

[Yeh96] Yeh, C.-H., and B. Parhami, “Efficient Pipelined Multi-Operand Adders with High
Throughput and Low Latency: Design and Applications,” Proc. 30th Asilomar Conf.
Signals, Systems, and Computers, pp. 894–898, 1996.

26 Low-Power Arithmetic

■ ■ ■

“Everything should be made as simple as possible, but not simpler.”
A L B E R T E I N S T E I N

■ ■ ■

C lassical computer arithmetic focuses on latency and hardware complexity as the

primary parameters to be optimized or traded off against each other. We saw

in Chapter 25 that throughput is also important and may be considered in design

trade-offs. Recently, power consumption has emerged as a key factor for two reasons:

limited availability of power in small portable or embedded systems and limited

capacity to dispose of the heat generated by fast, power-hungry circuits. In this

chapter, we review low-power design concepts that pertain to the algorithm or logic

design level; as opposed to circuit-level methods, which are outside the scope of this

book. Chapter topics include:

26.1 The Need for Low-Power Design

26.2 Sources of Power Consumption

26.3 Reduction of Power Waste

26.4 Reduction of Activity

26.5 Transformations and Trade-offs

26.6 New and Emerging Methods

26.1 THE NEED FOR LOW-POWER DESIGN

In modern digital systems, factors other than speed and cost have become increasingly
important. For example, portable or wearable computers are severely constrained in
weight, volume, and energy. Whereas weight and volume might seem to be strongly
correlated with circuit complexity or cost, factors external to the circuits themselves often
have greater influence on these two parameters. For example, packaging, power supply,
and cooling provisions might exhibit variations over different technologies that dwarf
the contribution of the circuit elements to weight and volume. In energy consumption,

545

546 Chapter 26 Low-Power Arithmetic

too, logic and arithmetic circuits might be responsible for only a small fraction of the
total usage. Nevertheless, it is important to minimize power wastage and to apply power
saving methods wherever possible.

In portable and wearable electronic devices, energy is at a premium. In round figures,
lithium-ion batteries offer 0.2 watt-hours of energy per gram of weight (roughly of the
same order as what the widely used standard AAA, AA, or D batteries provide), requir-
ing the average power consumption to be limited to 5–10 W to make a day’s worth of
operation feasible between recharges, given a practical battery weight of under 0.5 kg.
Energy management becomes even more daunting if we focus on personal communica-
tion/computation devices with a battery weight of 50 g or less. Typical cell phone batteries
weigh 10–20 g, and there is continuous demand for even lighter portable electronic
devices. Newer battery technologies improve the situation only marginally.

This limited energy must be budgeted for computation, storage (primary and sec-
ondary), video display, and communication, making the share available for computation
relatively small. The power consumption of modern microprocessors grows almost lin-
early with the product of die area and clock frequency and today stands at 100–200 W in
high-performance designs. This is 1–2 orders of magnitude higher than what is required
to achieve the aforementioned goal of 5–10 W total power. Roughly speaking, such
processors offer 200–500 MFLOPS (million floating-point operations per second) of
performance for each watt of power dissipated.

The preceding discussion leads to the somewhat surprising conclusion that reducing
power consumption is also important for high-performance uniprocessor and parallel
systems that do not need to be portable or battery-operated. The reason is that higher
power dissipation requires the use of more complex cooling techniques, which are costly
to build, operate, and maintain. In addition, digital electronic circuits tend to become
much less reliable at high operating temperatures; hence we have another incentive for
low-power design.

While improvements in technology will steadily increase the battery capacity in
portable systems, it is a virtual certainty that increases in die area and clock speed will
outpace the improvements in power supplies. Larger circuit area and higher speed are
direct results of greater demand for functionality as well as increasing emphasis on
computation-intensive applications (e.g., in multimedia), which also require the storage,
searching, and analyzing of vast amounts of data.

Thus, low-power design methods, which are quite important now, will likely rise in
significance in the coming years as portable digital systems and high-end supercomputers
become more prevalent.

Figure 26.1 shows the power consumption trend for each MIPS (million instruc-
tions per second) of computational performance in digital signal processor (DSP) chips
[Raba98]. We note that despite higher overall power consumption, there has been a ten-
fold decrease in power consumption per MIPS every 5 years, a trend that has continued
unabated since the year 2000. This reduction is due to a combination of improved power
management methods and lower supply voltages. The 1999–2000 estimates in Fig. 26.1
are for supply voltage of 1–2 V, with current voltages being only marginally lower.

Before proceeding with our discussion of low-power design techniques for arithmetic
circuits, a note on terminology is in order. Low-power design has emerged as an important
focus area in digital systems. There are now books, conferences, and Web sites devoted

Sources of Power Consumption 547

1980 1990 2000
10

–4

10
–3

10
–2

10
–1

1

P
ow

er
 c

on
su

m
pt

io
n

pe
r

M
IP

S
 (

W
)

Figure 26.1 Power consumption trend in DSPs [Raba98].The factor-of-100 improvement per
decade in energy efficiency has been maintained since the year 2000.

to low-power design. Reducing power leads to lower energy consumption over a fixed
time span. Very often, however, it is the total energy used for a computation that is
important, not the amount of power drawn at any given time. If we plot the variation
of power consumption over the course of a computation, the peak power is represented
by the highest point on the curve, while energy is the area under the curve. Batteries
are limited in both the maximum power that they can provide and the total energy that
they can store. However, low-power and low-energy designs are somewhat distinct. To
see the difference, let us assume that in a particular arithmetic design, we replace a
high-radix multiplier with a tree multiplier, thereby increasing the power consumption
by a factor of 2, say. If the computation now takes 1/4 the time it did with the high-radix
multiplier, the total energy consumed is reduced by a factor of 2. So, relatively speaking,
the more complex tree multiplier produces a low-energy design, whereas the high-radix
multiplier leads to a low-power design. With this clarification, we will continue to use
the more widely used qualifier “low-power,” even when we mean “low-energy.” The
distinction will usually be clear from the context.

26.2 SOURCES OF POWER CONSUMPTION

To design low-power arithmetic circuits, we must understand the sources of power dissi-
pation and the relationship of power consumption to other important system parameters.
Some circuit technologies, such as transistor-transistor logic, are quite unsuitable for
low-power designs in view of their relatively high average power consumption. The
inherently low-power complementary metal-oxide semiconductor (CMOS) technology,
on the other hand, can be readily adapted to even more stringent power consump-
tion goals. We will limit our discussion to CMOS, which is currently the predominant
implementation technology for both low-cost and high-performance systems.

548 Chapter 26 Low-Power Arithmetic

Besides average power consumption, which is limited by the power budgeted for
each subsystem or activity, the peak power consumption is also important in view of its
impact on power distribution and signal integrity [Raba96]. Typically, low-power design
aims at reducing both the average and peak power.

Power dissipation in CMOS digital circuits is classified as static or dynamic. Static
power dissipation in CMOS circuits, of the types that are used in low-power design
(i.e., excluding certain circuit families that have static currents built in), arises from two
electrical effects. A substantial part of it is due to leakage currents through transistors
with subthreshold voltage; ideal transistors are supposed to be completely off in this
state, conducting only at or above the threshold voltage level. Continual downward
scaling of supply voltages has increased the relative contribution of leakage currents
to the total power dissipation. This is why the supply voltage is not anticipated to go
substantially below the current 1–2 V in the near future. It is noteworthy that leakage
currents increase markedly with rising temperature, a correlation that does not favor
today’s extremely hot circuits. A second contributor to static power dissipation, which is
decreasing in importance due to improvements in dielectric gate insulators, is gate-oxide
leakage. Reducing the static power dissipation of both kinds falls in the realm of circuit
design techniques. Thus, we will not discuss static power dissipation any further.

Dynamic power dissipation in a CMOS device arises from its transient switching
behavior. A small part of such dynamic power dissipation is due to brief short circuits
when both the n- and p-type MOS devices between the supply voltage and ground are
momentarily turned on; ideally, only one of a pair of transistors on the path connecting
the supply voltage to ground should be on at any given time. This part of dynamic power
dissipation can be kept under control by circuit design techniques and by regulating the
signal rise and fall times. This leaves us the dynamic dissipation due to charging and
discharging of parasitic capacitance to contend with.

Switching from ground to the supply voltage V , and back to ground, dissipates a
power equal to CV 2, where C is the capacitance. Thus, the average power consumption
in CMOS can be characterized by the equation

Pavg ≈ αfCV 2

where f is the data rate (clock frequency) and α, known as activity, is the average number
of 0-to-1 transitions per clock cycle.

As a numerical example, consider the power consumption of a 32-bit off-chip bus
operating at 5 V and 100 MHz, driving a capacitance of 30 pF per bit. If random values
were placed on the bus in every cycle, we would have α = 0.5. To account for data
correlation and idle bus cycles, let us assume α = 0.2. Then

Pavg ≈ αfCV 2 = 0.2× 108(32× 30× 10−12)52 = 0.48 W

Based on the equation for dynamic power dissipation in CMOS digital circuits, once the
data rate f has been fixed, there are but three ways to reduce the power requirements:

1. Using a lower supply voltage V .
2. Reducing the parasitic capacitance C.
3. Lowering the switching activity α.

Sources of Power Consumption 549

An alternative to all of the above is to avoid power dissipation altogether, perhaps
through circuit augmentation and redesign, such that the normally dissipated energy
is conserved for later reuse [Atha96]. However, this latter technique, known as adia-
batic switching/charging, is still in its infancy and faces many obstacles before practical
applications can be planned.

Given that power dissipation increases quadratically with the supply voltage, reduc-
tion of V is a highly effective method for low-power design. Agreat deal of effort has been
expended in recent years on the development of low-voltage technologies and design
methods. Unfortunately, however, whereas the transition from 5 V to around 2 V was
achieved simply and with little degradation in performance, lower supply voltages come
with moderate to serious speed penalties and also present problems with regard to com-
patibility with peripheral off-the-shelf components. Some of the resulting performance
degradation can be mitigated by architectural methods such as increased pipeline depth
or parallelism, in effect trading silicon area for lower power. Such methods, which have
made supply voltages hovering around 1 V feasible, are unlikely to allow significant
further voltage reductions in the near future.

Parasitic capacitance in CMOS can be reduced by using fewer and smaller devices
as well as sparser and shorter interconnects. Both device-size reduction and interconnect
localization have nontrivial performance implications. Smaller devices, with their lower
drive currents, tend to be slower. Similarly, high-speed designs often imply a certain
number of nonlocal wires. For example, a ripple-carry adder has a relatively small num-
ber of devices and only short local wires, which lead to lower capacitance. However,
the resulting capacitance reduction is usually not significant enough for us to altogether
avoid the faster carry-lookahead designs with their attendant long, nonlocal intercon-
nects. This interplay between capacitance and speed, combined with the performance
effects of lower supply voltage, make the low-power design process a challenging global
optimization problem (see Section 26.5).

The preceding points, along with methods for reducing the activity α, as discussed
in Section 26.4, lead to several paradigms that are recurring themes in low-power design
[Raba96]:

Avoiding waste. Glitching, or signals going through multiple transitions before
settling at their final values, clocking modules when they are idle, and use of pro-
grammable (rather than dedicated) hardware constitute examples of waste that can
be avoided.

Performance vs. power. Slower circuits use less power, so low-power circuits are
often designed to barely meet performance requirements.

Area (cost) vs. power. Parallel processing and pipelining, with their attendant area
overheads, can be applied to achieve desired performance levels at lower supply
voltage and, thus, lower power.

Exploiting locality. Partitioning the design to exploit data locality improves both
speed and power consumption.

Minimizing signal transitions. Careful encoding of data and state information, along
with optimizations in the order and type of data manipulations, can reduce the
average number of signal transitions per clock cycle and thus lead to lower power

550 Chapter 26 Low-Power Arithmetic

consumption. This is where number representations and arithmetic algorithms play
key roles.

Dynamic adaptation. Changing the operating environment based on the input char-
acteristics, selective precomputation of logic values before they are actually needed,
and lazy evaluation (not computing values until absolutely necessary) all affect the
power requirements.

These and other methods of saving power are being actively pursued within the research
community. The following sections discuss specific examples of these methods in the
context of arithmetic circuits.

In the following sections, we review some generic power reduction strategies that can
be used in many contexts. Specific designs for arithmetic circuits, such as adders, multi-
pliers, dividers, and square-rooters, are available in the literature. Documents describing
some such designs are cited at the end of the chapter.

26.3 REDUCTION OF POWER WASTE

The most obvious method of lowering the power consumption is to reduce the number
or complexity of arithmetic operations performed. Two multiplications consume more
power than one, and shifting plus addition requires less power than multiplication. Thus,
computing from the expression a(b+ c) is better than using ab+ ac. Similarly, 16a− a
is preferable to 15a.

Of course, the preceding examples represent optimizations that should be done
regardless of whether power consumption is an issue. In other cases, however, operator
reduction implies a sacrifice in speed, thus making the trade-off less clear-cut, especially
if the lost speed is to be recovered by using a higher clock rate and/or supply voltage.

Multiplication of complex numbers provides a good example. Consider the following
complex multiplication:

(a + bj)(c + dj) = (ac − bd)+ (ad + bc)j

which requires four multiplications and two additions if implemented directly. The
following equivalent formulation, however, includes only three multiplications, since
c(a + b), which appears in both the real and imaginary parts, needs to be computed
only once:

(a + bj)(c + dj) = [c(a + b)− b(c + d)] + [c(a + b)− a(c − d)]j
The resulting circuit will have a critical path that is longer than that of the first design by
at least one adder delay. This method becomes more attractive if c+ dj is a constant that
must be multiplied by a given sequence of complex values a(i)+b(i)j. In this case, c+d
and c − d are computed only once, leading to three multiplications and three additions
per complex step thereafter.

When an arithmetic system consists of several functional units, or subcircuits, some
of which remain unused for extended periods, it is advantageous to disable or turn off

Reduction of Power Waste 551

Figure 26.2 Saving
power through clock
gating. Function

 unit Clock

Enable

Data inputs

Data outputs

Function
 unit

FU inputs
FU output

Mux

Select

Latches0

1

Figure 26.3 Saving power via guarded evaluation.

si

x i y i

ci c0Carry propagationpi

x i

y i

si

ci

Figure 26.4 Example of glitching in a ripple-carry adder.

those units through clock gating (Fig. 26.2). The elimination of unnecessary clock activi-
ties inside the gated functional unit saves power, provided the gating signal itself changes
at a much lower rate than the clock. The generation of the gating signals implies some
overhead in terms of both cost and power consumption in the control logic. There may
also be a speed penalty in view of a slight increase in the propagation path for some
signals.

A technique related to clock gating is guarded evaluation (Fig. 26.3). If the output of
a function unit (FU) is relevant only when a particular select signal is asserted, that same
select signal can be used to control a set of latches (or blocking gates) at the input to the
unit. When the select signal is asserted, the latches become transparent; otherwise, the
earlier inputs to the function unit are preserved, to suppress any activity in the unit.

A major source of wasted power in arithmetic and other digital circuits is glitching.
Glitching occurs as a result of delay imbalances in signal propagation paths that lead
to spurious transitions. Consider, for example, the full-adder cell in position i of a
ripple-carry adder (Fig. 26.4). Suppose that ci, pi, and si are initially set to 0s and that

552 Chapter 26 Low-Power Arithmetic

Figure 26.5 An array
multiplier with gated
full-adder cells.

p0

p1

p2

p3

p4p
6

p
7p8

0 0 0

p9
p5

0 0

0

0

0

0

0

a0a1a2a3a

x 4

x 3

x 2

x 1

x 0
Carry

Sum

4

both ci and pi are to change to 1 for a new set of inputs. The change in pi takes effect
almost immediately, whereas the 0-to-1 transition of ci may occur after a long propagation
delay. Therefore, si becomes 1 and is then switched back to 0. This redundant switching
to 1 and then back to 0 wastes power.

Glitching can be eliminated, or substantially reduced, through delay balancing. Con-
sider, for example, the array multiplier of Fig. 26.5. In this multiplier, each cell has four
inputs, rather than three for a standard full adder, because one input to the full adder is
internally computed as the logical AND of the upper-horizontal and vertical inputs. The
diagonal output is the sum and the lower-horizontal output is the carry.

Tracing the signal propagation paths in Fig. 26.5, we find that the lower-horizontal
carry input and the diagonal sum input into the cell at the intersection of row xi and
column aj both experience a critical path delay of 2i + j cells, whereas the other input
signals arrive with virtually no delay from the primary inputs. This difference can cause
significant glitching. To reduce the power waste due to this glitching, one can insert
delays along the paths of the vertical and horizontal broadcast inputs, ai and xj. Placing
1 and 2 units of delay within each cell on the horizontal and vertical broadcast lines,
respectively, balances all the signal paths. The latency of the array multiplier will increase
as a result of this delay balancing.

Similar methods of delay balancing can be applied to fast tree multipliers. How-
ever, deriving the delay-balanced design is somewhat harder for the latter in view of
their irregular structures leading to signal paths with varying delays. Some delay bal-
ancing methods for such multipliers are given in [Saku95], where it is concluded that
a power saving of more than 1/3 is feasible. Delay balancing methods for tree mul-
tipliers were studied even before their implications for power consumption became
important. For example, we saw in Section 11.2, that balanced-tree multipliers were
developed to facilitate the synthesis of partial product reduction trees from identical bit
slices.

Reduction of Activity 553

Pipelining also helps with glitch reduction and thus can lead to power savings. In
a pipelined implementation, the logic depth within each pipeline segment can be made
fairly small, leading to reduced opportunities for glitching. Existence of nodes that are
deep, on the other hand, virtually guarantees that glitching will occur, both because of
variations in signal path lengths and as a result of the deeper circuit nodes being within
the cone of influence of a larger number of primary inputs. The effects of pipelining are
further discussed in Sections 26.5 and 26.6.

26.4 REDUCTION OF ACTIVITY

Reduction of the activity α can be accomplished by a variety of methods. An examination
of the effects of various information encoding schemes makes a good starting point.
Consider, for example, the effect of 2’s-complement encoding of numbers versus signed-
magnitude encoding during negation or sign change. A signed-magnitude number is
negated by simply flipping its sign bit, which involves minimal activity. For a 2’s-
complement number, on the other hand, many bits will change on the average, thus
creating a great deal of activity. This does not mean, however, that signed-magnitude
number representation is always better from the standpoint of power consumption. The
more complex addition/subtraction process for such numbers may nullify some or all of
this gain.

As another example of the effect of information encoding on power consumption,
consider the design of a counter. Standard binary encoding of the count implies an
average of about two transitions, or bit inversions, per cycle. Counting according to a
Gray code, in which the representation of the next higher or lower number always differs
from the current number in exactly one bit position, reduces the activity by a factor of
2. This advantage exists in unidirectional counting as well as in up/down counting.
One can generalize from this and examine energy-efficient state encoding schemes for
sequential machines. If the states of a sequential machine are encoded such that states
frequently visited in successive transitions have adjacent codes, the activity will be
reduced.

The encoding scheme used might have an effect on power consumption in the imple-
mentation of high-radix or redundant arithmetic, as well. Each high-radix or redundant
digit is typically encoded in multiple bits. We saw in Section 3.4, for example, that the
particular encoding used to represent the binary signed-digit set [−1, 1] has significant
speed and cost implications. Power consumption might also be factored in when select-
ing the encoding. Very little can be said in general about power-efficient encodings.
Distribution and correlation of data have significant effects on the optimal choice.

Generally speaking, shared, as opposed to dedicated, processing elements and data
paths tend to increase the activity and should be avoided in low-power design if possible.
If a wire or bus carries a positively correlated data stream on successive cycles, then
switching activity is likely to be small (e.g., the high-order bits of numbers do not
change in every cycle). If the same wire or bus carries elements from two independent
data streams on alternate cycles, there will be significant switching activity, as each bit
will change with probability 1/2 in every cycle.

554 Chapter 26 Low-Power Arithmetic

Figure 26.6
Reduction of activity
by precomputation.

Arithmetic
 circuit

m bits n – m bits

Precomputation

n inputs

Output

Load enable

Figure 26.7
Reduction of activity
via Shannon
expansion.

n – 1 inputs

 Function
 unit
for x = 0

 Function
 unit
for x = 1

Select

x n–1

Mux
0 1

n–1n–1

Reordering of operations sometimes helps reduce the activity. For example, in adding
a list of n numbers, separating them into two groups of positive and negative values,
adding each group separately, and then adding the results together is likely to lead to
reduced activity. Interestingly, this strategy also minimizes the effect of round-off errors,
so it is doubly beneficial.

Amethod known as precomputation can sometimes help reduce the activity. Suppose
we want to evaluate a function f of n variables such that the value of f can often be
determined from a small number m of the n variables. Then the scheme depicted in
Fig. 26.6 can be used to reduce the switching activity within the main computation
circuit. In this scheme, a smaller “prediction” circuit detects the special cases in which
the value of f actually depends on the remaining n− m variables, and only then allows
these values to be loaded into the input registers. Since the precomputation circuit is
added to the critical path, this scheme does involve a speed penalty in addition to the
obvious cost overhead.

A variant of the precomputation scheme is to decompose a complicated computation
into two or more simpler computations based on the value of one or more input variables.
For example, using the Shannon expansion of a function around the input variable xn−1
leads to the implementation shown in Fig. 26.7. Here, the input register is duplicated
for n− 1 of the n variables and the value of xn−1 is used to load the input data into one
or the other register. The obvious overhead in terms of registers is unavoidable in this

Transformations and Trade-Offs 555

scheme. The overhead in the computation portion of the circuit can be minimized by
proper selection of the expansion variable(s).

26.5 TRANSFORMATIONS AND TRADE-OFFS

Many power-saving schemes require that some other aspect of the arithmetic circuit,
such as its speed or simplicity, be sacrificed. In this section, we look at some trade-offs
of this nature.

Replacing the commonly used single-edge-triggered flip-flops (that load data at the
rising or falling edge of the clock signal) by double-edge-triggered flip-flops would
allow a factor-of-2 reduction in the clock frequency. Since clock distribution constitutes
a major source of power consumption in synchronous systems, this transformation can
lead to savings in power at the cost of more complex flip-flops. Flip-flops can also be
designed to be self-gating, so that if the input of the flip-flop is identical to its output, the
switching of its internal clock signal is suppressed to save power. Again, a self-gating
flip-flop is more complex than a conventional one.

Parallelism and pipelining are complementary methods of increasing the throughput
of an arithmetic circuit. A two-way parallel circuit or a two-stage pipelined circuit can
potentially increase the throughput by a factor of 2. Both methods can also be used to
reduce the power consumption.

Consider an arithmetic circuit, such as a multiplier, that is required to operate at the
frequency f ; that is, it must perform f operations per second. Astandard design, operating
at voltage V , is shown in Fig. 26.8a. The power dissipation of this design is proportional to
fCV 2, as discussed in Section 26.2, where C is the effective capacitance. If we duplicate

Clock

Arithmetic
 circuit

f

Frequency = f
Capacitance = C
Voltage = V
Power = P

Frequency = 0.5f
Capacitance = 2.2C
Voltage = 0.6V
Power = 0.396P

Frequency = f
Capacitance = 1.2C
Voltage = 0.6V
Power = 0.432P

Circuit
copy 1

Circuit
copy 2

Mux

Circuit
stage 1

Circuit
stage 2

Clock
f

Register

Input reg. Input reg.

Output reg.

Output reg.
Clock

f

Select

Input reg.
Clock

f

Output reg.

(a) (b) (c)

Figure 26.8 Reduction of power via parallelism or pipelining.

556 Chapter 26 Low-Power Arithmetic

the circuit and use each copy to operate on alternating input values, as shown in Fig.
26.8b, then the required operating frequency of each copy becomes f /2. This increases
the effective capacitance of the overall circuit to 2.2C, say, but allows the slower copies
to use a lower voltage of 0.6V , say. The net effect is that the power is reduced from P
to (0.5× 2.2× 0.62)P = 0.396P while maintaining the original performance.

An alternative power reduction architecture with pipelining is shown in Fig. 26.8c.
Here, the computation is sliced into two stages, each only half as deep as the original
circuit. Thus, voltage can again be reduced from V to 0.6V , say. The hardware overhead
of pipelining increases the capacitance to 1.2C, say, while the operating frequency f
remains the same. The net effect is that power is reduced from P to (1× 1.2× 0.62)P =
0.432P while maintaining the original performance in terms of throughput.

The possibility of using parallelism or pipelining to save power is not always easily
perceived. Consider, for example, the recursive computation

y(i) = ax(i) + by(i−1)

where the coefficients a and b are constants. For this first-order, infinite impulse response
(IIR) filter, the circuit implementation shown in Fig. 26.9a immediately suggests itself.
The operating frequency of this circuit is dictated by the latency of a multiply-add
operation.

The method that allows us to apply parallelism to this computation is known as
loop unrolling. In this method, we essentially compute the two outputs y(i) and y(i+1)

simultaneously using the equations:

y(i) = ax(i) + by(i−1)

y(i+1) = ax(i+1) + abx(i) + b2y(i−1)

The preceding equations lead to the implementation shown in Fig. 26.9b which, just
like the parallel scheme of Fig. 26.8b, can operate at a lower frequency, and thus at

x (i)

×

+

×a b

(a) Simple

y (i–1)
y (i)

x

×

+

× a

(b) Unrolled once

b

y (i)

×

+

×a b

y

y (i–2)

2
×ab

y (i–3)

x

(i–1)

(i)

(i–1)

Figure 26.9 Realization of a first-order IIR filter.

Transformations and Trade-Offs 557

a lower voltage, without affecting the throughput. The new operating frequency will
be somewhat lower than f /2 because the three-operand adder in Fig. 26.9b is slower
than a two-operand adder. However, the difference between the operating frequency and
f /2 will be negligible if the three-operand adder is implemented by a carry-save adder
followed by a standard two-operand adder.

Retiming, or redistribution of delay elements (registers) in a design, is another
method that may be used to reduce the power consumption. Note that retiming can
also be used for throughput enhancement, as discussed in connection with the design of
systolic arithmetic function units in Section 25.6. As an example of power implications
of retiming, consider a fourth-order, finite impulse response (FIR) filter characterized
by the following equation:

y(i) = ax(i) + bx(i−1) + cx(i−2) + dx(i−3)

Figure 26.10a shows a straightforward realization of the filter. The frequency at which
the filter can operate, and thus the supply voltage, is dictated by the latency of one
multiplication and three additions. The number of addition levels can be reduced to two
by using a two-level binary tree of adders, but the resulting design is less regular and
more difficult to expand in a modular fashion.

An alternative design, depicted in Fig. 26.10b, moves the registers to the right side
of the circuit, thereby making the stage latency equal to that of one multiplication and
one addition. The registers now hold

u(i−1) = dx(i−1)

v(i−1) = cx(i−1) + dx(i−2)

w(i−1) = bx(i−1) + cx(i−2) + dx(i−3)

y(i−1) = ax(i−1) + bx(i−2) + cx(i−3) + dx(i−4)

x (i) a

x (i–1)

x (i–3)

b

d

(a) Original

×

×

×

+

+

y (i)
y (i–1)

x (i–2) c

×

+

(b) Retimed

x (i) a

b

d

×

×

×

+

+

y (i)
y (i–1)

c

×

+

u(i)

v (i–1)

w (i–1)

u(i–1)

Figure 26.10 Possible realizations of a fourth-order FIR filter.

558 Chapter 26 Low-Power Arithmetic

This alternate computation scheme allows a higher operating frequency at a given supply
voltage or, alternatively, a lower supply voltage for a desired throughput. The effect of
this transformation on the capacitance is difficult to predict and will depend on the
detailed design and layout of the arithmetic elements.

26.6 NEW AND EMERGING METHODS

Clearly, the reduction of dynamic power dissipation, which was the focus of our dis-
cussion in Sections 26.3–26.5, is not the only relevant criterion when contemplating
low-power designs. Efforts in this area must deal with a spectrum of methods rang-
ing from the architecture to the individual wires and transistors. As extensive data on
the power requirements of various arithmetic circuits and design styles is gathered and
published, we can make more informed judgments about design alternatives and the
associated trade-offs. References at the end of this chapter include a representative sam-
ple of studies that compare adders, multipliers, and dividers of various kinds with regard
to their power requirements and energy efficiency. Findings reported in these publica-
tions mostly confirm the intuitive judgments of experienced arithmetic designers, but
they are at times counterintuitive and surprising. For example, faster arithmetic circuits
can be more energy-efficient under certain circumstances [Vrat05], provided that they
can be deactivated when not in use.

A promising approach to the design of low-power arithmetic circuits is through the
use of power-optimized building blocks of various kinds. For example, a wide class
of useful arithmetic circuits can be built by using lookup tables, multiplexers (muxes),
parallel compressors (3-to-2 and/or 4-to-2), and fast carry networks. The development
of low-power variants for these component types allows us to put together candidate
designs quickly, and then focus on global optimizations for removing redundancies
and improving interactions among the components. For example, binary full adders
(components used for Wallace, Dadda, and other multioperand reduction trees) have
been extensively studied with regard to their power consumption attributes [Bui02],
[Lin07], [Saye04]. Similarly, carry-propagate adders have been compared by a number
of researchers [Nage96], [Vrat05]. Unconventional number representations, such as the
logarithmic number system [Pali02], offer certain power savings and must be considered
within the design space. Note that a logarithmic arithmetic unit (Fig. 18.8) can be readily
synthesized from the building blocks just mentioned.

As examples of emerging methods, with the potential of offering significant energy
savings in the future, we will briefly discuss asynchronous circuits, wave pipelining, and
reversible computation in the rest of this section.

Asynchronous digital circuits have been studied for many years. Despite advan-
tages in speed, distributed (localized) control, and built-in capability for pipelining,
such circuits are not yet widely used. The only exceptions are found in bus handshaking
protocols, interrupt handling mechanisms, and the design of certain classes of high-
performance, special-purpose systems (wave front arrays). Localized connections and
elimination of the clock distribution network give asynchronous circuits an edge in
power consumption. This observation, along with improvements in the asynchronous

New and Emerging Methods 559

Figure 26.11 Part of
an asynchronous
chain of
computations.

Local
control

Local
control

Local
control

Arithmetic
 circuit

Arithmetic
 circuit

Arithmetic
 circuit

Data
readyData

Release

circuit design methodologies and reduced overhead may bring such circuits to the fore-
front in the design of general-purpose digital systems. However, before this happens,
design/synthesis tools and testing methods must be improved.

In asynchronous circuits, timing information is embedded in, or travels along with,
the data signals. Each function unit is activated when its input data becomes available
and in turn notifies the next unit in the chain when its results are ready (Fig. 26.11).
In the bundled data protocol, a “data ready” or “request” signal is added to a bundle
of data lines to inform the receiver, which then uses an “acknowledge” line to release
the sending module. In the two-rail protocol, each signal is individually encoded in a
self-timed format using two wires. The latter approach essentially doubles the number
of wires that go from module to module, but has the advantage of being completely
insensitive to delay.

The best form of asynchronous design from the viewpoint of low power uses dual-
rail data encoding with transition signaling: two wires are used for each signal, with
a transition on one wire indicating that a 0 has arrived and a transition on the other
designating the arrival of a 1. Level-sensitive signaling is also possible, but because
the signal must return to 0 after each transaction, its power consumption would be
higher.

Wave pipelining, discussed in Section 25.2, affects the power requirements for two
reasons. One reason is that the careful balancing of delays within each stage, which is
required for maximum performance, also tends to reduce glitching. A second, more
important, reason is that in a wave-pipelined system, a desired throughput can be
achieved at a lower clock frequency. Like asynchronous circuit design, wave pipelining
is not yet widely used. However, as problems with this method are better understood and
automatic synthesis tools are developed, application of wave pipelining may become

560 Chapter 26 Low-Power Arithmetic

B
C

T

(a) Toffoli gate

A
B
C

FRG

(b) Fredkin gate

A

B

P = A
FG

(c) Feynman gate

A
B
C

PG

(d) Peres gate

P =A

P = A

A P = A
Q = B

R = A B ⊕ C

Q = A ⊕ B

Q = A B ⊕ A C

R = A C ⊕ A B

Q = A ⊕ B
R = A B ⊕ C

Figure 26.12 Some reversible logic gates.

B
0

C
1
0

+

A
Cout

s

B

A

G

s

Figure 26.13 Reversible binary full adder built of five Fredkin gates, with a single Feynman
gate used to fan out the input B.The label “G” denotes “garbage.”

commonplace in the design of high-performance digital systems, with or without power
considerations.

The ultimate in low-power design is devising circuits that waste no energy in the form
of heat. The second law of thermodynamics guarantees that a logically and physically
reversible circuit dissipates no heat. Logical reversibility means that given the circuit’s
outputs, we can uniquely determine its inputs. Conventional logic is not reversible:
knowing the values of both A∨B and A∧B is inadequate for deducing the values of the
inputs A and B. Theoretically, we can perform many computations in reversible form,
using circuit elements known as reversible gates. Some examples of reversible gates
are depicted in Fig. 26.12. Any reversible gate has the same number of input and output
lines, and it implements a permutation from input values (combinations) to output values.
For example, a full adder circuit built of reversible logic gates is shown in Fig. 26.13.
Several avenues, such as adiabatic switching, optical logic, and quantum computing, are
being pursued for realizing reversible logic circuits. However, practical implementations
appear to be many years, if not decades, away.

PROBLEMS 26.1 Clock-related power dissipation

Estimate the power dissipation associated with clock distribution in a 250-MHz
processor chip operating at 3.3 V if the die dimensions are 1 cm × 1.3 cm, the
length of the 1-µm-wide clock distribution network is roughly four times the
die’s perimeter, and the parasitic capacitance of the metal layer is 1 nF/mm2.
How will the power dissipation be affected if the chip’s technology is scaled
down by a factor of 1.4 in all dimensions, assuming that the supply voltage and

Problems 561

frequency remain the same? Hint: Capacitance of a wire is directly proportional
to its area.

26.2 Power implications of other optimizations

Many of the methods considered in earlier chapters for increasing the operation
speed or reducing the hardware cost have implications for power consumption.
Furthermore, reduction in power consumption is not always in conflict with other
optimizations.

a. Provide an example of a speed enhancement method that also reduces power.
b. Describe a speed enhancement method that substantially increases power.
c. Provide an example of a cost-saving method that also leads to reduced power.
d. Describe a cost reduction method that substantially increases power.

26.3 Saving power by operator reduction

Consider the complex-number multiplication scheme discussed at the beginning
of Section 26.3.

a. Can a similar method be applied to synthesizing a 2k × 2k multiplier from
k × k multipliers? Discuss.

b. What about rotating a series of vectors by the constant angle θ using the
familiar transformations X = x sin θ + y cos θ and Y = x cos θ − y sin θ?

26.4 Saving power by operation reordering

a. The expression u + 2−8v + 2−10w, with the fixed-point fractional operands
u, v, and w, is to be evaluated using two adders. What is the best order of
evaluation from the standpoint of minimizing signal transitions? Does the
best order depend on whether the numbers are signed?

b. Generalize the result of part a to the addition of n fractions, where the
magnitude of the ith fraction is known to be in [0, 2−mi).

26.5 Saving power by reduction and reordering

Rearrange the accompanying computation to reduce the power requirements. If
more than one rearrangement is possible, compare them with respect to operation
complexity (power), latency, and cost.

×

×

× ×

+

+ +x

x

a

x

b

x

c

26.6 Saving power via delay balancing

The array multiplier of Fig. 26.5 is different from the one shown in Fig. 11.14 and
in some ways inferior to it. Compare the two designs with respect to worst-case
delay and glitching, before and after the application of delay balancing.

562 Chapter 26 Low-Power Arithmetic

26.7 Reduction of activity by bus-invert encoding

Bus-invert encoding is a scheme whereby a single wire is added to a bus to
designate polarity: a polarity of 0 indicates that the desired data is on the bus,
whereas a polarity of 1 means that the complement of the desired data is being
transmitted.

a. Draw a complete block diagram of this scheme, including all units needed
on the sender and receiver sides.

b. Discuss the power-saving implications of this method. Then, using reasonable
assumptions about the data, try to quantify the extent of savings achieved.

26.8 Saving power via precomputation

a. Apply the precomputation scheme of Fig. 26.6 to the design of a 32-bit integer
comparator that determines whether x > y. Assume 2’s-complement inputs
and use the sign bit plus 2 magnitude bits for the precomputation. Hint: Invert
the sign bits and compare as unsigned integers.

b. Repeat part a, this time assuming signed-magnitude inputs.

26.9 Power implications of pipelining

a. Suppose that in the design of Fig. 26.9b, the three-operand adder is to be
implemented by means of a pair of two-operand adders. The critical path of
the circuit will then become longer than that in the original circuit before
unrolling. Show how circuit throughput can be maintained or improved by
conversion into a two-stage pipeline.

b. Repeat part a for an implementation of the IIR filter of Fig. 26.9a that uses
two steps of unrolling.

26.10 Parallelism and pipelining

a. Choose three convergence computation methods from among those discussed
in Chapters 16, 21, and 23. Discuss opportunities that might exist for power
savings in these computations through parallelism and/or pipelining.

b. Compare convergence and digit-recurrence methods with regard to their
power requirements.

26.11 Arithmetic by table lookup

In Chapter 24, we saw that table-lookup methods can be highly cost-effective
for certain arithmetic computations.

a. What are the power consumption implications of arithmetic by table lookup?
b. Can you think of any power-saving method for use with tabular implemen-

tations?

26.12 A circuit technique for power reduction

In CMOS circuit implementation of symmetric functions, such as AND, OR,
or XOR, the logically equivalent input nodes may differ in their physical

Problems 563

characteristics. For example, the inputs of a four-input AND gate may have
different capacitances.

a. How is this observation relevant to the design of low-power arithmetic
circuits?

b. Describe an application context for which this property may be exploited to
reduce power. Hint: Look at the filter implementations of Section 26.5.

26.13 Power considerations in fast counters

Consider the power consumption aspects of the fast counter designs of
Section 5.5. Compare the designs with each other and with standard counters
and discuss.

26.14 Bit-serial versus parallel arithmetic

Study the power efficiency aspects of bit-serial, digit-serial, and bit-parallel arith-
metic. What would be a good composite figure of merit incorporating speed, cost,
and power?

26.15 Power implications of arithmetic methods

Based on what you have learned in this chapter, identify power consumption
implications, if any, of the following design choices. Justify your answers.

a. Multiplication with and without Booth’s recoding.
b. Floating-point versus logarithmic number representation.
c. Restoring versus nonrestoring division or square-rooting.

26.16 Low-power division

Contrast convergence and digit-recurrence division methods from the viewpoint
of power consumption, and discuss power reduction strategies that might be
applicable in each case. Begin by studying the approach taken in [Nann99].

26.17 Signal transition probabilities

If inputs to a two-input NAND gate randomly assume the values 0 and 1 in each
clock cycle, the transition probability at the output will be 3/16.

a. Prove the claim above and extend the result to an h-input NAND gate.
b. Derive corresponding results for h-input AND and OR gates.
c. Derive corresponding results for two-input XOR gates.
d. State and prove a general result for two-input NAND gates, when the inputs

assume the value 1 with probability p and the value 0 with probability 1− p
in each clock cycle.

26.18 Power implications of RNS arithmetic

Argue that residue number system (RNS) arithmetic is likely to require lower
power than conventional signed-magnitude or 2’s-complement arithmetic, pro-
vided that we can ignore the conversion and reconversion overheads; i.e., assume

564 Chapter 26 Low-Power Arithmetic

that the sequence of arithmetic operations performed in RNS mode is long enough
to render the aforementioned overheads insignificant. Present your arguments in
terms of the likely impact of RNS on the following key parameters: activity (α),
clock frequency (f), parasitic capacitance (C), supply voltage (V).

26.19 Reversible logic gates

Every reversible logic gate has an inverse that maps the outputs of the original
gate to its inputs. For each of the four reversible logic gates depicted in Fig. 26.12,
derive the inverse logic gate.

26.20 Reversible full-adder circuit

a. By deriving logic expressions for all intermediate lines in Fig. 26.13, verify
that the circuit does in fact compute the sum and carry bits of a full adder.

b. Show the design of a reverse circuit that regenerates the inputs of the circuit
in Fig. 26.13, when provided with its outputs.

c. As in part a, verify that the circuit of part b does indeed regenerate the desired
inputs.

26.21 Green supercomputing

The most powerful supercomputers of the early Twenty-first Century dissipate
more than 1 MW of power. This high power consumption leads to excessive oper-
ational costs for energy supply and cooling. Using Internet resources, prepare a
two-page report on current efforts to make supercomputers more energy-efficient.
Include in your report a discussion on how the share of energy devoted to
arithmetic operations might be reduced.

REFERENCES AND FURTHER READINGS

[Atha96] Athas, W. C., “Energy-Recovery CMOS,” in Low-Power Design Methodologies,
J. M. Rabaey and M. Pedram (eds.), pp. 65–100, Kluwer, 1996.

[Beni01] Benini, L., G. De Micheli, and E. Macii, “Designing Low-Power Circuits: Practical
Recipes,” IEEE Circuits and Systems, Vol. 1, No. 1, pp. 6–25, 2001.

[Bui02] Bui, H. T., Y. Wang, and Y. Jiang, “Design and Analysis of Low-Power 10-Transistor
Full Adders Using Novel XOR-XNOR Gates,” IEEE Trans. Circuits and Systems II,
Vol. 49, No. 1, pp. 25–30, 2002.

[Call96] Callaway, T. K., and E. E. Swartzlander, Jr., “Low Power Arithmetic Components,” in
Low-Power Design Methodologies, J. M. Rabaey and M. Pedram (eds.), pp. 161–200,
Kluwer, 1996.

[Chan95] Chandrakasan, A. P., and R. W. Broderson, Low Power Digital CMOS Design,
Kluwer, 1995.

[Gonz96] Gonzalez, R., and M. Horowitz, “Energy Dissipation in General-Purpose
Microprocessors,” IEEE J. Solid-State Circuits, pp. 1277–1284, 1996.

References and Further Readings 565

[Huan05] Huang, Z., and M. D. Ercegovac, “High-Performance Low-Power Left-to-Right
Array Multiplier Design,” IEEE Trans. Computers, Vol. 54, No. 3, pp. 245–252,
2005.

[Kim03] Kim, N. S., et al., “Leakage Current: Moore’s Law Meets Static Power,” IEEE
Computer, Vol. 36, No. 12, pp. 68–75, 2003.

[Kuro99] Kuroda, T., and T. Sakurai, “Low Power CMOS VLSI Design,” Chap. 24 in Digital
Signal Processing for Multimedia Systems, ed. by K. K. Parhi and T. Nishitani,
pp. 693–739, Marcel Dekker, 1999.

[Lin07] Lin, J.-F., Y.-T. Hwang, M.-H. Sheu, and C.-C. Ho, “A Novel High-Speed and Energy
Efficient 10-Transistor Full Adder Design,” IEEE Trans. Circuits and Systems I,
Vol. 54, No. 5, pp. 1050–1059, 2007.

[Mudg01] Mudge, T., “Power: A First-Class Architectural Design Constraint,” IEEE Computer,
Vol. 34, No. 4, pp. 52–58, 2001.

[Nage96] Nagendra, C., M. J. Irwin, and R. M. Owens, “Area-Time-Power Tradeoffs in Parallel
Adders,” IEEE Trans. Circuits and Systems II, Vol. 43, No. 10, pp. 689–702, 1996.

[Nann99] Nannarelli, A., and T. Lang, “Low-Power Divider,” IEEE Trans. Computers, Vol. 48,
No. 1, pp. 2–14, 1999.

[Pali02] Paliouras, V., and T. Stouraitis, “Computer Arithmetic Techniques for Low-Power
Systems,” in Designing CMOS Circuits for Low Power, D. Soudris, C. Piguet, and
C. Goutis (eds.), pp. 97–116, Kluwer, 2002.

[Parh96] Parhi, K. K., and F. Catthoor, “Design of High-Performance DSP Systems,” in
Emerging Technologies: Designing Low-Power Digital Systems, R. K. Cavin III and
W. Liu (eds.), pp. 447–507, IEEE Press, 1996.

[Raba96] Rabaey, J. M., M. Pedram, and P. E. Landman, “Introduction,” in Low-Power Design
Methodologies, J. M. Rabaey and M. Pedram (eds.), pp. 1–18, Kluwer, 1996.

[Raba98] Rabaey, J. M. (ed.), “VLSI Design and Implementation Fuels the Signal Processing
Revolution,” IEEE Signal Processing, Vol. 15, No. 1, pp. 22–37, 1998.

[Saku95] Sakuta, T., W. Lee, and P. Balsara, “Delay Balanced Multipliers for Low Power/Low
Voltage DSP Core,” Digest IEEE Symp. Low-Power Electronics, pp. 36–37, 1995.

[Saye04] Sayed, A., and H. Al-Asaad, “Survey and Evaluation of Low-Power Full-Adder
Cells,” Proc. Int’l Conf. VLSI, pp. 332–338, 2004.

[Soud02] Soudris, D., C. Piguet, and C. Goutis (eds.), Designing CMOS Circuits for Low
Power, Kluwer, 2002.

[Vrat05] Vratonjic, M., B. R. Zeydel, and V. G. Oklobdzija, “Low- and Ultra Low-Power
Arithmetic Units: Design and Comparison,” Proc. Int’l Conf. Computer Design,
pp. 249–252, 2005.

[Wilt04] Wilton, S. J. E., S.-S. Ang, and W. Luk, “The Impact of Pipelining on Energy per
Operation in Field-Programmable Gate Arrays,” in Field Programmable Logic and
Applications, LNCS #3203, pp. 719–728, Springer, 2004.

[Yeap98] Yeap, G., Practical Low Power Digital VLSI Design, Kluwer, 1998.

27 Fault-Tolerant
Arithmetic

■ ■ ■

“If two men on the same job agree all the time, then one is useless.
If they disagree all the time, then both are useless”

D A R R Y L F. Z A N U C K

■ ■ ■

M odern digital components are remarkably robust, but with a great many of

them put together in a complex arithmetic system,things can and do go wrong.

In data communication,a per-bit error probability of around 10−10 is considered quite

good. However, at a rate of many millions of arithmetic operations per second, such

an error probability in computations can lead to several bit-errors per second. While

coding techniques are routinely applied to protect against errors in data transmission

or storage, the same cannot be said about computations performed in an arithmetic

circuit. In this chapter, we examine key methods that can be used to improve the

robustness and reliability of arithmetic systems. Chapter topics include:

27.1 Faults, Errors, and Error Codes

27.2 Arithmetic Error-Detecting Codes

27.3 Arithmetic Error-Correcting Codes

27.4 Self-Checking Function Units

27.5 Algorithm-Based Fault Tolerance

27.6 Fault-Tolerant RNS Arithmetic

27.1 FAULTS, ERRORS, AND ERROR CODES

So far, we have assumed that arithmetic and logic elements always behave as expected:
an AND gate always outputs the logical AND of its inputs, a table entry maintains its
correct initial value, and a wire remains permanently connected. Even though modern

566

Faults, Errors, and Error Codes 567

integrated circuits are extremely reliable, faults (deviations from specified or correct
functional behavior) do occur in the course of lengthy computations, especially in sys-
tems that operate under harsh environmental conditions, deal with extreme/unpredictable
loads, or are used during long missions. The output of an AND gate may become per-
manently “stuck on 1,” thus yielding an incorrect output when at least one input is 0.
Furthermore, cross talk or external interference may cause the AND gate to suffer a
“transient fault” in which its output becomes incorrect for only a few clock cycles. A
table entry may become corrupt as a result of manufacturing imperfections in the memory
cells or logic faults in the read/write circuitry. Because of overheating, a manufacturing
defect, or a combination of both, a wire may break or short-circuit to another wire.

Ensuring correct functioning of digital systems in the presence of (permanent and
transient) faults is the subject of the fault-tolerant computing discipline, also known
as reliable (dependable) computing [Parh94]. In this chapter, we review some ideas in
fault-tolerant computing that are particularly relevant to the computation of arithmetic
functions.

Methods of detecting or correcting data errors have their origins in the field of
communications. Early communications channels were highly unreliable and extremely
noisy. So signals sent from one end were often distorted or changed by the time they
reached the receiving end. The remedy, thought up by communications engineers, was
to encode the data in redundant formats known as “codes” or “error codes.” Examples
of coding methods include adding a parity bit (an example of a single-error-detecting or
SED code), checksums, and Hamming single-error-correcting, double-error-detecting
(SEC/DED) code. Today, error-detecting and error-correcting codes are still used exten-
sively in communications, for even though the reliability of these systems and noise
reduction/shielding methods have improved enormously, so have the data rates and data
transmission volumes, making the error probability nonnegligible.

Codes originally developed for communications can be used to protect against stor-
age errors. When the early integrated-circuit memories proved to be less reliable than
the then-common magnetic core technology, integrated circuit designers were quick to
incorporate SEC/DED codes into their designs.

The data processing cycle in a system whose storage and memory-to-processor data
transfers are protected by an error code can be represented as in Fig. 27.1. In this
scheme, which is routinely applied to modern digital systems, the data manipulation
part is unprotected. Decoding/encoding is necessary because common codes are not
closed under arithmetic operations. For example, the sum of two even-parity numbers
does not necessarily have even parity. As another example, when we change an element
within a list that is protected by a checksum, we must compute a new checksum that
replaces the old one.

One way to protect the arithmetic computation against fault-induced errors is to
use duplication with comparison of the two results (for single fault/error detection) or
triplication with 2-out-of-3 voting on the three results (for single fault masking or error
correction). Figure 27.2 shows possible ways for implementing such duplication and
triplication schemes.

In Fig. 27.2a, the decoding logic is duplicated along with the arithmetic logic unit
(ALU), to ensure that a single fault in the decoder does not go undetected. The encoder,
on the other hand, remains a critical element whose failure will lead to undetected errors.

568 Chapter 27 Fault-Tolerant Arithmetic

Protected
 by
encoding

Input

Encode

Send

Store

Send

Decode

Output

Manipulate

Unprotected

Figure 27.1 A common way of applying information coding techniques.

Figure 27.2
Arithmetic fault
detection or fault
tolerance (masking)
with replicated units.

Coded
inputs Decode

 1

Decode
 2

ALU
 1

ALU
 2

Compare

Mismatch
detected

Encode

Coded
outputs

Coded
inputs Decode

 1

Decode
 2

ALU
 1

ALU
 2

Decode
 3

ALU
 3

Vote Encode

Coded
outputs

Non-codeword
detected

Non-codeword
detected

(a) Duplication and comparison

(b) Triplication and voting

Faults, Errors, and Error Codes 569

However, since the output of the encoder is redundant (coded), it is possible to design the
encoding circuitry in a way that ensures the production of a non-codeword at its output if
anything goes wrong. Such a design, referred to as self-checking, leads to error detection
by the checker associated with the memory subsystem or later when the erroneous stored
value is used as an input to the ALU. Assuming the use of a self-checking encoder, the
duplicated design in Fig. 27.2a can detect any error resulting from a fault that is totally
confined within one of the blocks shown in the diagram. This includes the “compare”
block whose failure may produce a false alarm. An undetected mismatch would require
at least two faults in separate blocks.

The design with triplicated ALU in Fig. 27.2b is similar. Here, the voter is a critical
element and must be designed with care. Self-checking design cannot be applied to
the voter (as used here), since its output is nonredundant. However, by combining the
voting and encoding functions, one may be able to design an efficient self-checking voter-
encoder. This three-channel computation strategy can be generalized to n channels to
permit the tolerance of more faults. However, the cost overhead of a higher degree of
replication becomes prohibitive.

Since the preceding replication schemes involve significant hardware overheads, one
might attempt to apply coding methods for fault detection or fault tolerance within the
ALU. The first issue we encounter in trying to use this approach is that single, double,
burst, and other error types commonly dealt with in communications do not provide
useful characterizations for arithmetic. Whereas a spike due to noise may affect a single
bit (random error) or a small number of consecutive bits (burst error), a single erroneous
carry signal within an adder (caused, e.g., by a faulty gate in the carry logic) may produce
an arbitrary number of bit inversions in the output. Figure 27.3 provides an example.

We see in the example of Fig. 27.3 that a single fault in the adder has caused 12 of the
sum bits to be inverted. In coding theory parlance, we say that the Hamming distance
between the correct and incorrect results is 12 or that the error has a Hamming weight
(number of 1s in the XOR of the two values) of 12.

Error detection and correction capabilities of codes can be related to the minimum
Hamming distance between codewords as exemplified by the following:

Single-error-detecting (SED) Min. Hamming distance = 2
Single-error-correcting (SEC) Min. Hamming distance = 3
SEC/DED Min. Hamming distance = 4

Figure 27.3 How a
single carry error can
produce an arbitrary
number of bit-errors
(inversions) in
the sum.

Unsigned addition 0010 0111 0010 0001
+ 0101 1000 1101 0011

Correct sum 0111 1111 1111 0100
Erroneous sum 1000 0000 0000 0100

Stage generating an
erroneous carry of 1

570 Chapter 27 Fault-Tolerant Arithmetic

For example, in the case of SED codes, any 1-bit inversion in a codeword is guaranteed
not to change it to another codeword, thus leading to error detection. For SEC, a 1-bit
inversion leads to an invalid word that is closer (in terms of Hamming distance) to the
original correct codeword than to any other valid codeword, thus allowing for error
correction.

From the addition example in Fig. 27.3, we see that even if some “single-error-
detecting code” were closed under addition, it would be incapable of detecting the
erroneous result in this case. We note, however, that in our example, the erroneous
sum differs from the correct sum by 24. Since in computer arithmetic we deal with
numbers as opposed to arbitrary bit strings, it is the numerical difference between the
erroneous and correct values that is of interest to us, not the number of bits in which they
differ.

Accordingly, we define the arithmetic weight of an error as the minimum number
of signed powers of 2 that must be added to the correct value to produce the erroneous
result (or vice versa). Here are two examples:

Correct result 0111 1111 1111 0100 1101 1111 1111 0100
Erroneous result 1000 0000 0000 0100 0110 0000 0000 0100
Difference (error) 16 = 24 −32 752 = −215 + 24

Error, in minimum- 0000 0000 0001 0000 -1000 0000 0001 0000
weight BSD form

Arithmetic weight 1 2
of the error

Type of error Single, positive Double, negative

Hence, the errors in the preceding examples can be viewed as “single” and “double”
errors in the arithmetic sense. Special arithmetic error codes have been developed that
are capable of detecting or correcting errors that are characterized by their arithmetic,
rather than Hamming, weights. We review some such codes in Sections 27.2 and 27.3.

Note that a minimum-weight binary signed-digit (BSD) representation of a k-bit
error magnitude has at most 	(k + 1)/2
 nonzero digits and can always be written in
canonic BSD form without any consecutive nonzero digits. The canonic form of a BSD
number, which is unique, is intimately related to the notion of arithmetic error weight.

27.2 ARITHMETIC ERROR-DETECTING CODES

Arithmetic error-detecting codes:

1. Are characterized in terms of the arithmetic weights of detectable errors.
2. Allow us to perform arithmetic operations on coded operands directly.

The importance of the first property was discussed at the end of Section 27.1. The
second property is crucial because it allows us to protect arithmetic computations against
circuit faults with much lower hardware redundancy (overhead) than full duplication or
triplication.

Arithmetic Error-Detecting Codes 571

In this section, we discuss two classes of arithmetic error-detecting codes: prod-
uct codes and residue codes. In both cases we will assume unsigned integer operands.
Extension of the concepts to signed integers and arbitrary fixed-point numbers is straight-
forward. Codes for floating-point numbers tend to be more complicated and have received
limited attention from arithmetic and fault-tolerance researchers.

Product codes

In a product code, also known as AN code, a number N is represented as the product
AN , where the check modulus A is a constant. Verifying the validity of an AN -coded
operand requires checking its divisibility by A. For odd A, all weight-1 arithmetic errors
(including all single-bit errors) are detected. Arithmetic errors of weight 2 and higher
may not be detectable. For example, the error 32 736 = 215 − 25 is not detectable
with A = 3, 11, or 31, since the error magnitude is divisible by each of these check
moduli.

Encoding/decoding of numbers with product codes requires multiplication/division
by A. We will see shortly that performing arithmetic operations with product-coded
operands also requires multiplication and division by A. Thus, for these codes to be
practically viable, multiplication and division by the check modulus A should be simple.
We are thus led to the class of low-cost product codes with check moduli of the form
A = 2a − 1.

Multiplication by A = 2a − 1 is simple because it requires a shift and a subtract. In
particular, if the computation is performed a bits at a time (i.e., digit-serially in radix
2a), then one needs only an a-bit adder, an a-bit register to store the previous radix-2a

digit, and a flip-flop for storing the carry. Division by A = 2a − 1 is similarly simple
if done a bits at a time. Given y = (2a − 1)x, we find x by computing 2ax − y. The
first term in this expression is unknown, but we know that it ends in a zeros. This is all
that we need to compute the least-significant a bits of x based on the knowledge of y.
These computed bits of x form the next a bits of 2ax, allowing us to find the next a bits
of x, etc.

Since A = 2a − 1 is odd, low-cost product codes can detect any weight-1 arithmetic
error. Some weight-2 and higher-weight errors may go undetected, but the fraction of
such errors becomes smaller with an increase in A. Unidirectional errors, in which all
erroneous bits are 0-to-1 or 1-to-0 inversions (but not both), form an important class of
errors in digital circuit implementations. For unidirectional errors, the error magnitude
is the sum of several powers of 2 with the same signs.

THEOREM 27.1 Any unidirectional error with arithmetic weight not exceeding
a − 1 is detectable by a low-cost product code that uses the check modulus
A = 2a − 1.

For example, the low-cost product code with A = 15 can detect any weight-2 or weight-
3 unidirectional arithmetic error in addition to all weight-1 errors. The following are
examples of weight-2 and weight-3 unidirectional errors that are detectable because the

572 Chapter 27 Fault-Tolerant Arithmetic

resulting error magnitude is not a multiple of 15:

8+ 4 = 12

128+ 4 = 132

16+ 4+ 2 = 22

256+ 16+ 2 = 274

Product codes are examples of nonseparate, or nonseparable, codes in which the original
data and the redundant information for checking are intermixed. In other words, the
original number N is not immediately apparent from inspecting its encoded version AN
but must be obtained through decoding (in this case, division by the check modulus A).

Arithmetic operations on product-coded operands are quite simple. Addition or
subtraction is done directly, since

Ax ± Ay = A(x ± y)

Direct multiplication results in

Aa × Ax = A2ax

So the result must be corrected through division by A. For division, if z = qd + s, with
q being the quotient and s the remainder, we have

Az = q(Ad)+ As

So, direct division yields the quotient q along with the remainder As. The remainder
is thus obtained in encoded form, but the resulting quotient q must be encoded via
multiplication by A. Because q is obtained in nonredundant form, an error occurring in
its computation will go undetected. To keep the data protected against errors in the course
of the division process, one can premultiply the dividend Az by A and then divide A2z
by Ad as usual. The problem with this approach is that the division leads to a quotient
q* and remainder s* satisfying

A2z = q∗(Ad)+ s∗

which may be different from the expected results Aq and A2s (the latter needing correction
through division by A). Since q∗ can be larger than Aq by up to A− 1 units, the quotient
and remainder obtained from normal division may need correction. However, this again
raises the possibility of undetected errors in the handling of the unprotected value q∗,
which is not necessarily a multiple of A.

A possible solution to the preceding problem, when one is doing the division a
bits at a time for A = 2a − 1, is to adjust the last radix-2a digit of q∗ in such a way
that the adjusted quotient q∗∗ becomes a multiple of A. This can be done rather easily
by keeping a modulo-A checksum of the previous quotient digits. One can prove that
suitably choosing the last radix-2a digit of q∗∗ in [−2a + 2, 1] is sufficient to correct the
problem. A subtraction is then needed to convert q∗∗ to standard binary representation.
Details can be found elsewhere [Aviz73].

Arithmetic Error-Detecting Codes 573

Square-rooting leads to a problem similar to that encountered in division. Suppose
that we multiply the radicand Az by A and then use a standard square-rooting algorithm
to compute

�
√

A2x� = �A√x�
Since the preceding result is in general different from the correct result A�√x�, there
is a need for correction. Again, the computed value �A√x� can exceed the correct root
A�√x� by up to A− 1 units. So, the same correction procedure suggested for division is
applicable here as well.

Residue codes

In a residue code, an operand N is represented by a pair of numbers (N , C(N)), where
C(N) = N mod A is the check part. The check modulus A is a constant. Residue codes
are examples of separate or separable codes in which the data and check parts are not
intermixed, thus making decoding trivial. Encoding a number N requires the computa-
tion of C(N) = N mod A, which is attached to N to form its encoded representation
(N , C(N)).

As in the case of product codes, we can define the class of low-cost residue codes,
with A = 2a − 1, for which the encoding computation N mod A is simple: it requires
that a-bit segments of N be added modulo 2a − 1 (using an a-bit adder with end-around
carry). This can be done digit-serially by using a single adder or in parallel by using a
binary tree of a-bit 1’s-complement adders.

Arithmetic operations on residue-coded operands are quite simple, especially if a
low-cost check modulus A = 2a−1 is used. Addition or subtraction is done by operating
on the data parts and check parts separately. That is

(x, C(x))± (y, C(y)) = (x ± y, (C(x)± C(y)) mod A)

Hence, as shown in Fig. 27.4, an arithmetic unit for residue-coded operands has a main
adder for adding/subtracting the data parts and a small modulo-A adder to add/subtract
the residue checks. To detect faults within the arithmetic unit, the output of this small

 Main
arithmetic
processor

 Check
processor

x

y

C(x)

C(y)

z

Compare

mod

C(z)

Error
indicator

A

Figure 27.4 Arithmetic processor with residue checking.

574 Chapter 27 Fault-Tolerant Arithmetic

modular adder (check processor) is compared with the residue of the output from the
main adder.

Multiplication of residue-coded operands is equally simple, since

(a, C(a))× (x, C(x)) = (a × x, (C(a)× C(x)) mod A)

So, again, the structure shown in Fig. 27.4 is applicable. This method of checking
the multiplication operation is essentially what we do when we verify the correctness of
our pencil-and-paper multiplication result by casting out nines.

Just as in residue number system (RNS) arithmetic, division and square-rooting are
complicated with residue-coded operands. For these operations, the small residue check
processor cannot operate independently from the main processor and must interact with
it to compute the check part of the result. Details are beyond the scope of this chapter.

As in product codes, choosing any odd value for A guarantees the detection of all
weight-1 arithmetic errors with residue codes. However, residue codes are less capable
than product codes for detecting multiple unidirectional errors. For example, we saw
earlier that the 15N code can detect all weight-2 and weight-3 unidirectional arithmetic
errors. The residue code with A = 15 cannot detect the weight-2 error resulting from
0-to-1 inversion of the least-significant bit of the data as well as the least-significant bit
of the residue. This error goes undetected because it adds 1 to the data as well as to the
residue, making the result a valid codeword.

To correct the preceding problem, inverse residue codes have been proposed for
which the check part represents A − (N mod A) rather than N mod A. In the special
case of A = 2a − 1, the check bits constitute the bitwise complement of N mod A.
Unidirectional errors now affect the data and check parts in opposite directions, mak-
ing their detection more likely. By noting that attachment of the a-bit inverse residue
C ′(N) = A − (N mod A) to the least-significant end of a k-bit number N makes the
resulting (k + a)-bit number a multiple of A = 2a − 1, the following result is easily
proven.

THEOREM 27.2 Any unidirectional error with arithmetic weight not exceeding
a−1 is detectable by a low-cost inverse residue code that uses the check modulus
A = 2a − 1.

The added cost or overhead of an error-detecting code has two components:

The increased word width for coded operands adds to the cost of registers, memory,
and data links.

Checked arithmetic or wider operands make the ALU more complex.

With respect to the first component of cost, product, residue, and inverse residue codes
are similar. For example, the low-cost versions of these codes with the check modulus
A = 2a − 1 all require a additional bits to represent the coded operands. With regard to
arithmetic, residue and inverse residue codes are simpler than product codes for addition
and multiplication and more complex for division.

It is interesting to note that the residue-class codes are the only possible separable
codes for checking an adder [Pete58]. Also, it has been proven that bitwise logical

Arithmetic Error-Correcting Codes 575

operations such as AND, OR, and XOR cannot be checked by any coding scheme with
less than 100% redundancy; that is, the best we can do for error detection in logical
operations is duplication and comparison [Pete59], as in Fig. 27.2a.

27.3 ARITHMETIC ERROR-CORRECTING CODES

We illustrate the main ideas relating to arithmetic error-correcting codes by way of
examples from the class of biresidue codes. A biresidue code represents a number N as
the triple (N , C(N), D(N)), where the check components C(N)= N mod A and D(N)=
N mod B are residues with respect to the check moduli A and B. If the original number
requires k bits for its binary representation, its biresidue-coded representation would
need k + 	log2A
 + 	log2B
 bits.

Encoding for the class of biresidue codes is similar to that of single-residue codes,
except that two residues must be computed. Addition and multiplication of biresidue-
coded operands can be performed by an arithmetic processor similar to that shown in
Fig. 27.4, but with two check processors. Since the two residues can be computed and
checked in parallel, no speed is lost.

Consider errors that affect the number N or only one of the residues, say C(N). Such
errors can be corrected as follows:

Error in C(N). In this case, C(N) will fail the residue check, while D(N) passes its
check; C(N) can then be corrected by recomputing N mod A.

Error in N. Unless the error magnitude happens to be a multiple of A and/or B (thus
being either totally undetectable or else indistinguishable from a residue error), both
residue checks will fail, thus pointing to N as the erroneous component. To correct
such errors, the differences between Nwrong mod A (Nwrong mod B) and C(N) (D(N))
must be noted. The two differences, [(Nwrong mod A) − C(N)] mod A and [(Nwrong
mod B) − D(N)] mod B, constitute an error syndrome. The error is then correctable
if the syndromes for different errors are distinct.

Consider, as an example, a biresidue code with the low-cost check moduli A = 7 and
B = 15. Table 27.1 shows that any weight-1 arithmetic error E with |E| ≤ 2048 leads
to a unique error syndrome, thus allowing us to correct it by subtracting the associated
error value from Nwrong. For |E| ≥ 4096, the syndromes assume the same values as for
E/4096. Hence, weight-1 error correction is guaranteed only for a 12-bit data part. Since
the two residues require a total of 7 bits for their representations, the redundancy for this
biresidue code is 7/12 ≈ 58%.

A product code with the check modulus A × B = 7 × 15 = 105 would similarly
allow us to correct weight-1 errors via checking the divisibility of the codeword by 7
and 15 and noting the remainders. This is much less efficient, however, since the total
word width must be limited to 12 bits for full error coverage. The largest representable
number is thus 4095/105 = 39. This is equivalent to about 5.3 bits of data, leading to a
redundancy of 127%.

In general, a biresidue code with relatively prime low-cost check moduli A = 2a−1
and B = 2b − 1 can support a data part of ab bits for weight-1 error correction with

576 Chapter 27 Fault-Tolerant Arithmetic

Table 27.1 Error syndromes for weight-1 arithmetic errors in
the (7, 15) biresidue code.

Error syndrome Error syndrome
Positive Negative
error Mod 7 Mod 15 error Mod 7 Mod 15

1 1 1 −1 6 14
2 2 2 −2 5 13
4 4 4 −4 3 11
8 1 8 −8 6 7

16 2 1 −16 5 14
32 4 2 −32 3 13
64 1 4 −64 6 11

128 2 8 −128 5 7
256 4 1 −256 3 14

512 1 2 −512 6 13
1024 2 4 −1024 5 11
2048 4 8 −2048 3 7

4096 1 1 −4096 6 14
8192 2 2 −8192 5 13

16384 4 4 −16384 3 11
32768 1 8 −32768 6 7

a representational redundancy of (a + b)/(ab) = 1/a + 1/b. Thus, with a choice of
suitably large values for a and b, the redundancy can be kept low.

Based on our discussion of arithmetic error-detecting and error-correcting codes,
we conclude that such codes are effective not only for protecting against fault-induced
errors during arithmetic computations but also for dealing with storage and transmission
errors. Using a single code throughout the system obviates the need for frequent encod-
ing and decoding and minimizes the chance of data corruption during the handling of
unencoded data.

27.4 SELF-CHECKING FUNCTION UNITS

Aself-checking function unit can be designed with or without encoded inputs and outputs.
For example, if in Fig. 27.4, x mod A and y mod A are computed internally, as opposed
to being supplied as inputs, a self-checking arithmetic unit with unencoded input/output
is obtained.

The theory of self-checking logic design is quite well developed and can be used to
implement highly reliable, or at least fail-safe, arithmetic units. The idea is to design
the required logic circuits in such a way that any fault, from a prescribed set of faults
that we wish to protect against, either does not affect the correctness of the outputs
(is masked) or else leads to a non-codeword output (is made observable). In the latter
case, the invalid result is either detected immediately by a code checker attached to the
unit’s output or else is propagated downstream by the next self-checking module that

Self-Checking Function Units 577

is required to produce a non-codeword output for any non-codeword input it receives
(somewhat similar to computation with not-a-numbers in floating-point arithmetic).

An important issue in the design of such self-checking units is the ability to build
self-checking code checkers that are guaranteed not to validate a non-codeword despite
internal faults. For example, a self-checking checker for an inverse residue code (N ,
C ′(N)) might be designed as follows. First, N mod A is computed. If the input is a valid
codeword, this computed value must be the bitwise complement of C ′(N). We can view
the process of verifying that xb−1 · · · x1x0 is the bitwise complement of yb−1 · · · y1y0
as that of ensuring that the signal pairs (xi, yi) are all (1, 0) or (0, 1). This amounts to
computing the logical AND of a set of Boolean values that are represented using the
following 2-bit encoding:

1 encoded as (1, 0) or (0, 1)

0 encoded as (0, 0) or (1, 1)

Note that the code checker produces two outputs that carry (1, 0) or (0, 1) if the input
is correct and (0, 0) or (1, 1) if it is not. It is an easy matter to design the required
AND circuit such that no single gate or line fault leads to a (1, 0) or (0, 1) output for a
non-codeword input. For example, one can build an AND tree from the two-input AND
circuit shown in Fig. 27.5. Note that any code checker that has only one output line
cannot be self-checking, since a single stuck-at fault on its output line can produce a
misleading result.

Fault detection can also be achieved by result checking. This is similar to what, in
the field of software fault tolerance, is known as acceptance testing. An acceptance test
is a (hopefully simple) verification process. For example, the correct functioning of a
square-rooter can be verified by squaring each obtained root and comparing the result to
the original radicand. If we assume that any error in the squaring process is independent
from, and thus unlikely to compensate for, errors in the square-rooting process, a result
that passes the verification test is correct with very high probability.

Acceptance tests do not have to be perfect. A test with imperfect coverage (e.g.,
comparing residues) may not detect each fault immediately after it occurs, but over time
will signal a malfunctioning unit with high probability. On the other hand, if we assume
that faults are permanent and occur very rarely, then periodic, as opposed to concurrent
or on-line, verification might be adequate for fault detection. Such periodic checks might

Figure 27.5
Two-input AND
circuit, with 2-bit
inputs (xi , yi) and
(xj , yj), for use in a
self-checking code
checker.

x

y i

i

x

y j

j

578 Chapter 27 Fault-Tolerant Arithmetic

k

k

k
ALU

Error
Ordinary ALU

(a) Parity prediction

k

ALU

k + h
P/R

k + h

k
R/P

k
P/R

k + h

(b) Parity preservation

Parity-
encoded
inputs

Parity
predictor

Parity
generator

Parity-
encoded
output

Parity-
encoded
inputs

Parity-
encoded
output

Redundant parity-preserving ALU

Figure 27.6 Self-checking adders with parity-encoded inputs and output.

involve computing with several random operands and verifying the correctness of the
results to make it less likely for compensating errors to render the fault undetectable
[Blum96].

Given that parity codes are quite simple and possess low redundancy, a particularly
attractive self-checking design strategy might be based on parity-encoded inputs and
outputs. The fault detection coverage of the resulting scheme is typically quite low, but
taking the previously discussed longer term perspective of detecting faulty components
in a reasonable time frame, this low redundancy method might be deemed cost-effective.
The main design challenge with a parity-based scheme is that parity codes are not closed
under arithmetic operations. So, we must devise strategies for predicting the output
parity, in a manner that faults in the prediction circuits do not lead to undetected errors.
Figure 27.6a shows how the method might be applied to the design of a two-operand
adder [Nico93]. The parity predictor must be completely independent of the ALU for
the scheme of Fig. 27.6a to be effective.

An alternative design strategy is depicted in Fig. 27.6b. The idea is to preserve the
even parity of the data in every stage of computation, eventually leading to even-parity
outputs. Thus, we see in Fig. 27.6b that the parity-encoded inputs are first converted
to BSD numbers of even parity. A parity-preserving BSD adder then computes the
even-parity redundant sum of the two numbers. Finally, the latter sum is converted to
a parity-encoded conventional output. The key idea that enables the foregoing scheme
is our ability to encode two adjacent BSD digits into an even-parity 4-bit code and
designing the BSD adder to be parity-preserving [Thor97]. The code used might be
based on the signed-magnitude encoding of BSD, with both +0 and −0 allowed for the
digit value 0. It is this flexibility of having even-parity and odd-parity codes for 0 that
makes the scheme possible. Implementation details, including a minor adjustment for
handling 2’s-complement operands, can be found elsewhere [Parh02].

27.5 ALGORITHM-BASED FAULT TOLERANCE

So far, our focus has been on methods that allow us to detect and/or correct errors at the
level of individual basic arithmetic operations such as addition and multiplication. An
alternative strategy is to accept that arithmetic operations may yield incorrect results and
build the mechanisms for detecting or correcting errors at the data structure or application
level.

Algorithm-Based Fault Tolerance 579

Figure 27.7 A 3× 3
matrix M with its
modulo-8 row,
column, and full
checksum matrices
Mr , Mc , and Mf .

M =

2 1 6
5 3 4
3 2 7

 Mr =

2 1 6 1
5 3 4 4
3 2 7 4

Mc =

2 1 6
5 3 4
3 2 7
2 6 1

 Mf =

2 1 6 1
5 3 4 4
3 2 7 4
2 6 1 1

As an example of this approach, consider the multiplication of matrices X and Y
yielding the result matrix P. The checksum of a list of numbers (a vector) is simply the
algebraic sum of all the numbers modulo some check constant A. For any m× n matrix
M , we define the row-checksum matrix Mr as an m×(n+1) matrix that is identical to M
in its columns 0 through n− 1 and has as its nth column the respective row checksums.
Similarly, the column-checksum matrix Mc is an (m+ 1)× n matrix that is identical to
M in its rows 0 through m− 1 and has as its mth row the respective column checksums.
The full-checksum matrix Mf is defined as the (m+ 1)× (n+ 1) matrix (Mr)c: that is,
the column-checksum matrix of the row-checksum matrix of M . Figure 27.7 shows a
3 × 3 matrix with its row, column, and full checksum matrices, where the checksums
are computed modulo A = 8.

The following result allows us to detect and/or correct computation errors in matrix
multiplication.

THEOREM 27.3 For matrices X , Y , and P satisfying P = X × Y , we have
Pf = Xc × Yr .

According to Theorem 27.3, we can perform standard matrix multiplication on the
encoded matrices Xc and Yr and then compare the values in the last column and row
of the product matrix to checksums that are computed based on the remaining elements
to detect any error that may have occurred. If matrix elements are floating-point num-
bers, the equalities will hold approximately, leading to difficulties in selecting a suitable
threshold for considering values equal. Some methods to resolve this problem are given
in [Dutt96].

The full-checksum matrix Mf is an example of a robust data structure for which the
following properties of error detection and correction hold.

THEOREM 27.4 In a full-checksum matrix, any single erroneous element can be
corrected and any three erroneous elements can be detected.

Thus, for highly localized fault-induced errors (e.g., arising from a very brief transient
fault in a hardware multiplier affecting no more than three elements of the product
matrix), the preceding scheme allows for error correction or detection. Detection of more
extensive errors, though not guaranteed, is quite likely; it would indeed be improbable
for several errors to be compensatory in such a way that they escape detection by any of
the checksums.

580 Chapter 27 Fault-Tolerant Arithmetic

Designing such robust data structures with given capabilities of error detection and/or
correction, such that they also lend themselves to direct manipulation by suitably modi-
fied arithmetic algorithms, is still an art. However, steady progress is being made in this
area. For a review of algorithm-based fault tolerance methods, see [Vija97].

27.6 FAULT-TOLERANT RNS ARITHMETIC

Redundant encodings can be used with any number representation scheme to detect or
correct errors. Residue number systems, in particular, allow very elegant and effec-
tive error detection and correction schemes through the use of redundant residues
corresponding to extra moduli.

Suppose we choose the set of moduli in an RNS in such a way that one residue is
redundant (i.e., if we remove any one modulus, the remaining moduli are adequate for
the desired dynamic range). Then, any error that is confined to a single residue will be
detectable, since such an error would make the affected residue inconsistent with the
others. If this scheme is to work, the redundant modulus obviously must be the largest
one (say m). The error detection scheme is thus as follows. Use all other residues to
compute the residue of the number mod m. This is done by a process known as base
extension for which many algorithms exist. Then compare the computed mod-m residue
with the mod-m residue in the number representation to detect a possible error.

The beauty of this method is that arithmetic algorithms are totally unaffected; error
detection is made possible by simply extending the dynamic range of the RNS. The
base extension operation needed for error detection is frequently provided in an RNS
processor for other reasons—for example, as a building block for synthesizing different
RNS operations. In such a case, no additional hardware, beyond that required to handle
the extra residue, is needed for error detection. In fact, it is possible to disable the error-
checking capabilities and use the extended dynamic range offered by all the moduli when
performing less critical computations.

Providing multiple redundant residues can lead to the detection of more errors and/or
correction of certain error classes [Etze80] in a manner similar to the error-correction
property of biresidue and multiresidue codes of Section 27.3. Again, the only new
elements that are needed are the checking algorithms and the corresponding hardware
structures. The arithmetic algorithms do not change.

As an example, consider adding the two redundant moduli 13 and 11 to the RNS with
the four moduli 8, 7, 5, 3 (dynamic range = 840). In the resulting 6-modulus redundant
RNS, the number 25 is represented as (12, 3, 1, 4, 0, 1), where the residues are listed
in order from the largest to the smallest modulus. Now suppose that the mod-7 residue
is corrupted and the number becomes (12, 3, 1, 6, 0, 1). Using base extension, we
compute the two redundant residues from the other four residues; that is, we transform
(−,−, 1, 6, 0, 1) to (5, 1, 1, 6, 0, 1). The difference between the first two components
of the original corrupted number and the reconstructed number is (+7,+2), which is
the error syndrome that points to a particular residue in need of correction. We see
that the error correction scheme here is quite similar to that shown in Table 27.1 for
a biresidue code.

Problems 581

PROBLEMS 27.1 Voting on integer results

One way to design the voter shown in Fig. 27.2 is to use a three-input majority
circuit (identical in function to the carry-out of a full adder) and do serial bitwise
voting on the outputs of the three ALUs. Assume that the ALU outputs are 8-bit
unsigned integers.

a. Show that serial bitwise voting produces the correct voting result, given at
most one faulty ALU.

b. What would the output of the bit-serial voter be if its inputs are 15, 19, and 38?
c. Present the design of a bit-serial voter that can indicate the absence of majority

agreement should a situation similar to the one in part b arise.

27.2 Approximate voting

Suppose that the three-input voter shown in Fig. 27.2 is to interpret its 32-bit
unsigned inputs as fractional values that may contain small computational errors
(possibly a different amount for each input).

a. Provide a suitable definition of majority agreement in this case.
b. Can a bit-serial voter, producing its output on the fly, be designed in

accordance with the definition of part a?
c. Design a bit-serial median voter that outputs the middle value among its three

imprecise inputs.
d. Under what conditions is the output of a median voter the same as that of a

majority voter?

27.3 Design of comparators

For the two-channel redundant arrangement of Fig. 27.2, discuss the design
of bit-serial comparators for integer (exact) and fractional (approximate)
results.

27.4 Arithmetic weight

a. Prove that any minimal-weight BSD representation of a k-bit binary number
has at most 	(k + 1)/2
 nonzero digits and can always be written in canonic
BSD form without any consecutive nonzero digits.

b. Show that the arithmetic weight of a binary number x is the same as the
Hamming distance between the binary representations of x and 3x.

27.5 Low-cost product codes

a. Prove Theorem 27.1 characterizing the unidirectional error-detecting power
of low-cost product codes.

b. What fraction of random double-bit errors are detectable by a low-cost
product code with A = 2a − 1?

c. Can moduli of the form A = 2a + 1 be included in low-cost product
codes?

582 Chapter 27 Fault-Tolerant Arithmetic

27.6 Low-cost residue codes

a. Prove Theorem 27.2, which characterizes the unidirectional error-detecting
power of low-cost inverse residue codes.

b. What fraction of random double-bit errors is detectable by a low-cost residue
code with the check modulus A = 2a − 1?

c. Repeat part b for low-cost inverse residue codes.
d. Show how the computation of the modulo-(2a − 1) residue of a number can

be speeded up by using a tree of carry-save adders rather than a tree of a-bit
adders with end-around carries.

e. Apply your method of part d to the computation of the mod-15 residue of a
32-bit number and compare the result with respect to speed and cost to the
alternative approach.

f. Suggest an efficient method for computing the modulo-17 residue of a 32-bit
number and generalize it to the computation of mod-(2a + 1) residues.

27.7 Division with product-coded operands

Show that if q and s are the quotient and remainder in dividing z by d (i.e.,
z = qd + s) and A = 2a − 1, then in dividing A2z by Ad , the obtained quotient
q** can always be made equal to Aq by choosing the last radix-2a digit of q**
in [−2a + 2, 1].

27.8 Low-cost biresidue codes

a. Characterize the error correction capability of a (7, 3) low-cost biresidue code.
b. If only error detection is required, how much more effective is the (7, 3)

biresidue code compared with a single-residue code with the check modu-
lus 7? Would you say that the additional redundancy due to the second check
modulus 3 is worth its cost?

c. Propose a low-cost biresidue code that is capable of correcting all weight-1
arithmetic errors in data elements that are 32 bits wide.

27.9 Self-checking checkers

a. Verify that the AND circuit of Fig. 27.5 is an optimal implementation of the
desired functionality. Note that the specification of the design has “coupled
don’t-cares”: that is, one output of the AND circuit can be 0 or 1 provided
that the other one is (not) equal to it.

b. Verify that the AND circuit of Fig. 27.5 is self-testing in the sense that both
output combinations (0, 1) and (1, 0) appear during normal operation when
there is no input error. Note that if a self-checking checker produces only the
output (1, 0), say, during normal operation, some output stuck-at faults may
go undetected.

c. Use the AND circuit of Fig. 27.5 as a building block to construct a self-
checking circuit to check the validity of a 10-bit integer that has been encoded
in the low-cost product code with the check modulus A = 3.

Problems 583

d. Design the OR-circuit and NOT-circuit (inverter) counterparts to the AND
circuit of Fig. 27.5. Discuss whether these additional circuits could be useful
in practice.

27.10 Self-checking function unit

Present the complete design a self-checking additive multiply module using the
low-cost product code with A = 3. The two additive and two multiplicative
inputs, originally 4-bit unsigned numbers, are presented in 6-bit encoded form,
and the encoded output is 10 bits wide. Analyze the speed and cost overhead of
your self-checking design.

27.11 Self-checking arithmetic circuits

Consider the design of self-checking arithmetic circuits using two-rail encoding
of the signals: 0 represented as (0, 1) and 1 as (1, 0), with (0, 0) and (1, 1)
signaling an error.

a. Design a two-rail self-checking full-adder cell. Hint: Think of how two-rail
AND, OR, and NOT elements might be built.

b. Using the design of an array multiplier as an example, compare the two-
rail self-checking design approach to circuit duplication with comparison.
Discuss.

27.12 Algorithm-based fault tolerance

a. Verify that the product of the matrices Mc and Mr of Fig. 27.7 yields the
full checksum matrix (M 2)f if the additions corresponding to the checksum
elements are performed modulo 8.

b. Prove Theorem 27.3 in general.
c. Construct an example showing that the presence of four erroneous elements in

the full checksum matrix Mf can go undetected. Then, prove Theorem 27.4.

27.13 Algorithm-based fault tolerance

Formulate an algorithm-based fault tolerance scheme for multiplying a matrix
by a vector and discuss its error detection and correction characteristics.

27.14 Redundant RNS representations

For the redundant RNS example presented at the end of Section 27.6 (original
moduli 8, 7, 5, 3; redundant moduli 13, 11):

a. What is the redundancy with binary-encoded residues? How do you define
the redundancy?

b. Construct a syndrome table similar to Table 27.1 for single-residue error
correction.

c. Show that all double-residue errors are detectable.
d. Explain whether, and if so, how, one can detect double-residue errors and

correct single-residue errors at the same time.

584 Chapter 27 Fault-Tolerant Arithmetic

27.15 Redundant RNS representations

a. Prove or disprove: In an RNS having a range approximately equal to that of
k-bit numbers, any single-residue error can be detected with O(log k) bits of
redundancy.

b. Repeat part a for single-residue error correction.

27.16 BSD adder with parity checking

Supply the design details for a BSD adder that always produces an output word
with even parity. Discuss the fault tolerance capabilities of the resulting adder.
Hint: Use the even-parity encoding discussed at the end of Section 27.4.

27.17 Parity checking in multiplication

Present the design of a parity predictor for use in checking a 4 × 4 unsigned
multiplier. Compare the circuit implementation cost of your design and comment
on the practicality of using parity checking for multiplication.

27.18 Product codes with special moduli

Investigate the error detection and correction properties of product codes with
the check modulus A of the form (2a−1−1)/a and write a two-page report about
your findings [Mand67].

27.19 Multiresidue codes with special moduli

Show that multiresidue codes with pairwise relatively prime moduli, whose
product A is of the form (2a−1 − 1)/a, offer stronger error detection/correction
capabilities than the similarly designed product code defined in Problem 27.18
[Rao74].

27.20 Canonical BSD representation

A minimum-weight BSD representation of a value z has the least number of
nonzero digits among all possible BSD representations. In Section 27.1, we
characterized arithmetic errors in terms of such minimum-weight representations.
Show that there may be multiple minimum-weight representations for z, but that
there is a unique (canonical) minimum-weight representation that does not have
any consecutive nonzero digits.

27.21 Parity-preserving number converters

In the design of the parity-preserving adder of Fig. 27.6b, we used two different
number converters.

a. Present a design for a converter that takes a parity-encoded unsigned number
(assume even parity) and converts it to an even-parity BSD number.

b. Repeat part a for the reverse converter from BSD to parity-encoded
conventional output.

References and Further Readings 585

27.22 Parity-preserving reversible gates

Figure 26.12 depicts four reversible logic gates. Consider the design of parity-
preserving logic circuits using such reversible gates [Parh06].

a. Show that no two-input reversible gate can be parity-preserving.
b. Which of the three-input, three-output gates shown in Fig. 26.12 are parity-

preserving?
c. Is the binary full adder of Fig. 26.13 parity-preserving? Explain.

REFERENCES AND FURTHER READINGS

[Aviz72] Avizienis, A., “Arithmetic Error Codes: Cost and Effectiveness Studies for
Application in Digital System Design,” IEEE Trans. Computers, Vol. 20, No. 11,
pp. 1322–1331, 1971.

[Aviz73] Avizienis, A., “Algorithms for Error-Coded Operands,” IEEE Trans. Computers,
Vol. 22, No. 6, pp. 567–572, 1973.

[Bars73] Barsi, F., and P. Maestrini, “Error Correcting Properties of Redundant Residue
Number Systems,” IEEE Trans. Computers, Vol. 22, pp. 307–315, 1973.

[Blum96] Blum, M., and H. Wasserman, “Reflections on the Pentium Division Bug,” IEEE
Trans. Computers, Vol. 45, No. 4, pp. 385–393, 1996.

[DiCl93] Di Claudio, E. D., G. Orlandi, and F. Piazza, “A Systolic Redundant Residue
Arithmetic Error Correction Circuit,” IEEE Trans. Computers, Vol. 42, No. 4,
pp. 427–432, 1993.

[Dutt96] Dutt, S., and F. T. Assaad, “Mantissa-Preserving Operations and Robust
Algorithm-Based Fault Tolerance for Matrix Computations,” IEEE Trans. Computers,
Vol. 45, No. 4, pp. 408–424, 1996.

[Etze80] Etzel, M. H., and W. K. Jenkins, “Redundant Residue Number Systems for Error
Detection and Correction in Digital Filters,” IEEE Trans. Acoustics, Speech, and
Signal Processing, Vol. 28, No. 5, pp. 538–545, 1980.

[Huan84] Huang, K. H., and J. A. Abraham, “Algorithm-Based Fault Tolerance for Matrix
Operations,” IEEE Trans. Computers, Vol. 33, No. 6, pp. 518–528, 1984.

[Mand67] Mandelbaum, D., “Arithmetic Codes with Large Distance,” IEEE Trans. Information
Theory, Vol. 13, pp. 237–242, 1967.

[Nico93] Nicolaidis, M., “Efficient Implementations of Self-Checking Adders and ALUs,”
Proc. 23rd Int’l Symp. Fault-Tolerant Computing, pp. 586–595, 1993.

[Parh78] Parhami, B., and A. Avizienis, “Detection of Storage Errors in Mass Memories Using
Arithmetic Error Codes,” IEEE Trans. Computers, Vol. 27, No. 4, pp. 302–308, 1978.

[Parh94] Parhami, B., “A Multi-Level View of Dependable Computing,” Computers and
Electrical Engineering, Vol. 20, No. 4, pp. 347–368, 1994.

[Parh02] Parhami, B., “An Approach to the Design of Parity-Checked Arithmetic Circuits,”
Proc. 36th Asilomar Conf. Signals, Systems, and Computers, pp. 1084–1088, 2002.

[Parh06] Parhami, B., “Fault-Tolerant Reversible Circuits,” Proc. 40th Asilomar Conf. Signals,
Systems, and Computers, pp. 1726–1729, 2006.

586 Chapter 27 Fault-Tolerant Arithmetic

[Pete58] Peterson, W. W., “On Checking an Adder,” IBM J. Research and Development, Vol. 2,
No. 2, pp. 166–168, 1958.

[Pete59] Peterson, W. W., and M. O. Rabin, “On Codes for Checking Logical Operations,”
IBM J. Research and Development, Vol. 3, No. 2, pp. 163–168, 1959.

[Rao74] Rao, T. R. N., Error Codes for Arithmetic Processors, Academic Press, 1974.

[Thor97] Thornton, M. A., “Signed Binary Addition Circuitry with Inherent Even Parity
Output,” IEEE Trans. Computers, Vol. 46, No. 7, pp. 811–816, 1997.

[Vija97] Vijay, M., and R. Mittal, “Algorithm-Based Fault Tolerance: A Review,”
Microprocessors and Microsystems, Vol. 21, pp. 151–161, 1997.

28 Reconfigurable
Arithmetic

■ ■ ■

“Most of us don’t think, we just occasionally rearrange our prejudices”
F R A N K K N O X

■ ■ ■

I n this last chapter, we study arithmetic algorithms and hardware designs that

are suitable for implementation on field-programmable gate arrays (FPGAs) and

FPGA-like (re)configurable logic devices. This approach is attractive for prototyping

new designs, producing one-of-a-kind or low-volume systems, and launching rapidly

evolving products that need to be upgradeable in the field. Whereas any gate-level

hardware design can be mapped onto modern FPGAs, which have vast numbers of

logic elements and interconnects, it is important to craft arithmetic algorithms and

designs that are well-matched to the capabilities and limitations of such devices.

28.1 Programmable Logic Devices

28.2 Adder Designs for FPGAs

28.3 Multiplier and Divider Designs

28.4 Tabular and Distributed Arithmetic

28.5 Function Evaluation on FPGAs

28.6 Beyond Fine-Grained Devices

28.1 PROGRAMMABLE LOGIC DEVICES

Programmable combinational logic parts offer a flexible implementation alternative to
the use of small-scale integrated-circuit components or custom designs. Manufacturers
of integrated circuits offer large arrays of gates whose connections can be customized by
a process known as programming. With respect to the programming mechanism, there
are two types of such circuits. In one type, all connections of potential interest are put

587

588 Chapter 28 Reconfigurable Arithmetic

in place in the form of fuses that can be blown open selectively by passing a sufficiently
large current through them. In another type of programmable circuits, antifuse elements
are used to establish connections where desired. In logic diagrams, the same convention
is used for both types: a connection that is left in place, or is established, appears as
a heavy dot on crossing lines, whereas for any connection that is blown open, or not
established, there is no such dot.

Programmable sequential logic parts consist of configurable arrays of gates with
strategically placed memory elements to hold data from one clock cycle to the next.
For example, a commonly used form of programmable array logic (PAL) with memory
elements has a structure similar to a combinational PAL, but each OR gate output can be
stored in a flip-flop and the device output is selectable from among the OR gate output,
its complement, and the flip-flop outputs (Fig. 28.1a). Either the OR gate output or the
flip-flop output can be fed back into the AND array through a 2-to-1 multiplexer (mux).
The three signals controlling the multiplexers in Fig. 28.1a can be tied to logic 0 or 1
via programmable connections. The most flexible method of configuring programmable
devices is by means of storing configuration data in static RAM (SRAM) memory cells.
Figure 28.2 depicts some of the ways in which a configuration bit stored in an SRAM
cell can affect the flow of data via controlling switches and interconnections.

Among configurable logic devices, the ultimate in flexibility is offered by field-
programmable gate arrays (FPGAs), depicted in simplified form in Fig. 28.1b. An FPGA
is typically composed of a large number of logic blocks (LBs) in the center, surrounded
by input/output (I/O) blocks (IOBs) at the edges. Each IOB in the FPGA of Fig. 28.1b is
similar to the output macrocell in the lower half of Fig. 28.1a. Groups of LBs and IOBs

(a) Portion of PAL with storable output (b) Generic structure of an FPGA

8-input
ANDs

DC

QQ
FF

Mux

Mux

0 1

0 1

I/O blocks

Configurable
logic block

Programmable
connections

CLB

CLB

CLB

CLB

LB LB

LB LB

LB LB LB LB

LB LB LB LB

LB LB LB LB

LB LB LB LB

Logic block
(or LB cluster)

Programmable
interconnects

I/O block

Figure 28.1 Examples of programmable sequential logic.

Programmable Logic Devices 589

0

1

Memory
cell

Memory
cell

Memory
cell

(a) Tristate buffer (b) Pass transistor (c) Multiplexer

Figure 28.2 Some memory-controlled switches and interconnections in programmable
logic devices.

Inputs

FF

Logic
or

LUT

0

 1

0 1

0
 1
 2

1
0

0
1
2
 3
4

1 0
1

y0

y1

y2

x0
x1
x2
x3

x4

Carry-out

Carry-in

Outputs

Figure 28.3 Structure of a simple logic block.

can be linked together via programmable interconnects, which fill the spaces between
the blocks (the shaded region in Fig. 28.1b), to form complex digital circuits.

Each LB is capable of realizing an arbitrary logic function of a small number of
variables and also has one or more memory elements. Modern FPGA chips may have
many thousands of LBs and hundreds of IOBs. A very simple LB is depicted in Fig. 28.3.
Inside the LB, a number of inputs are provided to the programmable logic or a lookup
table (LUT), whose output can be stored in a flip-flop or directly sent to the block’s
output. For example, the logic/LUT box on the left side of Fig. 28.3 may be a 16 × 1
table that chooses the content of one of the memory cells as its output, depending on
its 4-bit input pattern. This is akin to the way the bit-serial arithmetic/logic unit of
the Connection Machine CM-2 was implemented (see Section 24.3). Because addition
is the most frequently implemented arithmetic operation, dedicated carry logic cells
are typically built into the LB to avoid the use of LB’s general-purpose logic and the
programmable interconnect resources outside the LBs for constructing carry chains. This
provision also renders carry chains faster. Alternatively, a 1-bit full adder may be used

590 Chapter 28 Reconfigurable Arithmetic

in lieu of the carry logic to relieve the programmable logic and interconnects from the
sum formation function as well.

Logic blocks may be clustered and interconnected with each other inside the clus-
ters, as well as via the external programmable interconnects. If a cluster has two or four
LBs, say, then a 2-bit or 4-bit adder may be implementable in one cluster, with several
clusters strung together to form a wider adder. This clustering of LBs tends to reduce
the interconnection length and thus makes them faster when a complex logic circuit is
to be implemented. Also, LBs or clusters can be interconnected via their combinational
outputs (the y0 and y1 output lines in Fig. 28.3) or via outputs that they store internally
(y2). Combinationally chained LBs can form multilevel structures with complex func-
tionalities. Interconnection via storage elements allows one or more LBs or clusters to
form one stage in a pipeline.

Note that, for the sake of simpler exposition, we have substantially simplified the LB
structure in Fig. 28.3. In modern FPGAs, there are often richer cross connections and
many more options for choosing each input to a block. Additionally, the FFs are more
elaborate than the simple one depicted in Fig. 28.3, so as to facilitate pipelined operation
and improve flexibility. They often have set and reset inputs, can operate as simple
latches, and be negative or positive edge-triggered, all under programmed control.

Figure 28.4 depicts, in simplified form, a way of interconnecting the LBs or clusters
of LBs to each other and to IOBs at the boundaries of an FPGA chip. Logic blocks can

Horizontal
wiring

channels

LB or
cluster

Vertical wiring channels

Switch
box

Switch
box

Switch
box

Switch
box

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

LB or
cluster

Figure 28.4 A possible arrangement for programmable interconnects between LBs or LB
clusters.

Programmable Logic Devices 591

take their inputs from horizontal or vertical wiring channels, and their outputs can be
connected to the same channels. Thus, via appropriate programming of the interconnects
(an SRAM bit associated with each of the heavy dots and additional bits controlling
switch boxes), the output of one LB can feed the input of another LB or that of an IOB.
Figure 28.4 does not show the dedicated carry lines (see Fig. 28.3) that may interconnect
LBs or clusters.

The memory elements (typically SRAM), which hold the connectivity pattern
between cells, can be initialized from ROMs upon start-up to define the system’s func-
tionality. They may also be loaded with new values at any time to effect run-time
reconfiguration. Special software packages, supplied by manufacturers of FPGAs and
independent vendors allow automatic mapping onto FPGAs of algorithmically specified
hardware functionality. While details of the LBs, IOBs, and programmable intercon-
nects vary from one manufacturer to another, or even between different product families
offered by the same manufacturer, such variations do not affect the basic methods that
we will discuss in the rest of this chapter. Our discussion will begin with adders, pro-
ceed with multipliers, distributed arithmetic, and function evaluation, briefly touch upon
floating-point arithmetic, and end with extensions to FPGA and FPGA-like structures
for greater efficiency in performing complicated arithmetic operations.

Incorporating FPGA devices in digital designs entails the use of a standard design
flow composed of the following eight stages:

1. Specification: Creating the design files, typically via a hardware description
language such as Verilog, VHDL, or Abel.

2. Synthesis: Converting the design files into interconnected networks of gates and
other standard logic circuit elements.

3. Partitioning: Assigning the logic elements of stage 2 to specific physical circuit
elements that are capable of realizing them.

4. Placement: Mapping of the physical circuit elements of stage 3 to specific physical
locations of the target FPGA device.

5. Routing: Mapping of the interconnections prescribed in stage 2 to specific physical
wires on the target FPGA device.

6. Configuration: Generation of the requisite bit-stream file that holds configuration
bits for the target FPGA device.

7. Programming: Uploading the bit-stream file of stage 6 to memory elements within
the FPGA device.

8. Verification: Ensuring the correctness of the final design, in terms of both function
and timing, via simulation and testing.

In practice, stages 2–6 of this design flow may be mechanized with help from design
automation software supplied by FPGA vendors. In this way, the most cumbersome
aspects of the physical realization, including the choice of appropriate arithmetic build-
ing blocks such as adders and multipliers, as well as the associated resource and time
optimizations, are handled by the automated system. Users can thus focus on expressing
their designs and on ensuring that the final configured FPGA performs according to the
specifications. Therefore, the arithmetic designs presented in Sections 28.2–28.5 of this
chapter are of interest primarily to more advanced users who prefer to perform their
own physical mappings or who participate in tool-building efforts for FPGA devices.

592 Chapter 28 Reconfigurable Arithmetic

Other readers can view the example designs as providing insight into the workings and
characteristics of FPGA devices.

It is worth noting that the flexibility provided by FPGAs comes at a cost. One aspect
of this cost is logic circuit redundancy (wasted chip area) in the form of stored configura-
tion bits and many unused circuit elements. A second aspect is reduced speed compared
with highly optimized application-specific integrated circuit implementations. Ironically,
FPGAs have been found quite suitable for both low-cost and high-performance designs,
despite the aforementioned very large-scale integration (VLSI) area and latency over-
heads. One reason is that the high production volumes for popular FPGA devices help
reduce their costs and also afford FPGA vendors incentives to optimize their designes
to the fullest possible extent and to provide performance-enhancing features.

28.2 ADDER DESIGNS FOR FPGAS

Clearly, a ripple-carry adder can be mapped directly to the LBs of an FPGA, if the
LBs are as depicted in Fig. 28.3. Even without the dedicated carry logic, it is an easy
matter to configure a cluster with two LBs into a full adder. The full adders are then
interconnected using the reconfigurable interconnects of Fig. 28.4. Note that the latter
scheme requires two eight-entry LUTs, one for the sum bit and another for the carry
bit. A ripple-carry adder must generally be laid out in a row or column of LBs, given
the fixed carry connections. Converting such a ripple-carry adder to a 2’s-complement
adder/subtractor is straightforward, based on the design of Fig. 2.7.

Simple ripple-carry adders are usually fast enough for many practical applications.
Two adder types, however, provide some speedup at moderate cost. One is carry-skip
adder (Section 7.1) and the other carry-select adder (Section 7.3). Narrow adders, with
8- or 12-bit operands, say, are typically implemented in ripple-carry form. The crossover
width, beyond which carry-skip, carry-select, and other fast adder designs become worth
using, is highly technology- and application-dependent and thus cannot be foretold in
general. It is seldom cost-effective to build logarithmic-time fast adders on FPGAs. One
reason is that carry-lookahead and similar adders consume an inordinate amount of logic
and interconnect resources, leading to excessive cost and power penalties. Furthermore,
the gain in speed may not be commensurate with the size penalty. The large number of
logic blocks needed for such adders arises from the carry acceleration logic and due to
some LBs going to waste to render the design regular. It has been argued that simple
modifications to the LBs could allow more efficient realization of high-speed carry chains
[Hauc00]. It is noteworthy that some FPGAs incorporate carry-lookahead circuits in a
manner that is invisible to the user. In such cases, it is always preferable to use the
FPGAs built-in carry chains.

Figure 28.5 depicts a 16-bit carry-skip adder with two 5-bit end blocks and a 6-bit
middle block that can be skipped. This particular carry-skip adder design was presented
by V. Kantabutra in a 2001 FPGA design contest. It is reportedly 23% faster than a
ripple-carry adder and achieves this improved performance at the cost of 37% more
LBs on an Atmel FPGA. Somewhat better results were obtained for a 32-bit adder of
similar design, using three blocks of widths 10, 12, and 10. Results achieved will differ

Adder Designs for FPGAs 593

5 5 5

0

1

Skip
logic

 5 6 6

 5 5

Adder AdderAdder
cout c in

Figure 28.5 Possible design of a 16-bit carry-skip adder on an FPGA.

/ 2

2 bits
0

1

0

1

0

1

0

1

3 bits4 bits6 bits 1 bit

/ 3/ 4/ 6

Figure 28.6 Possible design of a carry-select adder on an FPGA.

on specific FPGAs, depending on the details of LB components and their connection
flexibility. However, the example shows that such fast adder designs are worth exploring
for high-performance applications.

A carry-select adder can be designed in a similar manner. We present a sample design
for a 16-bit hybrid ripple-carry/carry-select adder to illustrate the techniques used, the
cost in FPGA resources, and the speed gained. The design consists of a single-bit adder
cascaded with successively wider carry-select stages to its left, as shown in Fig. 28.6
[Furt00]. Each carry-select stage consists of two ripple-carry adders of the same width,
one with carry-in set to 0 and the other set to 1. Once carry into a specific stage becomes
known, by means of right-to-left rippling through the multiplexers at the bottom of Fig.
28.6, the appropriate sum bits and carry into the next stage can be selected. A factor
of 3.5 increase in the number of LBs used along with a factor of about 2 reduction in
latency (a doubling in clock frequency) have been reported for this design. Again, the
results achieved, and optimal configurations, will differ on specific FPGAs.

A carry-save adder can be easily constructed, given that it is merely a collection of
full adders. Building multioperand adders with more than three inputs requires careful
attention to interconnecting the various carry-save adder levels in order to avoid excessive
resource requirements and interconnect delays. Such multioperand adders, which are
needed for implementing both constant multipliers and fast tree multipliers (see Section
28.3), also find applications where various partial results must be added in the course
of function evaluation (see, e.g., the piecewise and multipartite table-lookup methods
of Sections 24.5 and 24.6). Although some fare better than others, existing FPGAs
are rather inefficient in supporting the set-up of reduction trees (parallel compressors)

594 Chapter 28 Reconfigurable Arithmetic

needed for multioperand addition. This has motivated proposals for building such parallel
compressors into FPGAs, in addition to or in lieu of general-purpose logic and LUTs
[Bris07]. Preliminary studies have demonstrated modest speed gains and significant
savings in area resulting from such added resources. The capability for fast and efficient
multioperand addition would be a welcome feature in future FPGAs, given the rising
importance of table-based function evaluation methods.

28.3 MULTIPLIER AND DIVIDER DESIGNS

A sequential bit-at-a-time multiplier, which essentially works via a sequence of addition
operations, can be readily implemented in an FPGA. Modified (radix-4) Booth recoding
can be applied to cut the number of cycles in half. It is also possible to use radix-4
multiplication by precomputing 3a (see Fig. 10.2). In some FPGAs, the carry-chain
logic has been augmented to allow the addition of two multiples of the multiplicand in
order to produce the required multiples with fewer LBs.

Among the parallel multiplier architectures studied in Part III, array multipliers
(Section 11.5) are the most suitable for direct mapping onto FPGAs. If the required
resources for a complete array multiplier are deemed excessive, it is possible to imple-
ment half or a quarter of a square array multiplier, say by performing an 8 × 16 or a
4 × 16 multiplication. Then, the implemented portion can be used two or four times
to perform a full-width multiplication. When several multiplications are needed in the
course of a particular computation, a single array multiplier can be readily pipelined to
perform several multiplications in the time normally needed for one.

Like carry-lookahead adders, Wallace- or Dadda-tree multipliers are usually not
cost-effective for FPGAs. They not only consume large numbers of LBs, but also lead to
long and wasteful interconnections. Trees of ripple-carry adders (Figs. 8.4 and 8.5) are
likely the best choices for fast multipliers, as they tend to be more compact and highly
competitive in terms of speed. Truncated multipliers of Section 11.4 can be used to trade
off accuracy for lower resource complexity.

The divide-and-conquer multiplication strategy of Sections 12.1 and 12.2 can be used
for designing small, fast multipliers. For example, one can build a 4× 4 multiplier from
2× 2 multipliers realized by LUTs. Four four-input LUTs can supply the 4-bit products
of pairs of 2-bit numbers. The resulting four 4-bit partial products can be combined via
a 4-bit adder and a 6-bit adder, as shown in Fig. 28.7. This process can be repeated to
build wider multipliers. For example, four copies of the circuit shown in Fig. 28.7, along
with an 8-bit adder and a 12-bit adder can yield an 8× 8 multiplier.

Other options for multiplication on FPGAs include the two serial-parallel multipliers
of Fig. 12.7 or 12.10, and the bit-serial multiplier whose design is depicted in Figs. 12.11
and 12.12. The former are suitable when one operand is stored internally (perhaps to be
multiplied by a sequence of input values), while the latter is the appropriate choice when
the multiplicand and multiplier are both supplied 1 bit at a time. Intermediate designs
with several bits of the operands arriving at once are also possible.

Multiplication by constants (see Section 9.5) can be performed in two distinct ways.
One is to store precomputed bits of the desired multiple in LUTs. To multiply an 8-bit

Multiplier and Divider Designs 595

a3
a2
x1
x0

a1
a0
x1
x0

4 LUTs

a1
a0
x3
x2

a3
a2
x3
x2

0

6-bit adder

p2

p0
p1

p3
p4
p5
p6
p7

cout

4-bit adder

Figure 28.7 Divide-and-conquer 4 × 4 multiplier design using 4-input lookup tables and
ripple-carry adders.

8 LUTs

0

8 LUTs

4
/

/
4

/
8

8-bit adder

xL

xH

13xL

13xH

13x

Figure 28.8 Multiplication of an 8-bit input by 13, using LUTs.

input x, say, by the constant a = 13, yielding a 12-bit result, we can use eight four-input
LUTs to store the 8-bit product 13xH for all possible values of xH, where xH represents
the upper 4 bits of x. We can use a different set of tables, which are accessed in parallel
with the first set (as in Fig. 28.8), to obtain 13xL, or we can reuse the same tables in

596 Chapter 28 Reconfigurable Arithmetic

a separate cycle for this purpose. The two 8-bit numbers thus obtained must then be
added after shifting 13xH to the left by 4 bits. It is easy to generalize from the example
just described. Assuming h-input LUTs, a k-bit number x can be multiplied by an m-bit
constant a using k(m/h+ 1) LUTs and k/h− 1 multibit adders. The latter adders can be
arranged into a tree, as noted in our discussion of multioperand addition in Section 28.2.

The second constant multiplication method, suitable for constants with a small num-
ber of nonzero digits in their binary signed-digit representation, is to use an adder tree
directly. For example, multiplication by the constant 115 = (1 0 0 -1 0 0 1 1)two can be
performed by adding x, 2x,−16x, and 128x. Thus, to multiply a number by 115, we need
three multibit adders (cascaded, or arranged as a two-level tree). Low-weight constants
have been of interest in digital signal processor (DSP) implementations for many years. It
is often the case that constants in structures such as digital filters can be slightly adjusted
without affecting the proper functioning of the system. In such cases, designers aim
for constants that have few nonzero digits in their binary signed-digit representations.
Such implementations that replace each constant multiplication by a few additions are
characterized as “multiplierless” in the DSP literature.

In some applications, multiplication by one of several predetermined constants may
be required, where the constant to be used is chosen by additional inputs. For example,
if one of four supplied constants is to be used, a 2-bit input would indicate the selection.
Both of these methods can be adapted to this case. Working out the details is left as an
exercise.

Many recent FPGAs incorporate hardwired multipliers among the resources available
on the chip. For example, an FPGA chip may include dozens to hundreds of 18 × 18
integer multipliers, scattered in between the ordinary LBs. The use of these built-in
resources, when possible, leads to more compact, faster, and often lower-power designs.
Multipliers that are wider than the ones provided on an FPGA chip can be synthesized
using the divide-and-conquer method of Sections 12.1 and 12.2. For example, four
18× 18 multipliers can be combined with adders to synthesize a 32× 32 or a 36× 36
multiplier.

Given the similarity of sequential bit-at-a-time multipliers and dividers, consider-
ations for implementing binary dividers on FPGAs are similar to those of multipliers.
The only additional element in a sequential binary divider is a small amount of logic
for quotient-digit selection. In fact, it is quite feasible to implement a combined multi-
ply/divide unit on an FPGA (see Section 15.6). Both restroing and nonrestoring division
algorithms can be used in a divider or multiplier/divider design. High-radix and related
fast division schemes, though feasible, are not cost-effective for FPGA implementation
in most application contexts. Instead, one can unroll the bit-at-a-time binary division
recurrence, leading to a combinational circuit for determining several bits of the quotient
at once. In the extreme, a fully unrolled division recurrence leads to a combinational
circuit that forms all the quotient bits in 1 (albeit wider) clock cycle. For additional
details, the reader is referred to Chapter 13 in [Desc06].

Because division is not as frequent as multiplication in many applications (particu-
larly in DSP), FPGA devices typically do not provide built-in dividers. However, given
the presence of many dedicated multipliers on modern FPGAs, as discussed earlier, divi-
sion through repeated multiplications, or via reciprocation, have become particularly
attractive (see Sections 16.2 and 16.3).

Tabular and Distributed Arithmetic 597

28.4 TABULAR AND DISTRIBUTED ARITHMETIC

We have already seen an example of tabular arithmetic in the design of constant mul-
tipliers. Essentially, we took advantage of the fact that the product ax, with constant
a, is a function of only one variable, thus allowing the use of smaller tables. As we
saw in Fig. 24.4, where the expression ax + by was evaluated, the same idea can be
extended to evaluation of more complicated expressions involving multiplications by
constants and additions. Here, we discuss FPGAimplementation of a very common class
of computations in digital signal processing.

Consider a second-order digital filter characterized by the equation

y(i) = a(0)x(i) + a(1)x(i−1) + a(2)x(i−2) − b(1)y(i−1) − b(2)y(i−2)

where the a(j) and b(j) terms are constants, x(j) is the filter input at time step j, and y(j) is
the filter output at time step j. Such a filter is useful in itself and may also be a component
in a more complex filter.

Expanding the equation for y(i) in terms of the individual bits of the 2’s-complement
operands x = (x0.x−1x−2 · · · x−l)two and y = (y0.y−1y−2 · · · y−l)two, we get

y(i) = a(0)

−x(i)

0 +
−1∑

j=−l

2jx(i)
j

+ a(1)

−x(i−1)

0 +
−1∑

j=−l

2jx(i−1)
j

+ a(2)

−x(i−2)

0 +
−1∑

j=−l

2jx(i−2)
j

− b(1)

−y(i−1)

0 +
−1∑

j=−l

2jy(i−1)
j

− b(2)

−y(i−2)

0 +
−1∑

j=−l

2jy(i−2)
j

Define f (s, t, u, v, w) = a(0)s + a(1)t + a(2)u − b(1)v − b(2)w, where s, t, u, v, and w
are 1-bit variables. If the coefficients are m-bit constants, then each of the 32 possible
values for f is representable in m+ 3 bits, as it is the sum of five m-bit operands. These
32 values can be precomputed and stored in a 32 × (m+ 3)-bit table. Note that we are
essentially using the same bit rearrangement method here as we used in the last example
of Section 24.3.

Using the function f , we can rewrite the expression for y(i) as follows:

y(i) =
−1∑

j=−l

2jf
(
x(i)

j , x(i−1)
j , x(i−2)

j , y(i−1)
j , y(i−2)

j

)

− f
(
x(i)

0 , x(i−1)
0 , x(i−2)

0 , y(i−1)
0 , y(i−2)

0

)

Figure 28.9 shows a hardware unit for computing this last expression with bit-serial input
and output. The value of y(i) is accumulated in the p register as y(i−1) is output from the
output shift register. At the end of the cycle, the result in the p register is loaded into the

598 Chapter 28 Reconfigurable Arithmetic

f

x

x

x

(i)

(i–1)

(i–2)

j

j

j

y (i–1)
j

y (i–2)
j

LSB first y (i)

±

Input

32-entry
lookup
table

 Output
 shift
register

(m + 3)-bit
 register

Data out

Address in

p

Right shift

LSB first
Output

Shift
reg.

Shift
reg.

Shift
reg.

Shift
reg.

Register

Figure 28.9 Bit-serial tabular realization of a second-order filter.

output shift register, p is reset to 0, and a new accumulation cycle begins. The output
bit y(i−1)

j is supplied to the ROM as an address bit. A second shift register at the output

side supplies the corresponding bit y(i−2)
j of the preceding output. At the input side, x(i)

is processed on the fly, and two shift registers are used to supply the corresponding bits
of the two preceding inputs, x(i−1) and x(i−2), to the 32-entry table.

Structures similar to that shown in Fig. 28.9 are useful for computing many other
functions. For example, if (x + y + z) mod m is to be computed for integer-valued
operands x, y, z and a modulus m, then the residues of 2i, 2×2i, and 3×2i can be stored
in a table for different values of i. The bits xi, yi, zi, and the index i are used to derive
an address from which the value of 2i(xi + yi + zi) mod m is read out and added to the
modulo-m running total.

When a structure similar to Fig. 28.9 is unrolled in time, so that the single table and
the adder are replaced by multiple tables and adders, one set for each bit position in
the operands, a scheme known as distributed arithmetic results [Whit89]. Distributed
arithmetic, which essentially takes advantage of grouping and processing of equally
weighted bits from multiple operands or partial results together, is particularly efficient
for implementing arithmetic circuits on FPGAs.

28.5 FUNCTION EVALUATION ON FPGAS

The coordinate rotations digital computer (CORDIC) algorithms of Chapter 22 can
be easily mapped onto FPGAs, given that they require only additions, shifting, and
fairly small LUTs. For example, the three-adder CORDIC processor of Fig. 22.3 can
be readily mapped onto most FPGAs. A more economical implementation, but with
correspondingly lower speed, can be derived by using bit-serial additions, or by time-
sharing a single adder. Conversely, the CORDIC iterations can be unrolled in time, so that

Function Evaluation on FPGAs 599

Add/Sub Add/Sub

Add/Sub Add /Sub

>> 1

>> 1

Add/Sub Add/Sub

>> 2

>> 2

Add/Sub Add/Sub

>> 3

>> 3

Add/Sub

Add /Sub

Add/Sub

Add/Sub

Sign logic

Sign logic

Sign logic

Sign logic

x y z

 x (1)

 x (2)

 x (3)

 x (4)

y (1)

y (2)

y (3)

y (4)

 z (1)

 z (2)

 z (3)

 z (4)

e(0)

e(1)

e(2)

e(3)

Figure 28.10 The first four stages of an unrolled CORDIC processor.

multiple copies of the processor of Fig. 22.3 perform the iterations. In the extreme, there
will be one processor dedicated to each iteration (Fig. 28.10). This complete unrolling
results in a number of simplifications in the processors: each processor always uses
the same shift amount (that can be hardwired), and it uses the same constant angle e(i)

as one input. Thus, one of the three adders is a constant adder that can be simplified.
The resulting unrolled design can be pipelined for very high throughput. Clearly, partial
unrolling can be used to provide a performance that falls between the sequential design
of Fig. 22.3 and the fully unrolled design of Fig. 28.10. In the latter case, the input e(i)

is chosen from among a small set of constants.
Many of the additive and multiplicative (particularly the shift-add variety) conver-

gence methods of Chapter 23 are suitable for FPGA implementation. Figure 28.11 shows
the generic structure of such computations, when the convergence steps are unrolled to
improve speed. For instance, the structure shown in Fig. 28.11 can be used for comput-
ing the reciprocal of a value d , with the LUT providing an initial approximation and the
subsequent blocks refining the value. Recall from our discussion in Section 16.4 that we
can aim for increasing the precision by a certain number of bits, rather than doubling it,
in each iteration. In this way, the design of the convergence-step blocks in Fig. 28.11

600 Chapter 28 Reconfigurable Arithmetic

Lookup
table

x

Convergence
step

y (0) y (1) y (2)
Convergence

step
Convergence

step

≈ f(x)

Figure 28.11 Generic convergence structure for function evaluation.

can be made uniform, which would make them more suitable for mapping onto FPGAs.
As a specific example, if the LUT provides 7 bits of precision for the reciprocal, and
each subsequent block increases the precision by 3 bits, the end result for the reciprocal
function with three convergence steps will be accurate to 16 bits.

An alternative to the convergence-based approach exemplified by Fig. 28.11 is the use
of interpolating memory (see Fig. 24.6). In particular, we noted at the end of Section 24.4
that the use of nonuniform intervals can reduce the table sizes significantly compared
with straight interpolation based on the most-significant bits of the argument. Recall
that if we use the h most-significant bits of the argument x for the initial approximation,
we have effectively divided the range of our function evaluation into 2h equal-width
intervals. With nonuniform intervals, a segment translation block will precede the tables,
adders, and multipliers that perform the linear or higher-order interpolation. The mapping
required from the bits of the input operand to one of several intervals of varying widths
can be implemented in combinational logic. However, it has been observed that a cascade
of reasonable size tables can accomplish this translation quite effectively [Sasa07].

Until very recently, floating-point arithmetic was deemed too complicated for imple-
mentation on FPGAs, with the need for alignment and normalization shifts cited as a
main problem. This is because barrel shifters consume a substantial number of LBs and
interconnect resources. So, the use of FPGAs was limited to applications where the range
of parameter variations was limited or highly predictable. With dramatic increases in the
number of LBs and interconnect resources, as well as special arithmetic accelerators to
be discussed in Section 28.6, it is now practical to implement single-precision or even
double-precision floating-point arithmetic on FPGAs. With appropriate resources and
design strategies, FPGA performance is deemed to be competitive with high-end pro-
cessors in floating-point arithmetic [Stre07]. Several designs and design strategies have
emerged over the past few years [Detr07], [Hemm07], and new approaches are being
continually published in the literature.

With floating-point operands and results, convergence and piecewise table methods
for function evaluation remain substantially the same in their overall structure. They
simply use floating-point arithmetic, instead of integer or fixed-point format.

28.6 BEYOND FINE-GRAINED DEVICES

Despite their great flexibility, the structure and logic capabilities of FPGAs are ill-
matched to certain arithmetic computations. This mismatch, which stems from the
fine-grained composition of logic and interconnents, has historical reasons, given that

Beyond Fine-Grained Devices 601

FPGAs were originally intended as replacements for random control (“glue”) logic. It
is also a matter of economics, because FPGA vendors must aim for a wide array of
applications, not just arithmetic-intensive ones, to benefit from economy of scale. Even
with the aforementioned mismatch, however, significant performance gain and power
economy have been reported for a wide array of applications. Gaining a factor of 100,
perhaps even 1000, in performance, and realizing energy savings of 50% or more, over
microprocessor-based realizations are not at all unusual [Todm05]. The advantages of
reconfigurable arithmetic over processor-based design stem from:

• Parallel processing and pipelining
• Adjusting number widths to precision requirements
• Matching data flow to computation
• Mitigating the memory bottleneck

An alternative to FPGA- and processor-based implementation is mapping the desired
functionalities on custom VLSI chips. This is usually the plan of last resort, given the
labor-intensive nature, and thus the high cost and long turnaround time, of custom VLSI
design. Other than cost, the benefits of using FPGAs over custom VLSI design include
flexibility and adaptability, with speed and power consumption constituting potential
drawbacks.

We have already mentioned the ideas of incorporating carry chains, multipliers, and
parallel counters into FPGAs to streamline or speed up arithmetic-intensive compu-
tations. These modifications and augmentations often also have implications for power
dissipation, as they tend to reduce the number of LBs and interconnects that are needed to
realize a particular computation. In the rest of this section, we contemplate the inclusion
of more flexible building blocks, such as signal processors or general-purpose processor
cores, and cover a few FPGA-like devices that are more directly optimized for arithmetic.

General-purpose processors, and their DSP variants, offer great flexibility for pro-
gramming complicated computations. On the other hand, FPGAs have an edge in
performance. It is thus quite natural to think of combining the two resources, so as
to benefit from the strengths of both. This idea has been pursued in both directions:
incorporating general-purpose or DSP processors on FPGA chips, and augmenting con-
ventional processors with FPGAs as special-purpose coprocessors to speed up certain
computations. Examples of the first approach can be found in product lines of all major
FPGA manufacturers. Options range from a single processor on the side of a conven-
tional FPGA, to several “cores” intermixed with the LBs and placed in locations to be
readily accessible. A notable example of the second approach is the inclusion of a Xilinx
Virtex-4 FPGA within every processing node of Cray’s XD1 supercomputer. The FPGA
acts as an accelerator in certain target applications [Stre07].

The trade-off to be considered when including units such as multipliers, floating-
point units, DSP slices, and processor cores on FPGAs is whether they are likely to
be used in typical designs. If such units go unused, either because of the applica-
tion class or due to the inability of design tools to take proper advantage of them, the
associated chip area will be wasted. Even worse, these added elements may hurt perfor-
mance if we have to route around them to interconnect the other chip resources. When
such units are in fact used, they tend to shrink the performance gap between reconfig-
urable and custom VLSI designs. Clearly, effective use of such heterogeneous resources

602 Chapter 28 Reconfigurable Arithmetic

Figure 28.12
The design space for
arithmetic-intensive
applications.

Word width (bits)

1 4 64 16 256

1

4

64

16

256

1024
Instruction depth

FPGA

DPGA

GP
micro

Our approach

MPP

SP
processor

General-
purpose

processor

Special-
purpose

processor

Field-programmable
arithmetic array

1024

depends upon how high-level design tools are made aware of their presence and potential
benefits.

It is also possible to incorporate into an FPGA-like structure an array of arithmetic ele-
ments that deal with entire numbers, rather than with bits. An example of this approach is
the use of additive multiply modules as the basic building blocks of a field-programmable
arithmetic array [Parh00]. Compared with FPGAs, the coarser-grain dynamically pro-
grammable gate arrays (DPGAs), massively parallel processing (MPP), and the use of
general-purpose or special-purpose programmable processors, arithmetic arrays would
occupy a different part in the design space of Fig. 28.12. Here, instruction depth refers
to the rough number of instructions expected to be stored in each computation element.
In FPGAs, the data flow is hardwired, which corresponds to an instruction depth of
one, whereas in general-purpose processors hundreds or even thousands of instruc-
tions are needed to direct the flow of computation through a general-purpose data path.
Special-purpose processors occupy a position between these two extremes with regard
to instruction depth. It is generally acknowledged that instruction processing and distri-
bution are bottlenecks of current computing methodologies. So, a reduced instruction
depth is good for performance.

PROBLEMS 28.1 Designing with FPGAs

Implement the following arithmetic circuits, using logic blocks of the type
depicted in Fig. 28.3.

a. A 4-bit binary counter.
b. An 8-bit ripple-carry adder.
c. The carry-skip adder of Fig. 28.5.
d. The carry-select adder of Fig. 28.6.

Problems 603

e. The 4× 4 multiplier of Fig. 28.7.
f. A 4-bit squarer.
g. An 8-input even-parity checker.
h. An 8-bit comparator, indicating equality or inequality.
i. A 4-bit unsigned comparator, indicating x > y, x = y, or x < y.
j. A 4-bit 2’s-complement comparator, indicating x > y, x = y, or x < y.

28.2 Real FPGA chips

Take two real FPGAchips from different manufacturers that you choose. Evaluate
and compare the two chips with regard to:

a. Logic block structure, in comparison with the simple block of Fig. 28.3.
b. Number of LBs needed to realize an 8-bit ripple-carry adder.
c. Fraction of the total logic resources used in the design of part b.
d. Number of LBs needed (in the worst case) to realize an arbitrary 6-variable

Boolean function.
e. Computational resources, other than LBs, that are provided on the chip.
f. Total on-chip memory and the overall chip complexity in terms of transistor

count.

28.3 Real FPGA chips

Take a real FPGA chip from a manufacturer that you choose and implement the
following designs on it.

a. The carry-skip adder of Fig. 28.5.
b. The carry-select adder of Fig. 28.6.
c. The 4× 4 multiplier of Fig. 28.7.
d. A 4-bit squarer of your own design.
e. An 8-bit up/down counter.

28.4 A simpler LB

Consider the following LB with a simpler structure than the one in Fig. 28.3.
Compare the two designs, note the differences, and speculate on why each addi-
tional element was included in the LB of Fig. 28.3. In particular, try to design an
8-bit ripple-carry adder, with cin and cout, using each type of block and compare
the resulting circuits.

Carry-out

Logic
or

LUT
Inputs

Carry-in

0

0

0

1

1

2

1 FF

Outputs

604 Chapter 28 Reconfigurable Arithmetic

28.5 Saturating adders

The design of saturating adders was discussed in Section 5.2.

a. Present the design of a saturating ripple-carry adder, with unsigned 16-bit
inputs and outputs, on an FPGA. Comment on the additional complexity due
to the saturation property.

b. Repeat part a for the carry-skip design of Fig. 28.5.
c. Repeat part a for the carry-select design of Fig. 28.6.

28.6 Priority encoder

a. Show how a 16-input priority encoder can be designed on an FPGA using its
built-in carry chain.

b. Design a priority encoder using the same carry-skip idea as in Fig. 28.5.
c. Does it make sense to apply the carry-select method of Fig. 28.6 to the design

of a priority encoder?

28.7 Adder designs for FPGAs

a. In the carry-skip adder design of Fig. 28.5, only three blocks and one skip
logic circuit are used. Why do you think this is the case? In other words,
why aren’t narrower blocks and more skip circuits used, as suggested by the
analysis at the end of Section 7.1?

b. How does the performance and cost of a 32-bit carry-skip adder formed by
putting two copies of the design in Fig. 28.5 back to back (connecting cout
of one copy to cin of the other) compare with a 32-bit carry-skip adder with
block widths 10, 12, and 10?

c. Explain why the hybrid ripple-carry/carry-select adder of Fig. 28.6 uses
blocks of different widths. Why are the particular widths chosen for the
various blocks?

28.8 Multioperand addition

a. Design an n-operand adder on an FPGA that receives 16-bit unsigned inputs,
one per clock cycle, and computes their sum in stored-carry form. Ignore
overflow; i.e., form the sum modulo 216.

b. Complete the design of part a so that the final sum is obtained in standard
binary format.

c. How would the design of part a change if it were to perform signed
multioperand addition?

d. Convert the design of part a into a modulo-(216 − 1) unsigned multioperand
adder.

28.9 Array multiplier

Design a 4× 4 array multiplier for an FPGA with LBs of the type shown in Fig.
28.3. Compare the resulting implementation to the multiplier shown in Fig. 28.7
and discuss the pros and cons of each design.

Problems 605

28.10 Multiplier design for FPGAs

Show all the required modifications to the design of Fig. 28.7, if 6-input LUTs
were to be used to build a 6× 6 multiplier.

28.11 Multiplier design for FPGAs

In Section 28.3, the expressions for the number of LUTs and number of adders
were derived with the implicit assumption that both k and m are divisible by h.
How do these expressions change if k and/or m are not divisible by h?

28.12 Multiplication via squaring

In Section 24.2, we presented a squaring-based table-lookup method for multi-
plication. Draw the block diagram of a 4× 4 multiplier based on this method in
a manner similar to Fig. 28.7. Then, compare the resulting design with the 4× 4
multiplier of Fig. 28.7 in terms of the total table size, total width of the adders
used, and latency.

28.13 Constant multipliers

For each of the following constants, design a constant multiplier using the design
of Fig. 28.8 and the design based on adder trees, as described near the end of
Section 28.3. In each case, compare the two designs with respect to latency
and cost.

a. 43
b. 129
c. 135
d. 189
e. 211
f. 867
g. 8.75 (the result is to be rounded down to an integer)

28.14 Built-in FPGA multipliers

Choose an FPGA with built-in multipliers. Obtain data about the chip area occu-
pied by each multiplier as a multiple of the area taken by an LB. Compare your
result with the area needed to synthesize an array multiplier with the same operand
widths using LBs. Also, compare the latencies of the two multipliers.

28.15 Squarer designs for FPGAs

Study the approximate squaring scheme presented in [Lang06] and answer the
following questions.

a. How do you explain the counterintuitive claims of linear complexity and
constant latency?

b. What makes the method suitable for FPGA implementation?
c. Can the method be extended to signed inputs? How, or why not?

606 Chapter 28 Reconfigurable Arithmetic

28.16 Trade-offs in table size versus logic

In the table-based constant multiplication method depicted in Fig. 28.8, there is
a fundamental trade-off between the size of the tables used and the number or
depth of the addition circuits required. For example, if we used 2-bit, instead
of 4-bit, segments of the operand x to obtain partial multiples, we would need
more adders to form the final result based on the four partial multiples. This
particular transformation does not make sense if the FPGA logic blocks come
equipped with four-input tables. However, in some cases, we have the option of
configuring a five-input (32-entry) table, say, into two separate four-input (16
entry) tables. Discuss the trade-offs in table size versus logic complexity for
multiplying a 20-bit number by the constant 13 using two different arrangements
of tables: five-input tables vs. four-input tables.

28.17 Bit-serial digital filters

Consider the second-order digital filter discussed in Section 28.4.

a. How would the design of Fig. 28.9 change if we removed the two y terms
from the right-hand side of the equation for y(i) and instead included two
more x terms, x(i−3) and x(i−4), with the coefficients a(3) and a(4)?

b. How do the original filter of Fig. 28.9 and the one you designed in part a
differ in their response to a step change in input? In other words, what output
sequences do the two filters produce if the input x changed from 0 to 0.5, say,
at time t and then remained at 0.5 afterward?

c. Repeat part b for a pulse input, that is, for an input sequence that is always 0,
except at time t when we have x(t) = 0.5.

28.18 Bit-serial second-order filter

Consider the bit-serial second-order filter shown in Fig. 28.7.

a. Show the modifications required in the design to allow radix-4 (2-bits-at-a-
time) operation.

b. Show the modifications required in the design to allow the partially accumu-
lated result, now held in register p, to be kept in carry-save form, so that the
main adder is replaced by a faster carry-save adder.

c. Compare the suggested modifications of parts a and b with respect to
improved speed and added cost.

28.19 Bit-serial arithmetic with table lookup

Show how the second-order filter computation depicted in Fig. 28.7 can be pro-
grammed on the CM-2 arithmetic unit shown in Fig. 24.3. Assume that the filter
coefficients are known at compile time and that all numbers are to be repre-
sented as 2’s-complement fixed-point values with 1 whole (sign) bit and an l-bit
fractional part.

28.20 Programmable second-order filter

A programmable filter is one for which the coefficients a(i) and b(i) can change.

References and Further Readings 607

a. How should the filter design in Fig. 28.7 be modified if the coefficients are
to be dynamically selectable from among eight sets of values that are known
at design time?

b. How should the design be modified if the coefficients are to be dynamically
adjustable at run time?

28.21 Distributed arithmetic

Assuming 16-bit 2’s-complement input and output values in the range [−1, 1),
unroll the bit-serial digital filter design of Fig. 28.7, as discussed at the end of
Section 28.4, and implement it via distributed arithmetic on an FPGA of your
choice. Estimate the performance of the resulting design in terms of the number
of inputs processed per second.

28.22 FPGA-based interpolating memory

Implement an interpolating memory scheme (see Section 24.4) for approximate
function evaluation on an FPGA that you choose. The input parameter is a 16-bit
unsigned number in the range [0, 1). The 8-bit output, also in the range [0, 1),
is to be formed via linear interpolation within 16 equal-width intervals. Analyze
the accuracy of your interpolating memory for square-rooting, squaring, and sine
functions, where in the latter case, the input angle is presented as a fraction of π

radians (so, an input of 0.5 represents the angle π/2 radians).

28.23 RNS arithmetic on FPGA

Implement the residue number system (RNS) arithmetic unit depicted in Fig. 4.2
on an FPGA of your choice. The arithmetic unit should accept two RNS input
values and an operation code (addition, subtraction, or multiplication), and it
should produce an RNS output. Do not worry about overflow.

28.24 Logarithmic arithmetic on FPGA

Implement a logarithmic arithmetic unit based on the design of Fig. 18.8 on an
FPGA that you choose. Use 12-bit inputs, with 5 whole and 6 fractional bits, a
logarithm base of 2, and a scale factor m = 216.

REFERENCES AND FURTHER READINGS

[Andr98] Andraka, R., “A Survey of CORDIC Algorithms for FPGA Based Computers,” Proc.
6th Int’l Symp. Field Programmable Gate Arrays, pp. 191–200, 1998.

[Beuc02] Beuchat, J.-L., and A. Tisserand, “Small Multiplier-Based Multiplication and
Division Operators for Virtex-II Devices,” Proc. 12th Int’l Conf.
Field-Programmable Logic and Applications, pp. 513–522, 2002.

[Bris07] Brisk, P., A. K. Verma, P. Ienne, and H. Parandeh-Afshar, “Enhancing FPGA
Performance for Arithmetic Circuits,” Proc. 44th Design Automation Conf.,
pp. 334–337, 2007.

608 Chapter 28 Reconfigurable Arithmetic

[Comp02] Compton, K., and S. Hauck, “Reconfigurable Computing: A Survey of Systems and
Software,” ACM Computing Surveys, Vol. 34, No. 2, pp. 171–210, 2002.

[Desc06] Deschamps, J.-P., G. J. A. Bioul, and G. D. Sutter, Synthesis of Arithmetic Circuits:
FPGA, ASIC and Embedded Systems, Wiley-Interscience, 2006.

[Detr07] Detrey, J., and F. de Dinechin, “Parameterized Floating-Point Logarithm and
Exponential Functions for FPGAs,” Microprocessors and Microsystems, Vol. 31,
No. 8, pp. 537–545, 2007.

[Furt00] Furtek, F., “16-Bit Carry-Select Adder,” Atmel Application Note, 1999. Available at:
http://www.atmel.com/products/FPGA/.

[Hauc00] Hauck, S., M. M. Hosler, and T. W. Fry, “High-Performance Carry Chains for
FPGAs,” IEEE Trans. VLSI Systems, Vol. 8, No. 2, pp, 138–147, 2000.

[Hemm07] Hemmert, K. S., and K. D. Underwood, “Floating-Point Divider Design for
FPGAs,” IEEE Trans. VLSI Systems, Vol. 15, No. 1, pp. 115–118, 2007.

[Lang06] Langlois, J. M. P., and D. Al-Khalili, “Carry-Free Approximate Squaring Functions
with O(n) Complexity and O(1) Delay,” IEEE Trans. Circuits and Systems II,
Vol. 53, No. 5, pp. 374–378, 2006.

[Lee05] Lee, D.-U, A. A. Gaffar, O. Mencer, and W. Luk, “Optimizing Hardware Function
Evaluation,” IEEE Trans. Computers, Vol. 54, No. 12, pp. 1520–1531, 2005.

[Mehe01] Mehendale, M., and S. D. Sherlekar, VLSI Synthesis of DSP Kernels: Algorithmic
and Architectural Transformation, Kluwer, 2001.

[Meye01] Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays,
Springer, 2001.

[Mora08] Mora-Mora, H., J. Mora-Pascual, J. L. Sanchez-Romero, and J. M. Garcia-Chamizo,
“Partial Product Reduction by Using Look-up Tables for M × N Multiplier,”
Integration, the VLSI Journal, Vol. 41, No. 4, pp. 557–571, 2008.

[Parh00] Parhami, B., “Configurable Arithmetic Arrays with Data-Driven Control,” Proc.
34th Asilomar Conf. Signals, Systems, and Computers, pp. 89–93, 2000.

[Quan05] Quan, G., J. P. Davis, S. Devarkal, and D. A. Buell, “High-Level Synthesis for Large
Bit-Width Multipliers on FPGAs: A Case Study,” Proc. 3rd IEEE/ACM/IFIP Int’l
Conf. Hardware/Software Codesign and System Synthesis, pp. 213–218, 2005.

[Sasa07] Sasao, T., S. Nagayama, and J. T. Butler, “Numerical Function Generators Using
LUT Cascades,” IEEE Trans. Computers, Vol. 56, No. 6, pp. 826–838, 2007.

[Stre07] Strenski, D., “FPGA Floating-Point Performance – A Pencil and Paper Evaluation,”
HPC Wire, January 12, 2007.

[Tess01] Tessier, R., and W. Burleson, “Reconfigurable Computing for Digital Signal
Processing: A Survey,” J. VLSI Signal Processing, Vol. 28, pp. 7–27, 2001.

[Whit89] White, S. A., “Application of Distributed Arithmetic to Digital Signal Processing: A
Tutorial Review,” IEEE Acoustics, Speech, and Signal Processing, Vol. 6, No. 3, pp.
4–19, 1989.

[Xili99] Xilinx Corporation, “Constant (K) Coefficient Multiplier Generator for Virtex,”
Application note, March 1999.

A Appendix:
Past, Present, and Future

■ ■ ■

“Who controls the past controls the future; who controls the present controls the past.”
G E O R G E O R W E L L

■ ■ ■

I n this appendix, we trace the history of computer arithmetic, from the earliest

digital computers to the modern machines that permeate our daily lives.We present

a few turning points along this amazing chain of events, including the development

of early supercomputers, the role played by vector supercomputers (particularly, their

contributions to advances in pipelining), the arrival of digital signal processors, and

the distillation of all these advanced developments into the tiny processors that

power our desktop and laptop computers. We conclude with a discussion of current

trends, future outlook, and resources for further study of computer arithmetic.

A.1 Historical Perspective

A.2 Early High-Performance Computers

A.3 Deeply Pipelined Vector Machines

A.4 The DSP Revolution

A.5 Supercomputers on Our Laps

A.6 Trends, Outlook, and Resources

A.1 HISTORICAL PERSPECTIVE

The history of computer arithmetic is intertwined with that of digital computers. Much of
this history can be traced through a collection of key papers [Swar90] in the field, some
of which are not easily accessible in the original form. Certain ideas used in computer

609

610 Appendix: Past, Present, and Future

arithmetic have their origins in the age of mechanical calculators. In fact Charles Babbage
is said to have been aware of ideas such as carry-skip addition, carry-save addition, and
restoring division [Omon94].

In the 1940s, machine arithmetic was a crucial element in efforts to prove the feasi-
bility of computing with stored-program electronic devices. Hardware mechanisms for
addition, use of complement representation to facilitate subtraction, and implementation
of multiplication and division through shift/add algorithms were developed and fine-
tuned early on. A seminal report in the initial development of stored-program electronic
digital computers by A. W. Burkes, H. H. Goldstein, and J. von Neumann [Burk46]
contained interesting ideas on arithmetic algorithms and their hardware realizations,
including choice of number representation radix (binary won over decimal), distribution
of carry-propagation chains, fast multiplication via carry-save addition, and restoring
division. The state of computer arithmetic circa 1950 is evident from an overview paper
by R. F. Shaw [Shaw50].

Early stored-program digital computers were primarily number-crunching machines
with limited storage and input/output (I/O) capabilities. Thus, the bulk of design effort
was necessarily expended on cost-effective realization of the instruction sequencing
and arithmetic/logic functions. The 1950s brought about many important advances in
computer arithmetic. With the questions of feasibility already settled, the focus now
shifted to algorithmic speedup methods and cost-effective hardware realizations. By the
end of the decade, virtually all important fast adder designs had already been published
or were in the final phases of development. Similarly, the notions of residue arithmetic,
high-radix multiplication, SRT (named for Sweeny, Robertson, and Tocher) division,
and coordinate rotation digital computer (CORDIC) algorithms were all proposed and
implemented in the 1950s. An overview paper by O. L. MacSorley [MacS61] contains
a snapshot of the state of the art circa 1960.

Computer arithmetic advances continued in the 1960s with the introduction of tree
multipliers, array multipliers, high-radix dividers, convergence division, redundant
signed-digit arithmetic, and implementation of floating-point (FLP) arithmetic opera-
tions in hardware or firmware (in microprogram). A by-product of microprogrammed
control, which became prevalent for flexibility and economy of hardware implemen-
tations, was that greater arithmetic functionality could be incorporated into even the
smallest processors by means of using standardized word widths across a whole range
of machines with different computing powers.

Some of the most innovative ideas originated from the design of early supercomputers
in the 1960s, when the demand for high performance, along with the still high cost
of hardware, led designers to novel solutions that made high-speed machine arithmetic
quite cost-effective. Striking examples of design ingenuity can be found in the arithmetic
units of the IBM System/360 Model 91 [Ande67] and CDC 6600 [Thor70]. Other digital
systems of the pre-integrated-circuit era no doubt contained interesting design ideas, but
the IBM and CDC systems were extensively documented in the open technical literature,
making them excellent case studies. It is quite regrettable that today’s designs are not
described in the technical literature with the same degree of openness and detail. We
briefly discuss the design of the floating-point execution unit of IBM System/360 Model
91 in Section A.2. From this case study, we can deduce that the state of computer
arithmetic was quite advanced in the mid-1960s.

Historical Perspective 611

As applications of computers expanded in scope and significance, faster algorithms
and more compact implementations were sought to keep up with the demand for higher
performance and lower cost. The 1970s are distinguished by the advent of micropro-
cessors and vector supercomputers. Early large-scale integrated circuit chips were quite
limited in the number of transistors or logic gates they could accommodate; thus micro-
programmed implementation was a natural choice for single-chip processors, which were
not yet expected to offer high performance. At the high end of performance spectrum,
pipelining methods were perfected to allow the throughput of arithmetic units to keep
up with computational demand in vector supercomputers. In Section A.3, we study the
design of one such vector supercomputer, the Cray X-MP/Model 24.

Widespread application of very large-scale integration (VLSI) circuits in the 1980s
triggered a reconsideration of virtually all arithmetic designs in light of interconnection
cost and pin limitations. For example, carry-lookahead adders, which appeared to be
ill-suited to VLSI implementation, were shown to be efficiently realizable after suitable
modifications. Similar ideas were applied to more efficient VLSI implementation of tree
and array multipliers. Additionally, bit-serial and on-line arithmetic were advanced to
deal with severe pin limitations in VLSI packages. This phase of the development of
computer arithmetic was also guided by the demand to perform arithmetic-intensive sig-
nal processing functions using low-cost and/or high-performance embedded hardware.
Examples of fixed- and floating-point processors for digital signal processing appli-
cations are provided in Section A.4. Development of the IEEE (Institute of Electrical
and Electronics Engineers) 754 binary floating-point standard, issued in 1985, was also
noteworthy in this decade.

During the 1990s, computer arithmetic continued to mature. Despite the lack of
any breakthrough design concept, both theoretical development and refinement of the
designs continued at a rapid pace. The increasing demand for performance resulted in
fine-tuning of arithmetic algorithms to take advantage of particular features of imple-
mentation technologies. Thus, we witnessed the emergence of a wide array of hybrid
designs that combined features from one or more pure designs into a highly optimized
arithmetic structure. Other trends included increasing use of table lookup and tight inte-
gration of arithmetic unit and other parts of the processor for maximum performance.
As clock speeds reached and surpassed 100, 200, 300, 400, and 500 MHz in rapid
succession, everything had to be (deeply) pipelined to ensure the smooth flow of data
through the system. An example of such methods in the design of Intel’s Pentium Pro
(P6) microprocessor is discussed in Section A.5.

The 2000s can be characterized by three parallel, and interacting, trends shaping the
research on computer arithmetic: (1) the availability of many millions of transistors on
a single microchip, at essentially zero material cost, but with seemingly insurmountable
design, verification, and manufacturing challenges; (2) the extreme energy requirements,
and the attendant heat dissipation, of the said transistors, if a significant fraction of them
were to be used concurrently to achieve high performance; (3) the shift of focus in
arithmetic-intensive applications, from the domain of scientific computations on expen-
sive mainframes and supercomputers to media processing and geometric rendering on
desktops, and by the middle of the decade, on pocket-size personal electronic devices.
These trends intensified the already severe arithmetic design challenges. By the end
of the decade, desktop and laptop computers were offering hundreds of times greater

612 Appendix: Past, Present, and Future

computational power than the early supercomputers of Section A.2. The challenges
were met through engineering innovations, including greater focus on reconfigurable
arithmetic to counteract the rising development and manufacturing complexities. Work
leading to the approval of the revised IEEE floating-point standard (IEEE 754-2008)
constituted one of the highlights of the decade.

So, what can we expect for computer arithmetic in its eighth decade, during the
2010s? We will tackle this question in Section A.6, because our discussion of it will
be enriched by insights gained from the material in Sections A.2-A.5. We forewarn the
reader, however, that there will be no slowdown in the pace of innovation, and certainly
no retirement party!

A.2 EARLY HIGH-PERFORMANCE COMPUTERS

In this section, we review key design features of the floating-point arithmetic hardware
of IBM System/360 Model 91, a supercomputer of the mid-1960s, which brought forth
numerous architectural innovations. The technical paper on which this description is
based [Ande67] is considered one of the key publications in the history of computer
arithmetic. For an insightful retrospective on the Model 91, see [Flyn98]. The CDC
6600 [Thor70] is another 1960s vintage supercomputer worth studying. We leave this
task to the reader (see Problem A.4).

The IBM System/360 Model 91 had two concurrently operating floating-point exe-
cution units (Fig. A.1), each with a two-stage pipelined adder and a 12 × 56 pipelined
multiplier, to meet the ambitious design goal of executing one floating-point instruction
per 20-ns clock cycle on the average. The unit could handle 32-bit or 64-bit floating-point
numbers with sign, 7-bit excess-64 base-16 exponent, and 24-bit or 56-bit normalized
significand in [1/16, 1). Floating-point operands were supplied to the execution units
from a number of buffers or registers. Within the execution units, a number of “reserva-
tion stations” (RS), each holding two operands, allowed effective utilization of hardware
by ensuring that the next set of operands always was available when an arithmetic circuit
was ready to accept it.

The Model 91 floating-point adder consisted of standard blocks such as exponent
adder, preshifter, postshifter, and exponent adjuster, in addition to a 56-bit fraction adder.
The fraction adder had a three-level carry-lookahead design with 4-bit groups and 8-bit
sections. Thus, there were two groups per section and seven sections in the adder. Many
clever design methods were used to speed up and simplify the adder. For example, the
adder was designed to produce both the true sum and its 2’s complement, one of which
was then selected as the adder’s output. This feature served to reduce the length of the
adder’s critical path; only the operand that was not preshifted could be complemented.
This could force the computation of y− x instead of the desired x− y, thus necessitating
output complementation. As a result of various optimization and speedup techniques, a
floating-add arithmetic operation could be executed in 2 clock cycles (or one add per
cycle per floating-point unit with pipelining).

The Model 91 floating-point multiplier could multiply a 56-bit multiplicand by a 12-
bit multiplier in one pass through its hardware tree of carry-save adders (CSAs), keeping

Early High-Performance Computers 613

Floating-
point
instruction
unit

RS1 RS2 RS3 RS1 RS2

Register bus
Buffer bus

Common bus

Instruction
buffers and
controls

To storage

Adder
stage 1

Adder
stage 2

Result bus

Result Result

Multiply
iteration
unit

Propagate
adder

From storage To fixed-point unit

Add
unit

Mul/
Div
unit

Floating-point
execution unit 1

Floating
point
execution
unit 2

Registers
(4)

Buffers
(6)

Figure A.1 Overall structure of the IBM System/360 Model 91 floating-point execution unit.

the partial product in carry-save form, to be subsequently combined with the results from
other 12-bit segments of the multiplier. Radix-4 Booth’s recoding was used to form six
multiples of the multiplicand to be added (thus, actually 13 bits of the multiplier were
required in each step in view of the 1-bit overlap). The six multiples were reduced to
two in a three-level CSA tree. Another two CSA levels were used to combine these two
values with the shifted carry-save partial product from earlier steps. Pipelining allowed
12 multiplier bits to be processed in each clock cycle. The floating-point multiply took
6 clock cycles, or 120 ns, overall.

Floating-point division was performed by the Newton–Raphson convergence method
using the hardware multiplier and a small amount of extra logic. An initial table lookup
provided an approximate reciprocal of the divisor that led to 7 bits of convergence with
a 12-bit multiplier. Three more steps of such short multiplications (requiring a single
pass through the CSA tree) increased the convergence to 14, 23, and 28 bits. A final
half-multiply, needing three passes through the CSA tree, completed the process. The
pair of multiplications was pipelined in each step, with the result that floating-point

614 Appendix: Past, Present, and Future

divide took only 18 clock cycles. Early versions of the Model 91 floating-point unit
sometimes yielded an incorrect least-significant bit for the quotient. This problem, which
had been due to inadequate analysis of the division convergence process, was corrected
in subsequent versions.

A.3 DEEPLY PIPELINED VECTOR MACHINES

Modern supercomputers come in two varieties: vector multiprocessors consisting of a
small to moderate number of powerful vector processors, and parallel computers using
very large ensembles of simpler processors.

Small-scale parallel computers typically use off-the-shelf, high-performance micro-
processors as their basic building blocks, while some massively parallel computers are
based on very simple custom processors, perhaps with multiple processors on a single
microchip. Since we discuss arithmetic in a microprocessor in Section A.5, and since we
have already covered an example of arithmetic in the simple bit-serial processors of the
CM-2 massively parallel computer (Section 24.3), here we focus on the design of the
Cray X-MP/Model 24 processor as an example of the former category [Robb89]. This
machine has been superseded by the Y-MP, C-90, and various other Cray supercom-
puters, but it offers a good example for discussing the principles of high-performance
vector processing, with the associated highly pipelined implementation of arithmetic
operations and pipeline chaining.

The Cray X-MP/Model 24 consists of two identical CPUs sharing a main memory
and an I/O subsystem. Most instructions can begin execution in a single 9.5-ns machine
cycle and are capable of producing results on every machine cycle, given suitably long
vector computations and appropriate data layout in memory to avoid memory bank
conflicts. Each CPU has an address section, a scalar section, and a vector section, each
with its own registers and functional units.

The address section is the simplest of the three sections. It uses an integer multi-
plier and an adder (four- and two-stage pipeline, respectively) for operating on, and
computing, 24-bit memory addresses.

The scalar section has functional units for addition (three-stage pipeline), weight/
parity/leading-zeros determination (three- or four-stage), shifting (two-stage), and
logical operations (one-stage). With very few exceptions, all arithmetic and logical
operations deal with 64-bit integer or floating-point operands. Floating-point numbers
have a sign bit, 15 exponent bits, and 48 significand bits (including an explicit 1 after
the radix point).

The vector section is perhaps the most interesting and elaborate part of the processor,
and we focus on it in the remainder of this section. Figure A.2 is a block diagram of the
Cray X-MP’s vector section. There are eight sets of 64-element vector registers that are
used to supply operands to, and accept results from, the functional units. These allow
the required vectors or vector segments to be prefetched, and the vector results stored
back in memory, concurrently with arithmetic/logic operations on other vectors or vector
segments. In fact, intermediate computation results do not need to be stored in a register
before further processing. A method known as pipeline chaining allows the output of one

The DSP Revolution 615

V0

V7
V6

V5
V4

V3
V2

V1
 0
 1
 2
 3

 .
 .
 .

62
63

Vector
registers

T
o/

fr
om

 m
em

or
y

Vector
integer
units

Logical 1

Shift
 Add

Logical 2

Weight/
Parity

Stages σ= 5

4

2

3

3

Floating-
point
units

Multiply

 Add

Reciprocal
Approx.

Stages σ = 14

7

6

To/from scalar unit

Vector length,
mask, & control

From
address
unit

Control
signals

Figure A.2 The vector section of one of the processors in the Cray X-MP/Model 24
supercomputer.

pipeline (e.g., multiplier) to be forwarded to another (say, adder) if a vector computation
such as (A[i] × B[i])+ C[i] is to be performed.

Vector computations need 3 clock cycles for their setup, which includes preparing
the appropriate functional units and establishing paths from/to source and destination
registers to them. At the end of a vector computation, 3 more clock cycles are needed
for shutdown before the results in the destination vector register can be used in other
operations. This type of pipelining overhead, which becomes insignificant when one
is dealing with long vectors, is the main reason for vector machines having a “break-
even” vector length (i.e., a length beyond which vector arithmetic is faster than scalar
arithmetic performed in a program loop).

Once a vector computation has been set up, a pair of elements enters the first stage of
the pipeline on every clock cycle and the partial results for the preceding pairs move one
stage forward in the pipeline. Figure A.2 lists the number σ of pipeline stages for various
operations. The output of a σ -stage pipelined unit becomes available for chaining after
σ+5 clock cycles. Such a unit needs λ+σ+5 clock cycles to operate on a λ-element vec-
tor. However, the functional unit is freed for the next vector operation after λ+4 cycles.

A.4 THE DSP REVOLUTION

Many digital signal processing (DSP) applications are arithmetic-intensive and cost-
sensitive, thus requiring innovative solutions for cost-effective implementation. Adigital

616 Appendix: Past, Present, and Future

signal processor (also abbreviated as DSP), can be a special-purpose or a general-purpose
unit. Special-purpose DSPs have been designed in a variety of ways, using conventional
or unconventional (residue, logarithmic) number representations. It is impossible to
review all these approaches here [Sode86], [Jull94]. We thus focus on the design of
typical general-purpose DSP chips.

General-purpose DSPs are available as standard components from several microchip
manufacturers. They come in two varieties: fixed point and floating point. Integer DSP
chips are simpler and thus both faster and less expensive. They are used whenever the
application deals with numerical values in limited and well-defined ranges so that scaling
can be done with acceptable overhead (e.g., in simple voice processing). The payoff then
is faster processing or higher accuracy. When the range of numerical values is highly
variable or unpredictable, or the data rate is too high to allow the use of lengthy scaling
computations, built-in floating-point arithmetic capability becomes mandatory (e.g., in
multimedia workstations).

Motorola’s DSP56002 chip is a 24-bit fixed-point DSP [ElSh96]. It deals with 24-bit
and 48-bit signed fractions and internally uses a 56-bit format consisting of 9 whole bits,
including the sign, and 47 fractional bits. As shown in Fig. A.3, there are four 24-bit input
registers that can also be used as two 48-bit registers. Similarly, the two 56-bit accu-
mulator registers can be viewed as four 24-bit and two 8-bit registers. Arithmetic/logic

Figure A.3 Block
diagram of the data
ALU in Motorola’s
DSP56002
(fixed-point)
processor.

B Shifter/Limiter

X Bus
Y Bus

X1 X0
Y1 Y0

X
Y

24 24

24 24

47

A1 A0
B1 B0

A

B
A2
B2

56 56Shifter

56

A Shifter/Limiter

Accumulator,
rounding, and
logical unit

Multiplier

Input
registers

Accumulator
registers

24+
Overflow

The DSP Revolution 617

operations are performed on up to three operands, with the 56-bit result always stored
in an accumulator. Example instructions include the following:

ADD A, B {A + B → B}
SUB X, A {A − X → A}
MPY ±X1, X0, B {±X1× X0 → B}
MAC ±Y1, X1, A {A ± (Y1× X1) → A}
AND X1, A {A and X1 → A}

The arithmetic/logic unit (ALU) can round the least-significant half (A0 or B0) into the
most-significant half (A1 or B1) of each accumulator. So, for example, an MPY or MAC
instruction can be executed with or without rounding, leading to a 24- or 48-bit result in
an accumulator.

The 56-bit shifter can shift left or right by 1 bit or pass the data through unshifted.
The two data shifters, associated with the A and B accumulators, take 56-bit inputs and
produce 24-bit outputs, each with an “overflow” bit. One-bit left or right shift is possible
for scaling purposes. The data limiter causes the largest value of the same sign to be
output when the (shifted) 56-bit data is not representable in 24 bits.

There are also a variety of data movement, bit manipulation, and flow control
instructions, as in any other processor. Details of the instruction set and programming
considerations for Motorola’s DSP56002 processor, along with example applications in
filter implementation and fast Fourier transform, have been published [ElSh96].

As an example of a floating-point DSPchip, we briefly review Motorola’s DSP96002,
which has many features of a 32-bit general-purpose processor along with enhance-
ment for DSP applications [Sohi88]. Multiple DSP96002 chips can share a bus and
communicate directly with each other in a parallel configuration with very high
performance.

DSP96002 implements the IEEE single-precision (32-bit) and single-extended-
precision (1 + 11 + 32 = 44 bits, no hidden bit) floating-point arithmetic. An internal
96-bit format (sign, 20 bits of special tags, 11-bit exponent, 64-bit significand) is used
to minimize error accumulation.

The data ALU (Fig. A.4), so named to distinguish it from address computation units,
supports IEEE floating-point arithmetic in a single instruction cycle or 2 clock cycles.
The full instruction actually takes 3 instruction (or 6 clock) cycles to finish but is executed
in a three-stage (fetch, decode, execute) pipeline that can accept a new instruction in
every cycle.

The floating-point add/subtract unit calculates both the sum and the difference of
its two inputs, with one or both results stored in the register file in the same cycle.
The add/subtract unit is also used for integer arithmetic, a variety of data type con-
versions, and multibit shift operations (taking advantage of its barrel shifter). The
floating-point multiply unit contains a 32 × 32 hardware multiplier, thus support-
ing both 32-bit signed/unsigned integer multiplication and single-extended-precision
floating-point multiplication (with 32-bit significands) in 1 cycle. A full 64-bit product
is produced.

618 Appendix: Past, Present, and Future

Figure A.4 Block
diagram of the data
ALU in Motorola’s
DSP96002
(floating-point)
processor.

I/O format converter

X Bus
Y Bus

32 32

Register file
10 96-bit,
or 10 64-bit,
or 30 32-bit

Add/
Subtract
unit

Multiply
unit

Special
function
unit

Finally, the special function unit implements division, square-rooting, and logical
operations. Division and square-rooting require multiple instructions, beginning with a
special instruction to generate a reciprocal (root) seed and continuing with a convergence
computation.

DSP96002 accepts, and properly handles, subnormal numbers, but requires 1 addi-
tional machine cycle to process each subnormal source operand or subnormal result. A
“flush-to-zero” underflow mode can be optionally selected to force subnormal numbers
to 0, thus avoiding the possible extra cycles and making the execution timing completely
data-independent.

A.5 SUPERCOMPUTERS ON OUR LAPS

In terms of computational power, the lecture-hall-size supercomputers of the 1960s,
an example of which was described in Section A.2, are mere toys, when compared
with even the smallest notebook computer in use today. The driving force behind this
transformation is the microprocessor chip, which was born as a very modest 4-bit CPU
in 1971 and now is a full-blown 64-bit computer with multiple CPUs, memory, and
many other processing functions built in. The path from the 4-bit CPU to the modern
marvel that powers our multigigaflops personal computers has gone through numerous
stages of integrating greater functionality onto the chip: first came wider and wider
integer arithmetic, with several doublings of the word width, and then integration of
floating-point arithmetic, cache memory, memory controller, and so on.

As an example, we describe the design of a member of Intel’s Pentium family of
microprocessors: the Intel Pentium Pro, also known as Intel P6. Pentium Pro started a
series of microprocessor products that roughly doubled the pipeline depth of the original
Pentium processor and in time led to Pentium II, Pentium III, and Celeron processors.
Pentium 4 again doubled the pipeline depth, thus introducing far greater design innova-
tions. Nevertheless, we stick with the description of the older P6 processor, because it
is much easier to understand and it conveys our intended message just as well.

Supercomputers on our Laps 619

The primary design goal for the Intel P6 was to achieve the highest possible per-
formance, while keeping the external appearances compatible with the Pentium and
using the same mass-production technology [Shan98]. Intel’s Pentium II is essentially a
Pentium Pro, complemented with a set of multimedia instructions.

The Intel P6 has a 32-bit architecture, internally using a 64-bit data bus, 36-
bit addresses, and an 80-bit floating-point format (sign, 15-bit exponent field, 64-bit
significand). In the terminology of modern microprocessors, P6 is superscalar and
superpipelined: superscalar because it can execute multiple independent instructions
concurrently in its many functional units, as opposed to the Cray machine of Section
A.3, which has concurrent execution only for vector operations; superpipelined because
its instruction execution pipeline with 14+ stages is very deep. The design of the Intel
P6, which was initially based on a 150- to 200-MHz clock, has 21M transistors, roughly
a quarter of which are for the CPU and the rest for the on-chip cache memory. The Intel
P6 is also capable of glueless multiprocessing with up to four processors.

Figure A.5 shows parts of the CPU that are relevant to our discussion. Since high per-
formance in the Intel P6 is gained by out-of-order and speculative instruction execution,
a key component in the design is a reservation station that is essentially a hardware-level
scheduler of micro-operations. Each instruction is converted to one or more micro-
operations, which are then executed in arbitrary order whenever their required operands
are available.

The result of a micro-operation is sent to both the reservation station and a special
unit called the reorder buffer. This latter unit is responsible for making sure that pro-
gram execution remains consistent by committing the results of micro-operations to the
machine’s “retirement” registers only after all pieces of an instruction have terminated
and the instruction’s “turn” to execute has arrived within the sequential program flow.
Thus, if an interrupt occurs, all operations that are in progress can be discarded without
causing inconsistency in the machine’s state. There is a full crossbar between all five

Integer
execution
unit 0

80

80

80

Port-0
units

Port-1
units

Port 0

Port 1

Port 2Dedicated to
memory access
(address
generation
units, etc.)

Port 3

Port 4

Reservation
 station

Reorder
buffer and
retirement
register
file

FLP Add
Integer Div

FLP Div
FLP Mult

Shift

Integer
execution
unit 1

Jump
exec
unit

Figure A.5 Key parts of the CPU in the Intel Pentium Pro (P6) microprocessor.

620 Appendix: Past, Present, and Future

ports of the reservation station so that any returning result can be forwarded directly to
any other unit for the next clock cycle.

Fetching, decoding, and setting up the components of an instruction in the reservation
station takes 8 clock cycles and is performed as an eight-stage pipelined operation. The
retirement process, takes 3 clock cycles and is also pipelined. Sandwiched between the
preceding two pipelines is a variable-length pipeline for instruction execution. For this
middle part of instruction execution, the reservation station needs 2 cycles to ascertain
that the operands are available and to schedule the micro-operation on an appropriate
unit. The operation itself takes 1 cycle for register-to-register integer add and longer for
more complex functions. Because of the multiplicity of functional units with different
latencies, out-of-order and speculative execution (e.g., branch prediction) are crucial to
high performance.

In a sense, the deep pipelining of instruction execution in the Intel P6 and its suc-
cessors makes the performance less sensitive to the arithmetic algorithms and circuits.
Indeed, the bulk of hardware in the P6 is devoted to the management of pipelining and
out-of-order instruction execution rather than to arithmetic circuits. Nevertheless, with
today’s subnanosecond clock cycles, challenges in the design of fast arithmetic circuits
for high-end microprocessors continue unabated.

A.6 TRENDS, OUTLOOK, AND RESOURCES

Arithmetic designs are evolving as a result of changes in the underlying technology. The
move from small-scale integration through medium- and large-scale integration to VLSI
has gradually shifted the emphasis from reducing the number of gates and gate levels
in arithmetic circuits to considering the overall design in terms of both computational
elements and interconnections. Increasing densities have also led to concerns about
adequate I/O bandwidth, clock and power distribution, heat dissipation, and testability.
Design challenges will no doubt continue to emerge as we deal with even newer tech-
nologies and application requirements (fully distributed micropipelines, subnanosecond
arithmetic, low-power design, the quest for petaflops, etc.).

Today, designs for arithmetic circuits are developed not by analyzing an elegant
algorithm and optimizing its various parameters, but rather by getting down to the
level of transistors and wires. This explains the proliferation of hybrid designs that use
two or more distinct paradigms (e.g., fast adders using Manchester carry chains along
with carry-lookahead and carry-select structures) to obtain the best designs for given
cost-performance requirements.

Concurrent with developments in the VLSI technology, changing application char-
acteristics have dictated a shift of focus in computer arithmetic from high-speed or
high-throughput designs in mainframe computers to low-cost and low-power designs
for embedded and mobile applications. These have in turn led to renewed interest in bit-
and digit-serial arithmetic as mechanisms to reduce the VLSI area and to improve pack-
ageability and testability. High-performance designs requiring lookahead and speculative
execution are expensive and often at odds with the goal of reducing power consumption
to extend the battery life and/or simplify heat dissipation. As a result, the goal of high

Trends, Outlook, and Resources 621

performance in modern systems is more likely to be pursued via the concurrent opera-
tion of many slow, low-energy units, rather than a single power-hungry processor. Many
challenging problems are being addressed in these areas.

The desirability of synchronous versus asynchronous design has also been reex-
amined. Thus far, synchronous circuits have prevailed in view of their ease of design,
tractability of analysis, and predictability of performance. A secondary, but still impor-
tant, drawback of asynchronous design is the overhead in time and area for the required
handshaking circuits that regulate the flow of data between circuit segments. However,
the higher speeds and packaging densities of modern digital circuits are stretching the
limits of our ability to distribute the clock signal to all the required points [Frie99]. Also,
signal propagation delays over long wires are forcing the designers to modularize the
design (e.g., via systolic arrays), thus in some cases introducing an overhead that is
comparable to that of handshaking for asynchronous operation. Novel design paradigms
and improved tools for the synthesis and analysis of asynchronous systems are slowly
changing the balance in favor of the latter [Hauc95]. For example, low-level pipelining
methods (micropipelines), perhaps extending all the way down to the logic gate level,
are thought to hold promise for the arithmetic circuits of the future.

Fundamentally new technologies and design paradigms may alter the way in which
we view or design arithmetic circuits. Just as the availability of cheap, high-density
memories brought table-lookup methods to the forefront, certain computational elements
being developed in connection with artificial neural networks may revolutionize our
approach to arithmetic algorithms. As an example, imagine the deep changes that would
ensue if an artificial neuron capable of summing several weighted inputs and comparing
the result to a fixed threshold could be built from a few transistors. Such a cell would
be considerably more powerful than a switch or standard logic gate, thus leading to new
designs for arithmetic functions [Vass96]. As a second example, researchers in the field
of optical computing, eager to take full advantage of parallel operations made possible
by the absence of pin limitations, have paid significant attention to redundant number
representations. Yet another example is found in the field of multivalued logic, which
has an inherent bias toward high-radix arithmetic.

No review of future technological trends, and their impact on the way we perform
arithmetic, would be complete without a mention of nanotechnology and biotechnology.
Fundamentally new paradigms are required to allow effective computation in these areas.
While the power consumption and heat removal problems will be substantially eased or
eliminated, assembling of components and forging interactions between them require
much work. Numerous studies in these areas have already been conducted and many
more are in the planning and execution stages [Bour03], [Brun07], [Coto05], [Walu06].

On the theoretical front, studies in arithmetic complexity [Pipp87] have been instru-
mental in broadening our understanding of algorithmic speedup methods. Any n-variable
Boolean function that is actually dependent on all n variables (say, the most-significant
output bit of an n/2×n/2 unsigned multiplier) requires a gate count or circuit complex-
ity of at least �(n) and a delay or circuit depth of �(log n). On the other hand, any
Boolean function can be realized by a size-(2n − 1), depth-n, complete binary tree of
2-to-1 multiplexers by using the Shannon expansion

f (x1, x2, · · · , xn) = x1 f (1, x2, · · · , xn) ∨ x1 f (0, x2, · · · , xn)

622 Appendix: Past, Present, and Future

for each variable in turn. Key questions in arithmetic complexity thus deal with the
determination of where in the wide spectrum of �(n) to O(2n) circuit complexity, and
�(log n) to O(n) circuit depth, practical implementations of the various arithmetic
functions may lie, and what can be achieved in terms of cost (delay) if we restrict the
design, say, to having logarithmic delay (linear, or polynomial, cost).

For example, we know in the case of addition/subtraction that the bounds O(n) on
cost and O(log n) on delay are achievable simultaneously by means of certain carry-
lookahead adder designs, say. For multiplication, we can achieve O(log n) delay with
O(n log n log log n) cost in theory, though practical designs for small word widths
have logarithmic delay with O(n2) cost. [The cost lower bound for multiplication was
actually somewhat improved by M. Furer in 2007, with the log log n term replaced by
an asymptotically smaller term, thus bringing us closer to the conjectured O(n log n)

bound. However, because special notation is needed to understand this bound, we stick
with the simpler one given above.] Logarithmic-depth circuits for division are now
known, but they are much more complex than logarithmic-depth multipliers. Note that a
logarithmic-depth multiplier is capable of performing division in O(log2 n) time when
a convergence method is used.

Many innovations have appeared in computer arithmetic since the early days of
electronic computers [Burk46]. The emergence of new technologies and the unwavering
quest for higher performance are bound to create new challenges in the coming years.
These will include completely new challenges, as well as novel or transformed versions
of the ones discussed in the preceding paragraphs. Computer arithmetic designers, who
helped make digital computers into indispensable tools in the six-plus decades since
the introduction of the stored-program concept, will thus have a significant role to play

Decade

40s

50s

60s

70s

80s

90s

00s

10s

 1940

 2020

 1960

 1980

 2000

Snapshot

[Burk46]

Key ideas, innovations, advancements, technology traits, and milestones

Binary format, carry chains, stored carry, carry-save multiplier, restoring divider

[Shaw50]

Carry-lookahead adder, high-radix multiplier, SRT divider, CORDIC algorithms

Tree/array multiplier, high-radix and convergence dividers, signed-digit, floating point

Pipelined arithmetic, vector supercomputer, microprocessor, ARITH-2/3/4 symposia

VLSI, embedded system, digital signal processor, on-line arithmetic, IEEE 754-1985

CMOS dominance, circuit-level optimization, hybrid design, deep pipeline, table lookup

Power/energy/heat reduction, media processing, FPGA-based arithmetic, IEEE 754-2008

Teraflops on laptop (or pocket device?), asynchronous design, nanodevice arithmetic

[MacS61]

[Thor70]
[Ande67]

[Swar90]

[This book]

[Garn76]

Figure A.6 Computer arithmetic through the decades.

Problems 623

in making them even more useful and ubiquitous as digital computing approaches its
diamond anniversary.

We summarize our discussions of the history, current status, and future of computer
arithmetic in the timeline depicted in Fig. A.6. As for resources that would allow the
reader to gain additional insights in computer arithmetic, we have already listed some
general references at the end of the Preface and topic-specific references at the end of each
chapter (and this appendix). Other resources, which are nowadays quite extensive, thanks
to electronic information dissemination, can be found through Internet search engines.
For example, a search for “computer arithmetic” on Google yields some quarter-of-
a-million items, not counting additional hits for “digital arithmetic,” “arithmetic/logic
unit,” and other related terms. The author maintains a list of Web resources for computer
arithmetic on his companion website for this book: it can be reached via the publisher’s
page for the book and through the author’s faculty Web site at University of California,
Santa Barbara (UCSB).

PROBLEMS A.1 Historical perspective

Using the discussion in Section A.1 and Fig. A.6 as a basis, and consulting addi-
tional references as needed, draw a detailed time line that shows significant events
in the development of digital computer arithmetic. On your time line, identify
what you consider to be the three most-significant ideas or events related to the
topics discussed in each of the Parts I to IV of this book. Briefly justify your
choices. Include floating-point numbers and arithmetic in your discussion (e.g.,
floating-point representation in Part I, floating-point addition in Part II).

A.2 Arithmetic before electronic digital computers

a. Study the implementation of arithmetic operations on mechanical calcula-
tors and other machines that preceded electronic computers. Prepare a report
(including a time line) discussing the developments of key ideas and various
implementations.

b. Repeat part a for electronic analog computers. Compare the ideas and methods
to those of digital arithmetic and discuss.

A.3 IBM System/360 Model 91

a. Based on the description in Section A.2 and what you learned about conver-
gence division in Chapter 16, determine the size of the lookup table providing
the initial approximation to the divisor reciprocal in the IBM System/360
Model 91.

b. Estimate, using back-of-the-envelope calculations, the MFLOPS computa-
tional power of the IBM System/360 Model 91 in million floating-point
operations per second (MFLOPS). Assume complete overlap between instruc-
tion preparation and execution. Use an instruction mix of 60% add, 30%
multiply, and 10% divide.

c. Study the integer arithmetic capabilities of the IBM System/360 Model 91.

624 Appendix: Past, Present, and Future

A.4 The CDC 6600 computer

Prepare a description of the arithmetic capabilities of CDC 6600 in a manner
similar to the discussion of the IBM System/360 Model 91 in Section A.2. Stress
similarities and key differences between the two systems.

A.5 Cray X-MP/Model 24

A polynomial f (x) of degree n− 1 (n coefficients, stored in a vector register) is to
be evaluated using Horner’s rule for n different values of x (available in a second
vector register). The n results are to be left in a third vector register. Estimate the
number of cycles needed for this computation on the CRAY X-MP/Model 24 with
pipeline chaining. What is the machine’s MFLOPS rating for this computation?

A.6 Floating-point representation formats

The IBM System 360 Model 91 did not use the IEEE standard floating-point
format because its design preceded the standard. Cray machines did not use the
standard either, even many years after it was issued, mainly for performance and
program compatibility reasons. Compare these two nonstandard floating-point
formats with the IEEE standard format and discuss difficulties that might arise in
porting programs among the three floating-point implementations.

A.7 Digital filtering on a fixed-point DSP

a. A median filter operates on a black-and-white digital image and replaces each
pixel value (representing the gray level) with the median of nine values in the
pixel itself and in the eight horizontally, vertically, and diagonally adjacent
pixels. Estimate the number of cycles for median filtering of a 1024 × 1024
image using the Motorola DSP56002 fixed-point signal processor, assuming
that control is completely overlapped with computation.

b. Repeat part a for a mean filter.

A.8 Polynomial evaluation on a floating-point DSP

Adegree-(n−1) polynomial f (x) is to be evaluated using Horner’s rule for n values
of x. Using reasonable assumptions as needed, estimate the execution time of this
problem on the Motorola DSP96002 floating-point signal processor. Discuss the
cost-effectiveness of this solution compared with a vector supercomputer applied
to the same problem.

A.9 A high-performance DSP

Recent DSP products announced by Texas Instruments and other suppliers have
much greater computational capabilities than those studied in Section A.4. Pick
one such system and describe its arithmetic capabilities and performance relative
to the corresponding DSP chip (fixed- or floating-point) described in Section A.4.

Problems 625

A.10 Higher than peak performance

The peak MFLOPS performance of a processor is usually determined based on the
speed of floating-point addition. For example, if one floating-point addition can
be initiated in every 5-ns clock cycle, the peak performance is considered to be
200 MFLOPS.

a. Show that the Motorola DSP96002 floating-point signal processor can exceed
its peak performance for certain problems.

b. Show that a similar effect is possible when arithmetic is performed bit-serially.

A.11 CISC versus RISC microprocessors

The Intel Pentium Pro (P6) microprocessor is an example of the class of com-
plex instruction set computers (CISCs). Most modern microprocessors belong to
the complementary class of reduced instruction set computers (RISCs). Choose
one example of this latter class and contrast it to the Intel P6 with regard to the
implementation of arithmetic functions. The MIPS R10000 is a particularly good
example and has been described in some detail in [Yeag96].

A.12 The Alpha microprocessor

The Alpha microprocessor of Digital Equipment Corporation (now part of HP) is
among the fastest processors ever designed. Study arithmetic inAlpha and compare
it with the Intel P6 [Bhan97].

A.13 Role of arithmetic in microprocessor performance

Pick a microprocessor with which you are most familiar and/or have ready access
to the relevant technical information. Estimate the percentage of instruction cycle
time taken up by arithmetic operations. Include in this figure arithmetic operations
performed for address calculations and other bookkeeping tasks. When arithmetic
is fully overlapped with nonarithmetic functions, divide the time equally between
the two.

A.14 Multiprecision arithmetic on microprocessors

We would like to design a set of routines for operating on multiprecision unsigned
integers that are represented by variable-length vectors. The zeroth element of the
vector is the width of the number in k-bit words (e.g., 3 means that the number is
3k bits wide and is represented in three k-bit chunks following the zeroth vector
element, most-significant bit first).

a. Express the length of the numbers resulting from addition, multiplication, and
division of two numbers, having the length field values of m and n, respectively.

b. Design an algorithm for performing multiprecision add from the most-
significant end. One way to do this is to store temporary sum digits and then
go back and correct them if a carry is produced that affects them. Write the
algorithm in such a way that only final sum digit values are written. Hint: The

626 Appendix: Past, Present, and Future

value of a digit can be finalized when the next position sum is not 2k − 1. So,
you need only keep a count of how many such positions appear in a row.

c. Compare the performance of two microprocessors of your choosing in running
the multiprecision addition algorithm of part b.

d. It is sometimes necessary to multiply or divide a multiprecision number by
a regular (single-precision) number. Provide complete algorithms for this
purpose.

e. Repeat part c for the computations defined in part d.

A.15 Synchronous versus asynchronous design

Study synchronous and asynchronous adder designs with regard to speed, hardware
implementation cost, and power requirement [Kinn96].

A.16 Neuronlike hardware elements

Consider the availability of a very simple neuronlike element with three binary
inputs and one binary output. During the manufacturing of the element, each input
can be given an arbitrary integer weight in [1, 3] and the element can be given an
arbitrary threshold in [1, 9]. The output will be 1 if the weighted sum of the inputs
equals or exceeds the threshold. Synthesize a 1-bit full adder using these elements.

A.17 History of floating-point standards

The history of the development of IEEE 754-1985 binary floating-point standard,
and the revised IEEE 754-2008, is quite interesting. Using Internet resources,
develop a time line listing key events in the development of these standards and
augment it with a list of hotly debated issues in each case.

A.18 Number crunching for computer games

Some of the most powerful arithmetic processing hardware can be found in chips
developed for computer-game consoles. In fact, over the years, several research
teams have designed supercomputers by interconnecting a collection of such chips.
Choose a game console and write a two-page report about arithmetic algorithms
and circuits used in the microchip that powers it.

A.19 Clock rate versus performance

We sometimes cite the clock rate of a processor as if it were a direct indicator of
performance. In reality, many other factors, most notably architectural methods
used to overcome the effects of memory latency, also affect processor performance.
Write a two-page report that relates the variation in clock rate over time (which
you plot in a chart), with improvement in performance (plotted on the same chart).
Explain the correlation and speculate on reasons for any anomalies.

A.20 Computer arithmetic in the year 2020

Extrapolating from two data points, the third edition of Computer Arithmetic:
Algorithms and Hardware Designs should be published around the year 2020. In

References and Further Readings 627

updating the contents of this appendix for the second edition, the author added a
paragraph to the history section, to trace new developments in the 2000s decade.

a. What do you think the paragraph on the 2010s decade might cover in the third
edition?

b. Speculate on what ideas and developments might be listed for the 2020s decade
in an extension of Fig. A.6?

c. ARITH-n is the name by which the nth Computer Arithmetic Symposium is
known among the researchers in the field. What will be the value of n in the
year 2020?

REFERENCES AND FURTHER READINGS

[Ande67] Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers, “The IBM
System/360 Model 91: Floating-Point Execution Unit,” IBM J. Research and
Development, Vol. 11, No. 1, pp. 34–53, 1967.

[Bhan97] Bhandarkar, D., “RISC versus CISC: A Tale of Two Chips,” Computer Architecture
News, Vol. 25, No. 1, pp. 1–12, 1997.

[Bour03] Bourianoff, G., “The Future of Nanocomputing,” IEEE Computer, Vol. 36, No. 8,
pp. 44–53, 2003.

[Brun07] Brun, Y., “Arithmetic Computation in the Tile Assembly Model: Addition and
Multiplication,” Theoretical Computer Science, Vol. 378, No. 1, pp. 17–31, 2007.

[Burk46] Burkes, A. W., H. H. Goldstine, and J. von Neumann, “Preliminary Discussion of the
Logical Design of an Electronic Computing Instrument,” Institute for Advanced
Study Report, Princeton, NJ, 1946.

[Coto05] Cotofana, S., C. Lageweg, and S. Vassiliadis, “Addition Related Arithmetic
Operations via Controlled Transport of Charge,” IEEE Trans. Computers, Vol. 54,
No. 3, pp. 243–256, 2005.

[ElSh96] El-Sharkawy, M., Digital Signal Processing Applications with Motorola’s DSP56002
Processor, Prentice-Hall, 1996.

[Flyn98] Flynn, M. J., “Computer Engineering 30 Years After the IBM Model 91,” IEEE
Computer, Vol. 31, No. 4, pp. 27–31, 1998.

[Frie99] Friedman, E. G., “Clock Distribution in Synchronous Systems,” in Wiley
Encyclopedia of Electrical and Electronics Engineering, Vol. 3, pp. 474–497, 1999.

[Garn76] Garner, H. L., “A Survey of Some Recent Contributions to Computer Arithmetic,”
IEEE Trans. Computers, Vol. 25, No. 12, pp. 1277–1282, 1976.

[Gass99] Gass, W. K., and D. H. Bartley, “Programmable DSPs,” in Digital Signal Processing
for Multimedia Systems, K. K. Parhi and T. Nishitani (eds.), pp. 225–244, Marcel
Dekker, 1999.

[Hauc95] Hauck, S., “Asynchronous Design Methodologies,” Proc. IEEE, Vol. 83, No. 1,
pp. 67–93, 1995.

[Jull94] Jullien, G. A., “High Performance Arithmetic for DSP Systems,” in VLSI Signal
Processing Technology, M. A. Bayoumi and E. E. Swartzlander, Jr. (eds.), Kluwer,
1994, pp. 59–96.

628 Appendix: Past, Present, and Future

[Kinn96] Kinniment, D. J., “An Evaluation of Asynchronous Addition,” IEEE Trans. Very
Large Scale Integration Systems, Vol. 4, No. 1, pp. 137–140, 1996.

[Lind96] Linder, D. H., and J. C. Harden, “Phased Logic: Supporting the Synchronous Design
Paradigm with Delay-Insensitive Circuitry,” IEEE Trans. Computers, Vol. 45, No. 9,
pp. 1031–1044, 1996.

[MacS61] MacSorley, O. L., “High-Speed Arithmetic in Binary Computers,” IRE Proc., Vol. 49,
pp. 67–91, 1961. Reprinted in [Swar90], Vol. 1, pp. 14–38.

[Omon94] Omondi, A. R., Computer Arithmetic Systems: Algorithms, Architecture and
Implementation, Prentice-Hall, 1994.

[Pipp87] Pippenger, N., “The Complexity of Computations by Networks,” IBM J. Research
and Development, Vol. 31, No. 2, pp. 235–243, 1987.

[Robb89] Robbins, K. A., and S. Robbins, The Cray X-MP/Model 24: A Case Study in Pipelined
Architecture and Vector Processing, Springer-Verlag, 1989.

[Shan98] Shanley, T., Pentium Pro and Pentium II System Architecture, 2nd ed., MindShare,
1998.

[Shaw50] Shaw, R. F., “Arithmetic Operations in a Binary Computer,” Rev. Scientific
Instruments, Vol. 21, pp. 687–693, 1950. Reprinted in [Swar90], Vol. 1, pp. 7–13.

[Sode86] Soderstrand, M. A., W. K. Jenkins, G. A. Jullien, and F. J. Taylor (eds.), Residue
Number System Arithmetic, IEEE Press, 1986.

[Sohi88] Sohie, G. R. L., and K. L. Kloker, “A Digital Signal Processor with IEEE
Floating-Point Arithmetic,” IEEE Micro, Vol. 8, No. 6, pp. 49–67, 1988.

[Swar90] Swartzlander, E. E., Jr., Computer Arithmetic, Vols. 1 and 2, IEEE Computer Society
Press, 1990.

[Thor70] Thornton, J. E., Design of a Computer: The Control Data 6600, Scott, Foresman, &
Co., 1970.

[Vass96] Vassiliadis, S., S. Cotofana, and K. Bertels, “2-1 Addition and Related Arithmetic
Operations with Threshold Logic,” IEEE Trans. Computers, Vol. 45, No. 9,
pp. 1062–1067, 1996.

[Walu06] Walus, K., and G. Jullien, “Design Tools for an Emerging SoC Technology:
Quantum-Dot Cellular Automata,” Proc. IEEE, Vol. 94, No. 6, pp. 1225–1244, 2006.

[Yeag96] Yeager, K. C., “The MIPS R10000 Superscalar Microprocessor,” IEEE Micro,
Vol. 16, No. 2, pp. 28–40, 1996.

	$?l¦Z[q=ÒAt 3æ
?}Á¹åÝ¾i§Í
	öè5þ�ñ×�?ÞaR#l�Â� �åòg
	Å3_¤�Ê˛¬è;µ�è?w�?ª?vâ�¦Ì/µvûšî˛ýô“Dp!èN"?åÿ˚uV*?Ø4\?§˝ú}�×
	®¯R?W¶æ�ê�¨JH?ˆˇk&
	r=?¨�ZÇ¿M&Á%¼_Gì�˜¢J¥4Ûó˙��\-ùÝ��¸,´‘øU�[?P¨åk?L�bX× |¸"?¡¯

]Ü1bC?E�rº?ýh¿ñV?�¹A&ãØlÔì?�ØÁÓ�9CÓ
	 :?@’EÆc?å3-°äÍ~¸�6b˝�!“��Y?hA°`VON?2!p�	�íyÁ^Ù{wøIÉ9?Xw˘?|t
	ÆJ˙�Ït�øEJò¬¤1eÅò??|?Yéˆ~?¿ºðã[¢<*ÞÕóß¸^«`?ðU¢?êl�?é
	ÕNVg?÷¼ùÅ1D?µ?˘�þÑ?úR±Û<§á?4Z�ËÜN¤?�¥ý	ÿ¯³ÐNhç�ÿéqY4�1�+�˙eZ�?Jâ
	ˇ�?ÈZ©ûK0=DÜ¼òm?Ú�¶¹dØÚP¤DqC�âÜ�cÜ{�ü�¿GLQz~µ¸åþ
	éô+CÔºö?ç�·àqhÝ»bÚKuí»K�?ÖMV�Ú×CÂ*S*R?ëý?h�?1H6Cßg?š?$³¾K?¼;KK
	[FÃ%l&-��Ì??ö?èF¸U??¼“áÞ�Ê?þ ?*?¸üü??ÿû˝Þ�&rÉ?¨±µÙe?7!¥˝CÅH’¢˛’?°ñ¾¾ZîÀí=ÚùdÓÿ×O
	ÑXM|�¾´|�[E˙EiöYþ‘£7ÙP�_übúñ�¾?�7�154Ë9?êñ?�×“˜põ ?ÒÈ˚�
	/�ÕØÀ?uNà¸?¤�øV¢n,É]?G¡�Ãëó˝ûô¥¹DVz\?�ÌÄùs?�BL�Õÿ±9?§}~8¢w‘îsÊPß b�·�Ð9W�¢i0©W`P$¿ÐVÇr�z˚ª
	Ð?ˆ4æ÷A`¨r 8�zÓ?
êS£ÊˆäfË³Ýx?]`j?�~®TÔB�7V¨xl?ñQ^?Gär2�zù�/?øãY¬1? µQ4˚C
	¯?Ì¼“èY??’jy{Þ õªàkÚ@<®!�s×°]˜$??ÚNýð�«,P1?˜?B�U?6˝D�˜˚L?©0ZT]è#?%ðÌnáÒ�?�á!?øù?ˇé

	îÎN�¿ìuú���'¡A?¯Ò¸Ö`½X�0÷²Ú	¼¿ÉïÙë»p,ßˇ¥q®Ð½š�Ö?˜�Ôû?Y»UéÀÞ~E�?D??q½�lê¼QL8D?ì?ÃÕñ¬N-ZjÃ
	8åT??c??ÉÐmáiÓ?¦alÌ|¿ü2raéi]ùñ�{lÜÈ|!hNY'úh?ÙV˝Ø:#?�w½ÄàY²“Â�ºs?3?q?ß
	u??bÀ�k`æ�Ý]A?Ø
-�Î[ñÃ½�?¡_?¿Pù_*Ù~]Ä�1!bäÃ±LÚÑpE?×˙K’×êßÌ°0»	¦C0�&�ÓâÁ?Øz?Þûr?¿5š

	?ötˆ�Ðlh%[?_Q???ˆÞ£~1?¹Ä?âç:\f�}Õ?Û?ã¹À�?ðÄ?Âp"bØäWF5b¹íø#�’7¦z+"�?z�J?¨6íÐ?ü“*àW£Ý²?û%òÑ±Ó?

	8À�öis˝ˇ¼~ï1�ü�w*BWÏ<Yh‘ˆËÂ?Q;½��ÙáN˚C]��¹Nšò �ýOëºv��˝¹Í?ôÃ~Æ?µ¡�ÓAg#dZ:?
	Nó�ÞÚ+÷?ˇAk?5¸§?Ûo
	g§Ö¬Máî»U?î?Ú»D§e+ ?}î?À?-¸Dëõ8?��Ä�ËIeªm�?Xb@Ñ¨t¿ÏÍAG�&úäm¬?Þ

	W*:¬¿?�ô6A?²¯®ëü?x�í��ÊçY"*¤�“S2ü~µOõ~m	?h˙	v¢÷P +©¯©�|úÿ!Ú
˜
	��ùé�²²ÃšNâL˘ù½bÏÖ-?Îò@�ì×O�q«Ö[²ªÇH"ß?x/¾½ao?¦óksþ?_I�?Qÿ'±ÖØ?«\h�m9î«
	×÷þ©¬HÜ�;à?Kp?ó�¬¥�ä�À?I8°v�“?Ü$�Ñ?·;ˇli?i˘êö��|À�r
	?¸?�@˜1��?yš¯?�?¨ÄÖÔõ˙ú§é?Ø¼²�?¶�qx?ùÅðD˘Ëý,´?\��Ôÿ�\Fø+Wx^?Nw
	�¹´ê ˙xDæ�à�Úü�Jh?T<fYÛ£�‘?c2?y#H |6¨�?Ö˚?òI7Õ�o³PØ?��_çw�?<?[��?ª³;ýü
	:�sã¢ˆ?M?�ÂÝ/?yn£�^!Ã?S?ß\~Ý?¥f{.	PÜ%Vn?]Ø?tv=��Î�L@õO?´Ib:úóWöw{Q�éá{¶q¯?Óï^¥7ú¯
	òî¦?Àÿ~V¯a¨7|m�Âë¶äë˚¶,}ˇ¥?C\ÍD?�DGùø~þ¬??Åß�Æ �_?ôt?¨E�˙ÕOÎ@×8?÷?�¨´Z	iÏ3�§r�ë±Ú#Z?j?
	³Zíè˝¦J�?L
 çÁ-Æ?ù
	K�óšTþ	135�\}ò�Ô9Þaøéð3�˙��o¶ã�!˛Í“
4��@ÄUõ�3í/®Iúpc?šÏ:ç¨B©+f�

	?&wNÔón×\ý MsV×%oÙdR}¼ùàI¡�G�ñï�ð¬Qh??�]í,*?S??Ìø	¡+?Ðæ<
	?\´Qß??ç"’�¤¸$ØÇ¶hóÏt3ˆâPÇ¹á˙wB ÏWÌ˘�6Èˆ�¡ã?î?˝�¿RþWäï©÷˛�Ð�_^H�kÐ:
	cC[â'Õ§Ý}{?x˙<±�m«îÈ?Ú?t~Àf3ºcõ¹Ü?_?ÌâÊ?»�Ãê«ÞjPn¥?�zºùù_�ï?³ÝG|y?2Ûç"dÛÛ9Åâ
	?Rãcþ/DÐUS^I?1bò��2ˇL�øþo�	Eí�x?E¹Ç?��ïykËùm¸]¬ v2?ïw??V’oç?14
?N?˘ÆÎÅ& �åTo»?+�
	<�˙?®ZwrM§¢à£�¢Ã˝±ßÐ˚áìw�¸¢öÛ�gü?z?cµ¯ïÄ,=4þû@RÑkU?¦�?oP?@VÈÈ÷ï˙Ï»£y×�Ê‘ln
	»Õ?R/ú¡q¢àì?ñ?˛¦¦´n ¸�U?à�“±ÈÏÚc�y!û	ÍPúU��G“?$xTú˘š�]?ýVU¢?þ 	ym¤
	%sä³ê?¥ð�Oº4±f?øÿÇ7%“*hú_½3˙�öèùó¢}@�H0ê�/Hßç�^Ùó¼71¥G½W<��Ä¾Ô�Iü÷?V4?î‘r8
	6ÂÀ½¶“�!?i¹�#ÔÏ?í
	ô�Úx�Yd�IÒI?\¥wÈ\F�[?ÑÃ?n;úÂ\¹©?£{?á�ÿ±1]£?�?å_?ÏWXA¯ÔÆçá?�.mKGå

	�û��ë,Å�G?Ç0j¡Ûª¢A?W¡âM�?§íÕçÃíp2?æZý?�2©K¢£��·½[ÈÞ
	[èÿp`»
etÇÛõp?U˜˘�m¤�?`?°¹þ´¤s�?�"’ˆièiþáL$�æóp³ÈÈù3?
æ�ðÏ?92é?d�°�X?zw;X-
	?yDWêÈÐÀHë~Á?Ù¾4Ï?Üˇã×r@?hKáÑÒ{*Ê~À~˚�¢×ß-??.@Ã§íÓÙÓ?�ó
	Éë¨õleí	%Ê??]àøÓÝ¢�mWFþR®?iùZxs,�
W1×Ôq¯yç<�?\9??ÀÞ¬˝Òîò?~ßšÚ ?naöÏWf�*Ía
	=d2óã?E_3âG“��?·f0˘¹à�ª[6mZ�¦³£tÅÁÖcú?/¹k°IÓÕ?V???´}?˘?kg«'K-�JÀ©é�A�m~dc˘8õ?���É?÷·¹}šb
	?Òi¥Àé9?ç�?Oª/Ú/ò^×?W³äèF:�??˙¡?ÜjÄf?{ßÿÚ?���’%ÊÙSz˛¸Wÿµ:]Î_°š{çÝ?a-ÕôQcòX?dÞš¦?Ý�½*ÁÌH?#�
	!7?�K`Í9¯iVzÀ6?_-�¡šc÷6�¨²¿bÐ�`NÏ¹kJ@óM?´<�9ú˚?_|íÈw!?o¡ø˙?#ö_¢õtÏP¦��«C·ä±ÊóÁ¢˘F§?�?PYx

	UCÚZ?“3e¸?L?²�Zßý!XFÆ&?èL`åüób²¿è?’?ÉhVvð?1’y¼î�ôáµK	0eº?ñb5ÖQaãÞa�ï?�KÉ˝˚??,·�
	NNýö: ¸e��+=Ñ??˚ö?{E|9_kR�Ü¬tQtû??´�fh?+¤Àînø2˜±?�ùôK8$ê�MA�úqc¾ÚÑD
	'?:È¶??Ê�˙
?F¾p�¡ˇ�˜¥<úZºþÉ˝FÆ
šïN÷?Nµ§?o®Px?�P?`S�^�ª?Òoãc?�ò-�Ò$Þ«?ª9P�
	Dàº�4\¾ÛÀ÷rQõXÞx.î
	‘»µõ8¿�£!!f :ÇÉ?‘¬S?%©,¤yR\‘Jþ?8?OÒI-?ÆÅ²�-×H4è?#êì{]Ú�ýê?�·bË]6

	K?$aå\ß?�?-3p5áY?I\á7jØ'K��?º?:l?Á?=âÏ¬6è1Å×¤ü	nB’�ÿSº�˝�ì}
	˘�®¡µ×Ø?�?˛ZJ¦�å{Y?mÒoù?¢"]�ì?Bn¯4MuY�[À++:@¸UØ?6ÇÛm¨ÝfüHL’?«Ý
	Reu'_!Öp?9[Õ�jnÄT0A,˛M'???°JQÔfAõÉ§¬’ç˚-�R�?oð 8??ÜÒ�õÃ?~�?@Uô8ù?ß�ç{Ý�ë?Ò�¹'w
	Ì ï0ß5%yÆ?m‘ø%ˆ�ÕrÄ_ém?¯ÀÅA?6Ü/+Ò�Ïü}^�Ù�öûå@iêÔ?Ãá³ÀÇN?'°q
	ö÷�?Vû Åé¼AÀo®öîÌæ?ÉÞšR«Ã«�À2��ß¡±Ýä´¢0�è¤#Õ�×¸àz°è%�il??Éš*¯Á§?}
	?˝t�Ò�ÚüÙ�¬îÆÌ?m34}˜·¼#8@N#!??�ã¶kùå�n»ê,,?#óº7Tì??=?¢jÿ˝Ì¾n}
	S?9oe
¡?]?,?ÿmr	P@Wa?:Ý¢LÞæmB˛¨1'Eü!¦Ìu6RÁªZÝýÅC?*ó	?3AxÃBä4Tá?�*wÚ?�!�
	Å©?·áüõ?\˝¶°3¨˜[:�??þ?Ì~ë×?Ýpø˙B˘�ÂÜzà*˚?ê�˜˚¤m¥3?�ev?�¬�¯�½gˆ?�»çé+Û�Òf°?�?C
	6à�Õ¥Û¶Z¤˝¼<h`æš{í
	6ÊêÂûÙ,B?Òº¾˚"XD°õ¶"þ’�/îDK¼�æ¦�uöðÒÝ½?Ô,Ý��?Ø˘µ�ÇÜ"£%ÍokÏ??lû˚

	¦Zq¸˛eE·O�?ÃÓæ?zEôqØ¢Ì�åš¿Nþ?Já?uìTÐ.îIÓÃ�O@Ä˛&þ�?ÛÙ
	öåúiˆ6
úÒ³Úrì©GÎ�xö��q?câR3�?�ˇ�c!ë$L?G/y?oé»öµ?’	e¤m��Óc³\?~¬ûÓ«èØYo
	mô!¦®ü,�Æ«Z+{¥ûú¼Yß&?ù½ò§�ÔÄ??æ�e�˘ï_]?^õm?˚bWÙ=?÷tï��Ð2û���Ý-?G?�
	Óá4Jh~�Ç_?òÕMù˘˘âõW_®�u&ô�&ºø?Áµ]?ñ?.:?¼sÂUBÙ5˙�nçnÙÒ?VþÅ˘RÄÞþ0�?�;
Ê
	èÅÔ´3èðxöøÅÛýI¿ 6ï×˛åh¹ÚÀà;Öß‘Ú?Yˇ�Ð?�¿�K?-_Fß½	úÕ?~[�^�Kóë��“¼i??üÛø??Qà@��ðå+tfJnòâ˝½�˜¯½
	Óì�ý_'ˇ’k?Ø?§$¹Üb6´�*ðUÚ&,åüédáä�cíT^§d�?	¢‘ð{î?W´ö´Új£,��®1ÿ???uõ˝~®`zñ*z¹?¨�ñ‘�A
	d¡˘�Ï{p?˛P?aå×pwÔêCq
»%Á%?ç˜+?Î#]?H`�ã�t¬øõÆFb<3úúy�^H��?½�gShô
	?!�Á¯	Å5"%??êúàÈ?s
	D˛ËÖ’¶Ñè9tÐL¦®k?Ö0??Ó�6�ÑþÙdA·zÜl?s“‘yá˜i?`éº�E¨É�îÃHÐõçÊ¸?³±¼±

	Ë?í£??q8L??�s�©�I�½_qëÛõ“ÕÂ˚D©\Tñç²=FÆ’ò?��ÓÅ��d�±@?úQÎÏ
	ÌÁ?c?Vhº2ÆÐz%?V?u??ÉÉ�ð??àPý0z ¿“?8�f÷7?X\GÚ ˘d[tõÓF£½å˚Id
	o�¼Þ�l5Wîþ'O?ÔþÜE\é?s[š.¤ÚèáÝm�F¯??P&Sµ%	ü˛F»¼�Â?�?\�¡2ðI�ˆ?!ü¬¤[
	ø©˛ðs¾ÏñH¦n�»04 JÉå\���¶·??ë?RØ]uB±52×^¢??&!9
	WðX?BeGæE?ñ�š��VXO?*Ë:$/I˜D?´?z3Rr�«�?×o&Ù�³´?�¨!É
	�ÔÍj{ý�ì˜?AéIþôÎ8:[BÑcUfól/°«r¼hÚþ?5·h¹d#Á�??£pêWÎ�?ØT§ûHHq�?µ�a%?Q‘7»�?É
	óyØÂ¢c*¡¡5?ò¯#}?F��zÍo5š:?QÖ?˘OïP�Éæ?p? ë ÿ��	G�À¼ß_?8×?ÜU“8
	y¸lÞì¾[É6¤?n�BÈÆü
	¢¤@KÇ{»ÁÁF¯ç¿�þbÒý?*â,þ?W˛hûÐD~ ÑcJäò�tÀ¸??�Mxk·S#ÚI�Yôt&O°U/�*

	NÝÐYv?@Ò?�?ñ?ß�6ÁÊ�Ò’çÎöq¹E§¿Mr�Z˙Qíç8ÐB�ËÖ¶ÎÝ3Ê¡I
	+='¿Ô??�?��˝�HP?¤Z�{áÍ?êÍÜÉýY?ö*ÍçÅKÿ±?ÚÅ?	Jdbþ%Ðeåe ym�?]
	 L§çG?˚OÛÇEÖ�CL??µ	?¥õ?#¼?=ÿô¹«�ˆ˙Õµ!¦ÏÄ8ÉbI
	ÝYMi�È2Ý�ÿ®®v˝[vëÒh³íè5J�ì^hó±ÿdN`?:ÿï�
?ò{[êt7Ûa¸±4é¨¾Ê
]òKv˘½*½?Èüs<Ãi�³æÍ/Æb7?ÐÙ!9þoØ<{Å×?ÖWÛ�J§"È´%´ÆSX+è?u�??Ï?LÙ�ºÞþBö1,4ëòlÆˇù
	¸�uÍJßÜÔ#ø±ð5?Jê?ˆ2ˆrdü�äömF%p+?�º¦�ÚXÊ62�Z-�ï�Ð8?Ä%ÿÜ�Ëð?ZEpxx½è²Þ
	e?�#Ù¬}ðâJêl?Hš&T?g�Õ·7�AÔ1ëÆ J@|í�Ý??¥ÿ�O?ëJ0Ð“O�J‘M?éºV²P?Ù�yi
	øòÄu?L·ë	ÈÕ\˙?È??
	9?ÔÔ;PñB?è�3j�e�¹:"]Rù_¢ ®Ð=ùk4ä˙àdªèK�¡äÅOØøˇå˜æÄ:�wTCõÖ�q`Ú?£

	 =3�A?¦!˙×aÀ©ªbc×¼}A? g�¨6$ë1’/�µdÉGÊÀÛ£?!}š?
æ�í
	¶��5+?³oëúÛª®�[Uq?¿ˇñ???¾ÁëtFò±?ºøÓå¶½³<´G÷:��ïóáG!ïa X�%?"þ��£
	çÆ’ò˛?¤ÅÎÇ8úÍá�õL˚??·ˆÂ±ï?�?˙kíÈ’c?°$O˚?Y5DÅÌþ �êR"ò� bûÁ´t:˚h@�¥Ê'"??!’$r??-³7
	ói¾À?�d§?óÊ-ä¿@?Äþ	iÒ1�µ9ä˘+�o;?]°��s[�ÏÀ�ðLÀ7?i;°3
v�?³6ù?Ú
	s?_\"ÊÕëAaê?¦?E©£×¢�Ðôv�T�61`ˆÂ�jz¦�¼V|?¸´òâ’ò�mxÔ²�d�?ÑÕØþz
	t8¼
,£×+ FNúútç?®�9SJ	óÕ×|9�\?\":?�3ÛÁ?ÕýK²º:˛
�v��wJ˛wE?£§Þ?�$�ñ�úëtná?7
	±�� rÀ5»?¶È: 6qþ×ë˚�V???5O?Å#l?çÔš?�K©��äÉˇj6`N?�M�v˚'O°bØdñÝ}Ãæ
	Æ��ý?¸�:/âÂnSájÄ˙e9¦µÓi*þz˚»X\Rˆ�ë��!ÌÂ�¼óý5�O,?��Ú˛˘U? ˜6é"´ˆã?
	_?§~È‘Ì|lM©��?�?Y?
	5Çü¼L¢áˇ¦¸Î?]4�??	?°;4??�KÊ½Ëh˙?�t?ñ?�˛Òü�Õ�?Ö³³�ªt»BÊËJèÔÚ¾?®¿

	h?�ù}2EDòT�÷p�sHÕìˇ¾{òD©§UZˆb¸è?é¯J~¸|Âúî[¼,z°KzGÙ\"˚í
	ÆÙ9{·?Ylÿ�úÔø÷í<s?î��x°Ñ
27f@=&$?�W{gO~?ªräÆ=¸À+“?0xx?ú
	.ÊT Ó?Òa}ÉG��à3ÛõÐÕÿ’�vì�?¡˜P}?~~åSýí©�Å?÷ú�ÂÏh&¶¼ø«áÚ¨´ïT¢
	¡ä$àµØ[pf;\?êü'-D]5÷?ø¶4?W?¼`Éâ�’�F,äi°+Çß^ÎûuýJ~î?ù¹Å©˝“
	çQ?�â?4yÇ·šqÎÂ�¬!??ÙE Lí“Y’ÞÈÿÃñß²/öKGÌìh?Øò?mq´/Äs©¯�f��?øÔ\|Z�}K	ÆJ3=ÇZH°/
	�ZH¦±·˛?ý�Ã?�%æ§ �tºç²ð¨5�ÅµÚÃ�pÌõÃ/�ì?V�¾3E???“¶²�ñßë
	�éw«âZ?2¬�$˘f�«?d?hIë?’ªã�îfë04Làñ#/Á�Cõ/^�E·&C?,W$¢�?�é
	�U®R?íªËW®Tùå
Ý˝Åu
	Y¼Ì¾TËë+?�Ãcþ¾?6øtÖ\A=&?�Õ?k*Ì˚�í¸ÇÁ´’ ÊRlÌW¢úÕÇn¡hq!×Æ�ÆjË�DÑ	

	�Jeû!¯Hº~?äl�?Å?H®æ'??R’K?_?�ÅjAò�˝§?íõó�?õ¨«ò ¦àÈ?ß^%˘2Ï?¢¡?N
	ÊÐ?G4�’b!?ûäÏ:ÖJV·ï
§Æ˚?Á?+$.!ú0ËæË}êûÝ³[j:Â;A3¥ 68’ê
	Ø½BÂ�=�
Xz"5ùH˜?r˚�8y?JM»!a?ä¦�§á�G?ó�º´¶‘QúF -&¯äU¦?�¯�??˚ò}ômv°Æ
	?#%R�¢óõòÖ?*â?�ìê1I??ý?¾ä¥ÃP¾Þc?�H÷Á±ÓôIÃk|t¯K˛»17�,�k/·º¾õg??ø˜�¯³Ä÷Éÿðâ3ºH6UÁ<O¸
	¼?µ��?<Ï?�¶¸8âà2�m?<˛�Ð* äúÿ$|K‘?�Na/À¾mv�‘5“6Ñ¿�¾í\ÍÝ�íü}^}ÉàõÀ�ô˜&T?e,LW|Z?�£1-ÐÈ§$
	i.@à�P,	òÌ¤]ZÊ?�À	wÑ?ì;¦¼�L	�¸r¼C˘ûˇ²?!aáÁÍWÎ
	Ü$â`ˆIÀ?X×ÞE�ã�mÅöì�G¦"U¬ÿ�?ñAîá5ÍÿhÙ±mä?bá?¼½ùxÍ_£bÝ@�ë‘Dò&¡·¿�³tðÙìR�¹˘+B×?¥?8ªüú
	Á¢�DË˛¢Hý??|�=?©^Ò
	�˝³?�3Y&Û??Zi�ˆ!˚I?2®?ÓSÊ?“iÂ�?6�I·ºB?'�¡Å¡?'Ø½k?ªÍÑ3v0�¢?ÙKÄ¯õ

	Æ?òpå`¹Ó14ì˘î�Âµ_m?8oÚ�?ñ��P?˘?Sˇ$'ä�äwN|?�}‘.˘ÀùûkêÎ?_=ÆC�©
	¿ûæ“¿?7¦?cöü1Ï˘˜�|oiÆI=ãFÎ?7V.ZrønÉ?Ìç¬¢½:?ôÙÌ˜óí�ÑÜÌãú:ì?˜iÞ;
	»z¬?²|©D�{¬?Öþ�'¬?âwéµ?@?e~?µ˙ä,���7ˆ&òåi»uwP`?ÆW�®#©w¶/Tê?;
	˝Ýò?qt,æ»÷?˝ff?’Â�¬?ª%ç¦qÓïM;25˚“}%ü�Ê!1á?ï?Îâ3Aµtô˙˜4x¹
	û¢·?6�¤q£¬8A´�TÌ°Y?¯MsÅÔW?}1ù7&??jÁ\¯QF“??Çä-“��4
	3Ñ9]ñ4ô?µ‘&·Ë£ko?û�c�f	Û´l:m?^ÓK�o&šÏÂ�?jR}é‘êy`�Âm´?hü�®�«�8t ˆK??
	oÀ·�0]S*Pˇ{~~°TÙ·u]ßÏÈëZÅd§÷Ï�æ˚x¿Ñå;v¢É8??�¼?·Ëf?Ü	‘Ñ?�þT^Ê��÷
	ñf+??X�ÁW'B?_á?ô�
	½Öò2Ynd|˜'`��w3²][õ,°¬ªö®�KË?¤´L??,ÖÍ??�a/e?C8<ÛH?p˝:1Y³˝^��øAâ

	4vù*Z F7�??UÊÐÕý§ÖDT�»?¸R²?7æÂ�JÀ«¯
	?*©ÕtÓ��µãºDÿÞÌ�$5L?˝�o§˛PÐ?�˘à|OC¨z:V|?²ûê�/�?’\
G»
	?â¾|<�8F�'p?\7mrµQu³{d¢\r Q˚àg 6Æº�=DMZ˚dJÎå-Ç�Ë�<h ×Ú"Â¾?‘¡�?"Ýúó÷ ?WJ¸zñL]}Ñã
	«×VˇØì’? í˛“`H¶�?TÜ8�� âmQ
é¥�ÒÃÓuSa6l9“Ô]ÚˆN°�?b
	�DU¼ïˆvÆc}uä�¤ÿ�]??¬Î«?ì�ûöJ4�-j˜Ç?$W.¿“¡?wÍ?ú]?�³?UñGÜð¼Y-M?�,�
	"?Lˇ[öµÅ0àºû??v�ø˛jÒt¢sÈn´P?ÅîíiÔ�ñ��Ó×ˆ?ÖÌÕÅkÁÂÍ?Z«+gˆ¬á˘?7K¥??35�?G{å?LOÍ
	ÊVz"˝�U7¿¦šÜ??�³C?ÓÛFù�R�$¬¨F�‘¼_I?ˇH^éïj?ýÞÝNÄçîØY�Ü
	-È'c?%õ?�?èäé~izÓ¶»’,˘ ¤�Ë¨-8´+Ê¶óý¦\ì˜å|?˛�?�??²1à
	©ÞÀ]?;é??qË?ì.<R˙=
	Ô?+K÷mÉ˙ûK??e?ó?\§�T'Nmm®Ub�ú�?=m��b][¹3A$ÛÝhì�ðl˚�ˇ`_ ?=�Z

	½Wm?õù|È1Ë“¯#jX?ì,¬ªvvª?ÎNÖ“³VVdçø?�dš�1UIl�?[¥
	+�V?z�X�h@??É¼Êg?¼E3pÚ¼kÂZ³íðEhXL`Ñîisf?q�§+Â˛g?XV�êÛ1¡üä;ÎJ½ueAÑ#rE?
	Ç`lPø{ìd¿?±Êsù2Æ��?ˇW¿FW;¢¹¦â�ýiM1s¦aýA?;�?¥erFÔ~�í�»Sx˛J
	�Ð²c�È/ì&&f{Ãy˛i?z??�¹i¦�qÅ‘ˆËf7	®kÄÞ_1¢HÓ/åÞ»t?d�8û
	T?,kˆN&�N˛?’ãÂªï?°�u$pO˛á?˜ö.;öY 0Âk?²�HÃ~ÖJþ?hæm£��2Ôda6’ëÌ?9¶y
	9?���«�?�¬\ó¥°ëvæÐ�?n?,�É˛˜Íç�HÈ·k,Õb»®mš?'b˚�X7äüTw´?�?�
	˙?_B7'°wã ?��?of?�UÍEð¯gEKfÔ��Aó"?¬?¸˘šÐøPù�Ç08ª*?Þ´�?ö�?�?f�ˆ	�
	1?»Zº[/nó˚��©[±ð�Þ
	�2ô?��Yû'é??×ü*?áß÷ü�??´sèRˇå·;EÍ¾g£`SE#?ÎG¡Ð*Ò�?Lnõ¡?Î`y¶?kÐ¨’

	�]C[Ñ§‘%ðRO?�??g±Ð8¶?§d�?ú4ÄÞÅûÙÅo?¨?q ÄÀm�ˆ_÷E×rT?OUç
	ðê£|ÔšöJ??ï±?¡Lôs?Þ�ï«º
=˜?�?ìÊ� ÄÒ?Kåè;�lÔ�â¯Ók:kÂ‘¥˛'æ?`Ô¿
	�Ï�Ïâ®?l˛�˜?�©XÔáOS?’æf’,þ˘£ySÐº3i2C�_¹[ÝïC¡+“9¥±¾lòi�Y¾%e˜2cÉÈOà®öE¡.½Ð�¸j? ?kh˜
	ÁQC¡X?ÝZò?ïyÏV#íåß{7e???þÄ*ç˚¶m+Ïšˆp\Â"E'YZ�?S??SCNxÏÜKù»È:	˙?þS‘CKf�¤ˆ�˝??�
	�?f?isˇH©?_˙˚«ûvÖ¦¦še8?�&�B�"�Ð�?Î¥§˙���ß˙?#Ørb¤Qþ?�Ùs ?$s?Ð½Ö©Aû3`o'
	5²?kc\�pÅÔ®ÞJ?½:˛?M˘P|Á“ïù^!ÄÏ˝�F�Ušùç�?$½éH?¿,G����-ßR?C©Ä!j?í¦?&?¸¯$ î½?Íß
	ÓÉwÚÇS?sè?d�?Xû�¨Þö¦gAe_ô¸ÑW?¢Î˜XÅm�í�5˙?¢ù"],E÷�MÒ��ÉÐmêàÓ|D<¿1=V?«?“�¼
	Ô^_˛??]“CÀ?�¡�?íÁ�
	mphGÌéy?ÚÀA9É2?¢¦�G?øÄ*“våùW´#öôðrå:
-RìNdÚu: ºXJ¬Ü@?ê,˝µsEt?u?

	÷?Îç*âÓùÁ»W?L¨Êð??ÿ�¥ÿÜ±�Æ`~©d%píª�a®j?óÝ�˚�\?7~o’h?;W³
	�¼1?×XÛß9?½E�´z?ïVH˚J?«ãˆ?6�¨ÙÒdlrOC»Ì?¥û?â3m¨Ü_ÃS��Æ³wf�{�nO??ìq
	:f`àÃ?Â°GS¾EíÉÒ,Ì?���“¿µýôF˘?ÿr«�?i�¡ø%§gcÉš%n��-ÅðÛ©ˇR’Ç:¹tIæÐ�ýâýnçh[?§9Éç³Ù�¸�Ý
	á3áÿ‘ü&m˛×Ði?ˇ*Í?ˇè\2|4� ?:l a\�×?èiMZ�±h�	\?4|NÕS»»½´ñ?£f?j�
	g�F`?˚¸ÅnüHtd?]x¼?ÏÊ6Ú?’Ì?ñ»Ä˛?ÂäðÉk��Ì´É¿³æu§5�h0Z?�îX�©¸q˝ä�ua?˜èºjx�\âe
	/¨RqNê^š�ñ6�lÍ@p4ð±¸áE?h1pÝm6?˜�úý?��²+Þ=šë�ü0 6�Zó�ÔNÛX?˝
	Ü£�.a�äûeMM�e<�ðîñ,Ã4 �IËêV�àùÍ°�Í4?Ö�ö·è�R?�ivªë�èxsÏÂ9%�?EÁÿ]ï¥�$LÕ
	½mËMïU+ï¨÷	Å?�Þ¼g
	?j�¸??Ý§�ùTÌÌ`?Di˜÷@ç'Ö’¦~’ª˝“×˚òQÒûÛ¤¯O"Ï'û3¹?6˝¬QûM¯�è×ù&ç¯?ü

	???zql²¶0¤MñZËm?Pèók8?R�&�7ÖÂ˚???*�smüy�?=¤»º[?�
	Ù3cg?ÕÌ�Ù¥`GÓ¤�b˙?�v?v��×xNw�u×??áãÃ˝��åðˇ?ÓöˇZg
�?¿???1REip?íaÁÉ¾Ãë°º
	»�³qñ?¦ÿ»�ª˛�M
gß ýN,uÖÄ?Ë�¦¹§Ï�d˝¶“�£M�Ö�?z,˘¤ô!8æ¡â
	˙Å³¡ˆåOý²Á�9¡òOê�[®�öÅûþÊ?Îl&�ˇU?«í�Ù�?�«??˝`]h8Í|�¥¦¬Ì&	*�?-M2¢˘�?¡�˝?ú½çù¶
	¯Ü¦��ª°åLÝ�\»[|³�{?¾¬ËsÛ�Ý??˜�˜u?H$´öÎ¶N&/Gôí’˘¾b®t'©G¬^?×Ç˜ê˙v?a6ä� |ßi¬©
	�ý’ò?õ�ÒÁª?Du�Ñ@Ål:?Ø¡?B?uß?d?�?APš?ˆ==;?�;�I2?�ä5a“?��M�2v»ú�"Q
	?Yc�Ø�^v[3ñ�îš��÷N'è®ÌÁ�M�?çÔ=÷Íg‘Ä8Þû¦/Ñ?É¾
	?µ¹1NÔj°r�h_YQ�?«�6¡~?7ä³6*˙³jDmxEÊnˆ	i�íÆ�Ã�|??l8ˆaÇBèt©·Åø’?z?
	vCsúì°96YUä/�?+�æ
	f¾£º1o§˚æ¢5×°ÔéB~ÜÐ±ñ,�?�6µ¼ä¡iFÖAI«?è?�Õ?Þo?ï<'þw�ß?çw´Êˇ!ºùµú

	ˇíÑý¬?�?ªü?àùL-'Â˝?ÕN��Í?T�Úd?Ä	jºµ�Ãð}ÓÇQ9:�bpk8X�
	?zÑÁ�·$
	fš&µ!ã¤ˇ˘}FS�´·ì�?J��[�bdÄ$iy�˘à×FW?²�.;îoÆ¡Ä÷»vï²¶8??Í�àXÆ??šüL?ë[¥?ìHÉã�ˆ»
	Yú?å-GéâBý�?ï�$³w!Gx;N<ï7Ä?9‘0q??‘K±d�dV\ïC¸ñ¢ªºó
	nï+x�˘Ã¤·?&UEW@rµìpé{µ‘é÷?L?‘G2?lR=µö.ãCª?v??é?< Ø\Ñ¢
Ê�Û
	�úÎ÷�Q?Ä`³a˚®PÉ?W8/V?AfFëV˘/�Ôõ¢ iÝÊõ<�¹DcˆÈ/2?îy?i¸N?M"�í�õI¢{˜*mªÑ{S²V5ù÷!?»N?ÝÙ˜ä½ç
	R�Çq"?ˆ:tiûÉÂñ`·J5ÕÿE?¥�KlF$[þ'B³9µ��i¨	?só·,ÄhÙÇY|
7rb¥0:Í
	?�7|Ðt�ÆEÛã¿aË¿?šû¹ÈnNÝ-�ØF?Ð#?SH�¦ð¦�~?�??*šå?˘Ù?ÝQp'á??��3"hn�l
	Þ�,??Â7?ù¦¡p�Û?7ÌQ
	|�Þ˘?Î?°mÖî¯y³¹§s�b?_*�5»À
5ê?v´Û�˛�sBxrš,�?¬?ä �ï?mÜ¥³½V?µ`ö¯'

	«�e¹b?�	DEÒ6ö:*¥ÿ�ýAE�y·`³°hÏ?��Mt�%˜$š®íñ ô%˛h?«ð¿è$Î<àHÁ
	^9³?ñ÷§µ �"YšHk?a��ÝÆ?G¹º°qÍ+?êWîd�Q‘ôi°ßzßå�?ÿ?Tî¶ ý¨¡?öÃ©�/÷ù t[Æñ˛?o�
	^�÷¤�í/�n?ò+ØÃM?Ãª��ÐD?%u|²�á‘	Cü{ÄÛ?ê®õú¢ µTà`Æ!Ë�ì/È�î67Mh??J�?
	» púf÷H�®L?�?hõ¿k�7÷éü�¶ QÚLo���ï3h¡å�ö�`~ÝE7ÞR�Ð±=7GK¶6t�?í˛?¦?§�?�D
	Ì.pä?�´�Ä¬Z©OC?�9bð©Öée!&8¡cš¤�¦Ò]6Î~7Ï»?©??�Å`9ç�e?:?fz�?üàWgÌ˝vùáÒOh�ê?Ì´+Ó2¡Ï¹?î»=ÿ
	H[|?IÞB‘�ù'¿ókþ�ÚU½¿&??]]¾£Ò?[O??z?�/ÜÓ?²Z’��|ñ1z¦?.APo
	÷?<tê?’ æ˝´gó§!BØ¾âÆ�Bm?˜â?˛kñfÐ?Ö}?KTtI¯}à˙PËÓ1
póâ˜÷vÚ?˜?�hv?´
	µrÚ¿Å_?ëZ§Ë¨xÏIdÂø?Úé¹FàˇÆlK?�¤G�P�\Ö?�=?Ý�?¶?6¼pæðªÂÖ�´ee\±?‘
	À?º��“ß?$$GÑ#]P�/&5Ì?i??˙ZLß,þFÛ¥h~p�6?Ð²�kg �šOO@ÊqZó��E?V
	ˆ?	É���ì»þ�ä?§£�¯“\Î9Þú·ßF?Àk?�FÐL®<ª@à?’þJl5k�|1r’˙?R

	¤'?˘`¬:ò?n?�úcOe?Ø1'IKÈûÞ"½nj?0®?|Ë?o¤[õ�?àõÊïG®.?.íó˝-:í�
	õXQ¿e©?@ùÉ??ÿ8#�?'
	
%`áZÉ˚*gî��ÚÃâ�!*ûH?˜Mà§ñ9Â˘¸W?�@?š��?¸��-Å�Ð·1‘ßÞì?×lÐ¼vÀÄ?;ùØ

	bI?��°0`d@uy2øÒ?$?ÑãÜ�?¬ó˝Îü¼w6?L<?�ø�óˆ¢�0Gß9�˙°ÚÎ9e?/¡8Å¡??�6ØR.%®&ÃÿÇ�?	?Óï
	fÁu�@f�˛˛÷ì’É?v7?EÃtN˛¢˙?¦Ø˜�=ëšH??GM_�EAVµæM �Q�?��UßSXí½tv:ïÞÐ¡wˇ.?R+¾?W??.
	iAIÛÚ	Ëv©Lèk%�«8qV?Z?ÞiÌ[·Åä¹?®x?ÑÂ4ääÌÃ�?�Ó
	¥Èysl3����3Gx`ËXªÖ?U?üÁ?¦%�¥?BÆ�9´{Äp«üÅ�é?�§Ð°Ô££b5f
	D	¸W�?ôÛ?s¬Ñá±åtB éc#^[˛˘?ÝæÈ/?©8£Þ�/¦ï�Y˝"}šøäÆ�¹ˇtDû{êK¾¬ÌûfÚã?Z.
	 §òèÜ@#� ’ü"�BÔ%?ÆÏÆú0?8?p˚¿� ÄocF¢??õJÓ&°³©`?®I?µØ?¹?Yý5?'Y?¿ù±ý���s¹Yý

	f�?D“,Wc
�1¥?ì?�^�ö@nSt
è˛?	ÿÏxm??�¸p¡úp�2�o¢}Ü¥?˜ûr¹Ù\Oÿä�Z£ˇ
	,÷?B˙E&¬þdR8ìB!Õ�?á?PFÑ˘��M�ÕKÙD|AÐ°˜mÛ¨�:³˙®�M0?ìiÁõ�3u¹????IñO·pK²?×
	?ý?²æó-V¶Ô»ñ«-Ëè¡??çL±¸ˇW?ç\Ï¨¬ÓC3ÔÍîþá?+�?#Ö�xÖP¿ÑúÛÚVÆÔÎíô�?�Y/GM�?Ã�2©Þ¢^ÑýZR?y,i?kn
	lÈ?2¤�Ö|¥iV’MV
fÔ]r8Öô?<?È�e�äá?N°r"µßûòühÎ?˝ë:k�µb<Èòê{üâú/c¡w$¹v¹%
	ªÓ??oÍS*!EãP{ª§¤cz
	ß?�|þ6TÏr$[Ïù%;løVkà�bm9Ë}â§“¡??0�'ÐðBª`J9ý??áúëO?GºAÄ²\]Öò?þãX4

	M˜6åÔ?Éá'§7õB´“�Õ\˝u�àˇ�=ÓñL�¿äE�âÇ?HÎ·C?sûîÛ÷*2�¯?Ò�?MCT
	pN[ú]LÃÆ|¿�F~˙×ó˚"S3_ÐÓyÔ9¾ù¦ÿÀ¶çÇ´‘Ñ�¼i?±ÝÒV?�l17�	©
	3Nr?�ìÇ7øHtµb¼ï´·?aXÁ?d?$ù_�¿i£�h~ýr�æuß4-#�6r?‘�ú�¬¾%¹?÷ßµJå?,õš�µ!Ì?
	?[úò%�R|ˇPÃñ�úÎîR¸67:5�À°I_"#Ää?a?ø˜/XfD�{JðÏè<ocD�c�HpÇ�i�Ç-rÀU¥UÕ·i�¢b2U*ëäa=
	\ÐÖ?V}�;z¬#6'dg?�ÛB˛Ô,OL¸¨?8??´÷K˘ØÒYÝ??Ã^u	ÛÚ¤ª~úóø§A^˚N<-ýl�´�ç˝Ñ?t¹
	.÷ÝÄÝ?Rm}jÁrQ“ApcÛ?˙è|OÂø¬PÞE˝oBv¨�dáˆ?ª_��k?»ßM?½�e�çH?�?�l
	Pj �¶??r??æùDê�zò?Ãï9FÞË&Ò¹àëIc6óñ ?ø¶H.ù?JÅ�«6Ü²Z§+¬<?FxB�ö�,æ?ö°ê
	�ÀEý¥+�À¯?¯_kóJˆ3^7mÊ¿"AY÷!“¬¯Ø�î¶{¨?*Ö3�Ê?~¶Ë‘�ôä²î±â33¥ É<Î?:ê4Pù
	˜.§???ÿ'»:Þ?Ì¯,�
	i$ _áÒAÓ??¦¯ìY"
t]?ˆg«XBñ˜7"¡Â2vácùB}±3‘Ó¸š´xJ²à½˜*?zÑ?düh'U

	lÕ¨E1#XÛV?Ý±5Ý??v?? ??ö�÷Òð’âÈÌ?p¯k¥âQè˘?XÌm?\B3å
	sÖö�Û�¯Ç?þ+òùô±?ò�/j�æ¢e�«Fˆ?ÈJq�à×dâÙ�ˇ�?QøP§û?C|Y�gî"®TvÑýRL8ˆz?:«'˛
	r?,Ó"�K6_?¹�îù�k|ô’ò×'f�à
1í+÷ä?¹TRWQ�G²â0??G¶Åü?Fu?tÕ?°�
	¶,˚õ˛µÞ?§?d§ãrçJ#�,!ÖU�??Ló¶m±éþì¼`??Ã¦WjÁ
	×¤?PÕªÕ�Ü?l¶ûì²ä?ùK¯oH?�ê¬˙�!Ô·2'Í£½?£{?G{f?"¢e
	i16ëbhð˜Ü6�gT®.w.!Ç˘ö�&]SÒ®?:mfº¼rW?[²¯�¶óIÇ�?å¢�3�Zw_p»¿
	&??��çñèãòù¹M?f��Þ?ÍÁ²2îD9	½¥&š1�Æn˙fB21+?ÞJo?Ñå˜0ßJ!x“¶T¨¶ã
	ûµ�µˇÝK?CÞLY?oddã
	Â©í½ z�?à¶Ý#§¾˝çs�Èê?PÂÑ'Of<�˘®6Ü˜í]øì'?xFI³VDÌ´h�3³Ì’ç©ÚE±�Fâ

	,Þ?Çw?ÈÇîN�ÒV?
¬¯ÔÜ×@˝??�9:<�Fx�ì-§³mse³"Ô;/ˆNÛ§àÙ&?Æ�¯+½ïª4$?j°�ÃúÇ×??´??N
	?cÛ.�ÚÎÁh?Ñg˘<H?ãh?±o$l_w9<�`î!�m%t+˛�1Îßp#?3#~�?ÐÎbQÑÉéq“AÉ ÕšÀMA·�² ©KÑ�fôt�
	&jË¬?a<?³,H“µû=?±N??uf“³tõ«4�Ù¸u�??ôê²È'êCZ§áSïïyM?�
	“sË˛2Ç??RÝ®òQt�F1�SgN�êÒÖ
èßäÂßû?¼¶?�çm
	£!Ù�Û�?~Ð¸˙×�$¤Ôè3tÁº?	˚T:Oìü¥.¨??úÊ a�Tmf³?�?Ú�Çˆ�ØNß}AwWæ�æ¡h.£*;èÞ�èIXu©rÍ»
	e�ÿa˜À§.*Ó�TjZ5Â½}ò�Â˙;3½H[�+ÇÝ	¬Æ???Óï9Ë·?‘�ˆ?÷$�?˜fù�ePîå»ØËbË=t6? ¦}w
	ô�à?&ÒÐ?¶ú ¡�˝¿Pë9Ì4·¾ô?ÇÛâCÉÎ�£Ö|��[ØˆIÅg?a�
	0Xý8YMõP˙·Ú˚˚?˚{¯4
	H«ç2¬¢/
�Àk�ˇt{?y$¡Þ?ãN�?CVrl³1????p�-À�’ÔáÏÄÔÇ¨ý*ñ£ÑÆ�µu7’&�ÊÉ

	¯O¦/?àÆÂ?Îu4=æ˘?ÛUÉ���‘��;û�{�éñ?�$Ñ÷Ëðh[Äÿt¡�½#ôˆ{ÍÌ?˛Å?âö¨}
	«Å?2ðÕOg‘��OÞM˙^×nÂ˝e4ˇ%?O.M¬�Jh	?�çI¹f]¿?Ç˚Üø?ÏW»F$‘Ç?¿Ð+?�KÇÀÉÊæ¾;?ÎÍ��9�
	iè®Û¼»¶’³Í$y	?[«Sâü�c-�0Þ�j�ì`×phØ}ÁØèÜ÷ÕÂõ?˜þ¤�/+
´È�píõU�]A
	o«ë?�®	Ghd˛y�@ôÙ’V��;<°�C#c· ‘Y»Î{˘û¥ÍêãÀÃÍc¼æ|#?4?Y:��áIäyúè?
fì�Î?8îÇÏÜ?
	rÖ�ð� Á�dâD?Á�|$6óè*=òa?�?£?<¦ÔRp-?Eºç#ÌWO?=ÝïX¥�Õ¯˘
	�ÿY�ß�£˛"H¸é���¤?ø³ÐeadÞýpñ®¬_˛�Ü"ê.Q ?ÿ?°úÿWö??v¹˙š?³�m“
	:ëÎÁ¶s³fFDâÆmñü°¶[rÂ�	v©ãÿß]u?ó¥˛ìgíA?�ÿña�?0uá0?Ft*ÍÈÍs?¡Éh�N6
	9‘Õ�¡¿�"A{0S?®bè½?
	�EàìßÇw�ñjk{ÒHê\ã�F?yz?�8þ?F£ÿwî¿Ô¾®½= B˘j ¸˜
U±©˜â^2þ�pY¼h?·|

	36&Û!¢¯IˇKp�?�V?º�}¥T^¢³`tô"J� o`4p@b÷?îâËÂjXuÈ*^�’ägý÷�ë8��P¡í˘
	V�drú�R·N?ÇýdZ��ßçÀïBzø?¦ÑCíÔ?`í¨ª«®??½ª?»�?ˇAÓ?f°uÀ¨�ˇàÊ2Y~DU
	ª�Ý:0¶áL¼ý˚ÏÎæ‘Ø_�¡Afo?ã/àÌ’vC0TÇÔ.¿Ñó�{àzA¸ôÄRü÷ð{ã£?Z;Î_�?9?,*p��RptL¹Úw¯E¾˙2
	ßê§B6WÄÃ!˜h’ÝÁA7:^Ô#�Ø’ù©Cé$¸?}?QÈ<`wsx3U??Å?ï�T¶k�iJˆy°îÂ»
	?k-˚�³?»¡ª??@vˆ?WB»·×˚Läjôô°,2T˛?}?âWrzì?ð
	ý˜ºb‘ØqMñE?®?ÍÛWA�,¡Ò.Â�A?^¦óˇ!�??´Äã?��\�fý"�iOV�šS©o?È3Úÿ�·é¸opT�˘üøNHN¿{�´ãmÄf
	¦�¡!�t˛&ˆ?:yXHÏI?É�V¥?/?[<·�½ù#Lg"rÏàBß�zúTz[ñ´Ý¶Ì‘¡6?“O '˙Ï?aÖò?�¨'?§YÎ\˘??«L?'õ;	k´
	ˇç!?�Â?o¾±äMÐ6Ë ’ÒÇd¾dû?BÐ7?°�.PéUè=ào0a�Úø�P5èñr?s&?�EÀÒæ���®
	ðZþ	É?°H|r·˘©bÆø~
	¹×ÉÒ�˘9íT?~˙Ï¶B�Ö?åã?ßö�÷?.?�ˇÎ�?Ðz�XˆãÍ?±&ä˜c^&%"¢‘‘?Ü˚JC<Iß

	v³¿Ù�˜¤ì_;G£?:CE�˚JXGÛðÆ?˝Á¹hò-àK9?12��SN,¯_Ë?ÁæYÞ
	¾M�Q³ü×ØÇ3ßðíÌÖˆ½ã×~4:-ÀU?ñÂQ£<���DX?÷½ª?�æc,ª¾��R£R
�Lg©%ø?w;9ØçÛÂùÅÐ
	2Ä+ZY«?Øòðq˝j?�±Á�?ÜýF6Ú²Y]¥e×:8�ðä˚6éø?[úx�-tC�k$ÙÀ^ˇ?Dô=©FO?É˘�¥�
	¨�xS¢��Ë0.T¥¿¡'X?�	óqµçâÄ�êYÎ=çá?gèÍ®šãstV®§Å³?Ú,¯?áý?Éo
	�º¹6Q_?¡ùç??«YEÃ�¥pÔ±?¦�L?rô÷©W´A`¤ða´ª¶óPÆºpÞ5?öýBx¬
	$�
;˚ë?ó¯}�M‘ÛÇu¹Z˜µGÎ�?Qhg±¸ºqšè??V?:ˇdª?¨�?cQð	&°µzª??XÙ0ÍhZ�0þ£ÿØR�
	ÈÂiØ
EËtÊ?5-k˝?`Pç�??öCe�ø64eð�?EI’?£ÃñW;Jú81\pNQ�*h@JYš0?;
	?<eÁJA?Ãt ayj��?ME
	¡?Î??˛Ñ?˜˚ÿ'[?F?kÖ?Br·j˚÷¡?j´`pÐ?�V®®�.Ð�Í?I8o%�?A?˜�£¿÷ûPÔå??@@

	c?üÄ�°Â;N¿<ex¦?¢$ÿ®à�ê�/�á�{øn~�?{N3D£�Ù��?¢�Ó'Ø�\b¨�H;�ü1�
	z´ãÜzË!�îLªB´Þ?MÅ8*£Çt??¡�H?Tó-?£ˇ23$¬r��ûäZ?˚ZÝäºá?á�[-˛ÿ?k$^é?ÉB�¥C˘Éñf
	?[ÌØ£º,˘¶�ÙG?CIú÷åC?9¶ls??=Ô�Ën1˙�òö�Æ`·@fMh²BÝ?ÉXå?³¦?çÓ}Ó¤��÷�w�l?®´?ëå÷�!
	N¾�`÷p˝×‘2�2|’�?6��k\Pš?�³?vãÒÖ[ÔÁ?˙Vµ?´�b
	LA	&�3‘!˜��t�ä?Ó·É½@�!}W!-ô¤5??Pò5˜ˆÕ®Ã˘ÿ.

	˛?uùD?à°Üñ�Æ %Í±Þ�©%�B¢p¤OÑu?þÞkB$ì?�DýÔ«ÌúXÒ:e7ö�%BD§?Ôo¡×¯Q\??äZ?æô®�ÝˇP“
	£ˇAtþùFN½&Ã·“�Xÿñ�°S¼²°v/s’@Y¢¶?E"~Ëi�í_Þ·¬�|��DÙÉÃä¨�5=L�?7�ûû®�¡ï?
	ü£jyÎOÎ?,�4��ÄRçâ0ö’¤:ÝÄ?0Ü�PÇ??VÀô?÷?�¸<ˆ�Õ�àT�?á?Ød³ˆ|Ú��»¬�4šñD�!N~ß9Ä
	Ô‘Ë¹*8÷¹ÐÅ?±�˘i�Ì9áJmÞ˝?$é¡ÇÌ˘ã�Í÷g·CfIFQ¢
�]�Ñ‘æbÚ˙5@ß?5	/ÎuxZ/ðÊ#È¸ì
	dµ<Rß½¹©?�·N¾??§D@
	o%3ˇ?˘ALÞ�ÆØtS?V�q?d?‘Ü ÅÉ¦ôeºµ??AG'ø%Ó}µ~ËdüÜ??¬B¥þ.=?¬?68V?9¥

	?%jM±\Áò˝j˛+“?»²Ó?øë�©ÊäUV�?Î�?Ý#x,ýÂOñ õ�?%Læ!�C�]*ðˇ T#���
	åqº7� 6"ˇ?Bg?»/øªXÖ�v.?E½Ù˜C?®¨Ç®ruF<¹"??TUõ�Ò§˚³=âÁ�¬^5V�???Ð
	zVVYÏÌGN<¥6ˆ?©¢ ˇÅÙ?þNÐ?ª4M0#�o:ØQv«?¥Jatgd´§}S˚?˚?�Ç¹³
	ªWÒ??UÐö´�8Ù?Ë¿�.˙¯0��êî«¤â�µ}�?Ï�^ãº%à²?��l³4ýQÎN%��rÜFä�Þó?ò7À\Â?9C¬$â
	è�¡´æâå‘½Ãg?;ªÈ˘hóÎRú6õLtˆÒ?�:?òS?º?´˜V˛ÏY¦^ë?m??¢ê�&??�Wý¶0,�¦0�8I¬n��¶�?Ô?ü{É
	0L¡¹ÿø?}b‘A/¦ \I�|©¥u´óä�÷?¢/i?W!�6'‘ý�tj�aL��å;wöÝä0�lúv"c?ÿÿÅà;�
	htLkØ˝�‘³$BšA“vÐÛîT'�©ý4&�³"OúÇG¶p¥Æ/�²Î¤ÝJ;ôÀ³·Õ`_æˆÕ�Æ®?Æ £¿,ûûÞ
	±��t«÷Ïî_öB˙wôÃª�ï
	˛S?G]¨T9Dj?û?fF??e�öÒ{û�?Ð?‘²È�Þ7Áä2�½Ìïyô8°?˘hT	Éz�A4?Bæ©??fiô²

	|�7F=�}?Q·�ñ¶?J�£¼âÈ�$�ûT¾’�%’?^?â±Ràñ14P�¸»Ø˚�Ë	ÏQ³Úã?ñ²ò!Â<¨Þj�¥‘Õqz?ç

